Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (5434 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (89 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (58 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2752 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (233 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (145 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (139 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (50 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1267 entries)
Moduleid Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (47 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (24 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (609 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (21 entries)

G (definition)

gcdn [in div]
gcdn_addoid [in bigops]
gcdn_comoid [in bigops]
gcdn_monoid [in bigops]
gcdn_rec [in div]
gcdp [in poly]
gcdpT [in closedfields]
gcdpTs [in closedfields]
gcdp_loop [in closedfields]
gcdp_loopT [in closedfields]
gdcop [in polydiv]
gdcopT [in closedfields]
gdcop_rec [in polydiv]
gdcop_recT [in closedfields]
geq [in ssrnat]
GRing.add [in ssralg]
GRing.addoid [in ssralg]
GRing.add_comoid [in ssralg]
GRing.add_monoid [in ssralg]
GRing.Algebra.axiom [in ssralg]
GRing.Algebra.choiceType [in ssralg]
GRing.Algebra.class [in ssralg]
GRing.Algebra.clone [in ssralg]
GRing.Algebra.eqType [in ssralg]
GRing.Algebra.lmoduleType [in ssralg]
GRing.Algebra.ncalgebraType [in ssralg]
GRing.Algebra.pack [in ssralg]
GRing.Algebra.ringType [in ssralg]
GRing.Algebra.zmodType [in ssralg]
GRing.and_dnf [in ssralg]
GRing.char [in ssralg]
GRing.ClosedField.axiom [in ssralg]
GRing.ClosedField.choiceType [in ssralg]
GRing.ClosedField.class [in ssralg]
GRing.ClosedField.clone [in ssralg]
GRing.ClosedField.comRingType [in ssralg]
GRing.ClosedField.comUnitRingType [in ssralg]
GRing.ClosedField.decFieldType [in ssralg]
GRing.ClosedField.eqType [in ssralg]
GRing.ClosedField.fieldType [in ssralg]
GRing.ClosedField.idomainType [in ssralg]
GRing.ClosedField.pack [in ssralg]
GRing.ClosedField.ringType [in ssralg]
GRing.ClosedField.unitRingType [in ssralg]
GRing.ClosedField.zmodType [in ssralg]
GRing.commDef [in ssralg]
GRing.ComRing.choiceType [in ssralg]
GRing.ComRing.class [in ssralg]
GRing.ComRing.clone [in ssralg]
GRing.ComRing.eqType [in ssralg]
GRing.ComRing.pack [in ssralg]
GRing.ComRing.RingMixin [in ssralg]
GRing.ComRing.ringType [in ssralg]
GRing.ComRing.zmodType [in ssralg]
GRing.ComUnitRing.base2 [in ssralg]
GRing.ComUnitRing.choiceType [in ssralg]
GRing.ComUnitRing.class [in ssralg]
GRing.ComUnitRing.comRingType [in ssralg]
GRing.ComUnitRing.com_unitRingType [in ssralg]
GRing.ComUnitRing.eqType [in ssralg]
GRing.ComUnitRing.Mixin [in ssralg]
GRing.ComUnitRing.pack [in ssralg]
GRing.ComUnitRing.ringType [in ssralg]
GRing.ComUnitRing.unitRingType [in ssralg]
GRing.ComUnitRing.zmodType [in ssralg]
GRing.DecidableField.axiom [in ssralg]
GRing.DecidableField.choiceType [in ssralg]
GRing.DecidableField.class [in ssralg]
GRing.DecidableField.clone [in ssralg]
GRing.DecidableField.comRingType [in ssralg]
GRing.DecidableField.comUnitRingType [in ssralg]
GRing.DecidableField.eqType [in ssralg]
GRing.DecidableField.fieldType [in ssralg]
GRing.DecidableField.idomainType [in ssralg]
GRing.DecidableField.pack [in ssralg]
GRing.DecidableField.ringType [in ssralg]
GRing.DecidableField.unitRingType [in ssralg]
GRing.DecidableField.zmodType [in ssralg]
GRing.divfK [in ssralg]
GRing.divrK [in ssralg]
GRing.dnf_rterm [in ssralg]
GRing.dnf_to_form [in ssralg]
GRing.elim_aux [in ssralg]
GRing.eq0_rform [in ssralg]
GRing.eval [in ssralg]
GRing.exp [in ssralg]
GRing.Field.axiom [in ssralg]
GRing.Field.choiceType [in ssralg]
GRing.Field.class [in ssralg]
GRing.Field.clone [in ssralg]
GRing.Field.comRingType [in ssralg]
GRing.Field.comUnitRingType [in ssralg]
GRing.Field.eqType [in ssralg]
GRing.Field.idomainType [in ssralg]
GRing.Field.mixin_of [in ssralg]
GRing.Field.pack [in ssralg]
GRing.Field.ringType [in ssralg]
GRing.Field.UnitMixin [in ssralg]
GRing.Field.unitRingType [in ssralg]
GRing.Field.zmodType [in ssralg]
GRing.Frobenius_aut [in ssralg]
GRing.fsubst [in ssralg]
GRing.holds [in ssralg]
GRing.IntegralDomain.axiom [in ssralg]
GRing.IntegralDomain.choiceType [in ssralg]
GRing.IntegralDomain.class [in ssralg]
GRing.IntegralDomain.clone [in ssralg]
GRing.IntegralDomain.comRingType [in ssralg]
GRing.IntegralDomain.comUnitRingType [in ssralg]
GRing.IntegralDomain.eqType [in ssralg]
GRing.IntegralDomain.pack [in ssralg]
GRing.IntegralDomain.ringType [in ssralg]
GRing.IntegralDomain.unitRingType [in ssralg]
GRing.IntegralDomain.zmodType [in ssralg]
GRing.inv [in ssralg]
GRing.Lmodule.choiceType [in ssralg]
GRing.Lmodule.class [in ssralg]
GRing.Lmodule.clone [in ssralg]
GRing.Lmodule.eqType [in ssralg]
GRing.Lmodule.pack [in ssralg]
GRing.Lmodule.zmodType [in ssralg]
GRing.morphism [in ssralg]
GRing.mul [in ssralg]
GRing.mulfV [in ssralg]
GRing.muloid [in ssralg]
GRing.mulrV [in ssralg]
GRing.mul_comoid [in ssralg]
GRing.mul_monoid [in ssralg]
GRing.natmul [in ssralg]
GRing.NCalgebra.axiom [in ssralg]
GRing.NCalgebra.base2 [in ssralg]
GRing.NCalgebra.choiceType [in ssralg]
GRing.NCalgebra.class [in ssralg]
GRing.NCalgebra.clone [in ssralg]
GRing.NCalgebra.eqType [in ssralg]
GRing.NCalgebra.lmoduleType [in ssralg]
GRing.NCalgebra.lmod_ringType [in ssralg]
GRing.NCalgebra.pack [in ssralg]
GRing.NCalgebra.ringType [in ssralg]
GRing.NCalgebra.zmodType [in ssralg]
GRing.one [in ssralg]
GRing.opp [in ssralg]
GRing.Pick [in ssralg]
GRing.proj [in ssralg]
GRing.proj_sat [in ssralg]
GRing.QEDecidableField [in ssralg]
GRing.QEDecidableFieldMixin [in ssralg]
GRing.QE.choiceType [in ssralg]
GRing.QE.class [in ssralg]
GRing.QE.clone [in ssralg]
GRing.QE.comRingType [in ssralg]
GRing.QE.comUnitRingType [in ssralg]
GRing.QE.eqType [in ssralg]
GRing.QE.fieldType [in ssralg]
GRing.QE.holds_proj_axiom [in ssralg]
GRing.QE.idomainType [in ssralg]
GRing.QE.pack [in ssralg]
GRing.QE.ringType [in ssralg]
GRing.QE.unitRingType [in ssralg]
GRing.QE.wf_proj_axiom [in ssralg]
GRing.QE.zmodType [in ssralg]
GRing.qf_eval [in ssralg]
GRing.qf_form [in ssralg]
GRing.qf_to_dnf [in ssralg]
GRing.quantifier_elim [in ssralg]
GRing.RevRingMixin [in ssralg]
GRing.RevRingType [in ssralg]
GRing.rformula [in ssralg]
GRing.ringM_prod [in ssralg]
GRing.ringM_sum [in ssralg]
GRing.Ring.choiceType [in ssralg]
GRing.Ring.class [in ssralg]
GRing.Ring.clone [in ssralg]
GRing.Ring.eqType [in ssralg]
GRing.Ring.EtaMixin [in ssralg]
GRing.Ring.pack [in ssralg]
GRing.Ring.zmodType [in ssralg]
GRing.rterm [in ssralg]
GRing.same_env [in ssralg]
GRing.sat [in ssralg]
GRing.scale [in ssralg]
GRing.sol [in ssralg]
GRing.subrK [in ssralg]
GRing.subrr [in ssralg]
GRing.Theory.addIr [in ssralg]
GRing.Theory.addKr [in ssralg]
GRing.Theory.addNKr [in ssralg]
GRing.Theory.addNr [in ssralg]
GRing.Theory.addrA [in ssralg]
GRing.Theory.addrAC [in ssralg]
GRing.Theory.addrC [in ssralg]
GRing.Theory.addrCA [in ssralg]
GRing.Theory.addrI [in ssralg]
GRing.Theory.addrK [in ssralg]
GRing.Theory.addrN [in ssralg]
GRing.Theory.addrNK [in ssralg]
GRing.Theory.addr0 [in ssralg]
GRing.Theory.add0r [in ssralg]
GRing.Theory.bin_lt_charf_0 [in ssralg]
GRing.Theory.charf'_nat [in ssralg]
GRing.Theory.charf0 [in ssralg]
GRing.Theory.charf0P [in ssralg]
GRing.Theory.charf_eq [in ssralg]
GRing.Theory.charf_prime [in ssralg]
GRing.Theory.commrN1 [in ssralg]
GRing.Theory.commr0 [in ssralg]
GRing.Theory.commr1 [in ssralg]
GRing.Theory.commr_add [in ssralg]
GRing.Theory.commr_exp [in ssralg]
GRing.Theory.commr_exp_mull [in ssralg]
GRing.Theory.commr_inv [in ssralg]
GRing.Theory.commr_mul [in ssralg]
GRing.Theory.commr_muln [in ssralg]
GRing.Theory.commr_nat [in ssralg]
GRing.Theory.commr_opp [in ssralg]
GRing.Theory.commr_refl [in ssralg]
GRing.Theory.commr_sign [in ssralg]
GRing.Theory.commr_sym [in ssralg]
GRing.Theory.commr_unit_mul [in ssralg]
GRing.Theory.comp_ringM [in ssralg]
GRing.Theory.divff [in ssralg]
GRing.Theory.divfK [in ssralg]
GRing.Theory.divrK [in ssralg]
GRing.Theory.divrr [in ssralg]
GRing.Theory.dvdn_charf [in ssralg]
GRing.Theory.eq_eval [in ssralg]
GRing.Theory.eq_holds [in ssralg]
GRing.Theory.eq_sat [in ssralg]
GRing.Theory.eq_sol [in ssralg]
GRing.Theory.eval_tsubst [in ssralg]
GRing.Theory.expf_eq0 [in ssralg]
GRing.Theory.expf_neq0 [in ssralg]
GRing.Theory.exprN [in ssralg]
GRing.Theory.exprn_addl [in ssralg]
GRing.Theory.exprn_addl_comm [in ssralg]
GRing.Theory.exprn_addr [in ssralg]
GRing.Theory.exprn_mull [in ssralg]
GRing.Theory.exprn_mulnl [in ssralg]
GRing.Theory.exprn_mulr [in ssralg]
GRing.Theory.exprn_subl [in ssralg]
GRing.Theory.exprn_subl_comm [in ssralg]
GRing.Theory.exprS [in ssralg]
GRing.Theory.exprSr [in ssralg]
GRing.Theory.expr0 [in ssralg]
GRing.Theory.expr1 [in ssralg]
GRing.Theory.expr_inv [in ssralg]
GRing.Theory.exp1rn [in ssralg]
GRing.Theory.fieldM_char [in ssralg]
GRing.Theory.fieldM_div [in ssralg]
GRing.Theory.fieldM_eq0 [in ssralg]
GRing.Theory.fieldM_inj [in ssralg]
GRing.Theory.fieldM_inv [in ssralg]
GRing.Theory.fieldM_unit [in ssralg]
GRing.Theory.Frobenius_autE [in ssralg]
GRing.Theory.Frobenius_aut_add_comm [in ssralg]
GRing.Theory.Frobenius_aut_exp [in ssralg]
GRing.Theory.Frobenius_aut_muln [in ssralg]
GRing.Theory.Frobenius_aut_mul_comm [in ssralg]
GRing.Theory.Frobenius_aut_nat [in ssralg]
GRing.Theory.Frobenius_aut_opp [in ssralg]
GRing.Theory.Frobenius_aut_RM [in ssralg]
GRing.Theory.Frobenius_aut_sub_comm [in ssralg]
GRing.Theory.Frobenius_aut_0 [in ssralg]
GRing.Theory.Frobenius_aut_1 [in ssralg]
GRing.Theory.holds_fsubst [in ssralg]
GRing.Theory.invf_mul [in ssralg]
GRing.Theory.invrK [in ssralg]
GRing.Theory.invrN [in ssralg]
GRing.Theory.invr0 [in ssralg]
GRing.Theory.invr1 [in ssralg]
GRing.Theory.invr_eq0 [in ssralg]
GRing.Theory.invr_inj [in ssralg]
GRing.Theory.invr_mul [in ssralg]
GRing.Theory.invr_neq0 [in ssralg]
GRing.Theory.invr_out [in ssralg]
GRing.Theory.morph_sunit [in ssralg]
GRing.Theory.mulfI [in ssralg]
GRing.Theory.mulfK [in ssralg]
GRing.Theory.mulfV [in ssralg]
GRing.Theory.mulfVK [in ssralg]
GRing.Theory.mulf_eq0 [in ssralg]
GRing.Theory.mulf_neq0 [in ssralg]
GRing.Theory.mulIf [in ssralg]
GRing.Theory.mulIr [in ssralg]
GRing.Theory.mulKf [in ssralg]
GRing.Theory.mulKr [in ssralg]
GRing.Theory.mulNr [in ssralg]
GRing.Theory.mulN1r [in ssralg]
GRing.Theory.mulrA [in ssralg]
GRing.Theory.mulrAC [in ssralg]
GRing.Theory.mulrb [in ssralg]
GRing.Theory.mulrC [in ssralg]
GRing.Theory.mulrCA [in ssralg]
GRing.Theory.mulrI [in ssralg]
GRing.Theory.mulrK [in ssralg]
GRing.Theory.mulrN [in ssralg]
GRing.Theory.mulrnA [in ssralg]
GRing.Theory.mulrnAC [in ssralg]
GRing.Theory.mulrnAl [in ssralg]
GRing.Theory.mulrnAr [in ssralg]
GRing.Theory.mulrNN [in ssralg]
GRing.Theory.mulrN1 [in ssralg]
GRing.Theory.mulrn_addl [in ssralg]
GRing.Theory.mulrn_addr [in ssralg]
GRing.Theory.mulrS [in ssralg]
GRing.Theory.mulrSr [in ssralg]
GRing.Theory.mulrV [in ssralg]
GRing.Theory.mulrVK [in ssralg]
GRing.Theory.mulr0 [in ssralg]
GRing.Theory.mulr0n [in ssralg]
GRing.Theory.mulr1 [in ssralg]
GRing.Theory.mulr1n [in ssralg]
GRing.Theory.mulr_addl [in ssralg]
GRing.Theory.mulr_addr [in ssralg]
GRing.Theory.mulr_natl [in ssralg]
GRing.Theory.mulr_natr [in ssralg]
GRing.Theory.mulr_subl [in ssralg]
GRing.Theory.mulr_subr [in ssralg]
GRing.Theory.mulVf [in ssralg]
GRing.Theory.mulVKf [in ssralg]
GRing.Theory.mulVKr [in ssralg]
GRing.Theory.mulVr [in ssralg]
GRing.Theory.mul0r [in ssralg]
GRing.Theory.mul0rn [in ssralg]
GRing.Theory.mul1r [in ssralg]
GRing.Theory.natf0_char [in ssralg]
GRing.Theory.natr_add [in ssralg]
GRing.Theory.natr_exp [in ssralg]
GRing.Theory.natr_mul [in ssralg]
GRing.Theory.nonzero1r [in ssralg]
GRing.Theory.oner_eq0 [in ssralg]
GRing.Theory.opprK [in ssralg]
GRing.Theory.oppr0 [in ssralg]
GRing.Theory.oppr_add [in ssralg]
GRing.Theory.oppr_eq0 [in ssralg]
GRing.Theory.oppr_muln [in ssralg]
GRing.Theory.oppr_sub [in ssralg]
GRing.Theory.prodf_inv [in ssralg]
GRing.Theory.prodr_const [in ssralg]
GRing.Theory.prodr_exp [in ssralg]
GRing.Theory.prodr_exp_r [in ssralg]
GRing.Theory.prodr_opp [in ssralg]
GRing.Theory.ringM_add [in ssralg]
GRing.Theory.ringM_char [in ssralg]
GRing.Theory.ringM_comm [in ssralg]
GRing.Theory.ringM_div [in ssralg]
GRing.Theory.ringM_exp [in ssralg]
GRing.Theory.ringM_inv [in ssralg]
GRing.Theory.ringM_isom [in ssralg]
GRing.Theory.ringM_mul [in ssralg]
GRing.Theory.ringM_nat [in ssralg]
GRing.Theory.ringM_natmul [in ssralg]
GRing.Theory.ringM_opp [in ssralg]
GRing.Theory.ringM_prod [in ssralg]
GRing.Theory.ringM_sign [in ssralg]
GRing.Theory.ringM_sub [in ssralg]
GRing.Theory.ringM_sum [in ssralg]
GRing.Theory.ringM_unit [in ssralg]
GRing.Theory.ringM_0 [in ssralg]
GRing.Theory.ringM_1 [in ssralg]
GRing.Theory.satP [in ssralg]
GRing.Theory.scaleNr [in ssralg]
GRing.Theory.scaleN1r [in ssralg]
GRing.Theory.scalerA [in ssralg]
GRing.Theory.scalerN [in ssralg]
GRing.Theory.scaler0 [in ssralg]
GRing.Theory.scaler_addl [in ssralg]
GRing.Theory.scaler_addr [in ssralg]
GRing.Theory.scaler_mull [in ssralg]
GRing.Theory.scaler_nat [in ssralg]
GRing.Theory.scaler_subl [in ssralg]
GRing.Theory.scaler_subr [in ssralg]
GRing.Theory.scaler_suml [in ssralg]
GRing.Theory.scaler_sumr [in ssralg]
GRing.Theory.scale0r [in ssralg]
GRing.Theory.scale1r [in ssralg]
GRing.Theory.signr_addb [in ssralg]
GRing.Theory.signr_eq0 [in ssralg]
GRing.Theory.signr_odd [in ssralg]
GRing.Theory.size_sol [in ssralg]
GRing.Theory.solP [in ssralg]
GRing.Theory.solve_monicpoly [in ssralg]
GRing.Theory.subrK [in ssralg]
GRing.Theory.subrr [in ssralg]
GRing.Theory.subr0 [in ssralg]
GRing.Theory.subr_eq [in ssralg]
GRing.Theory.subr_eq0 [in ssralg]
GRing.Theory.subr_expn [in ssralg]
GRing.Theory.subr_expn_comm [in ssralg]
GRing.Theory.subr_expn_1 [in ssralg]
GRing.Theory.sub0r [in ssralg]
GRing.Theory.sumr_const [in ssralg]
GRing.Theory.sumr_muln [in ssralg]
GRing.Theory.sumr_muln_r [in ssralg]
GRing.Theory.sumr_opp [in ssralg]
GRing.Theory.sumr_sub [in ssralg]
GRing.Theory.unitfE [in ssralg]
GRing.Theory.unitrE [in ssralg]
GRing.Theory.unitrP [in ssralg]
GRing.Theory.unitr0 [in ssralg]
GRing.Theory.unitr1 [in ssralg]
GRing.Theory.unitr_exp [in ssralg]
GRing.Theory.unitr_inv [in ssralg]
GRing.Theory.unitr_mul [in ssralg]
GRing.Theory.unitr_mull [in ssralg]
GRing.Theory.unitr_mulr [in ssralg]
GRing.Theory.unitr_opp [in ssralg]
GRing.Theory.unitr_pexp [in ssralg]
GRing.to_rform [in ssralg]
GRing.to_rterm [in ssralg]
GRing.tsubst [in ssralg]
GRing.ub_var [in ssralg]
GRing.unitDef [in ssralg]
GRing.UnitRing.choiceType [in ssralg]
GRing.UnitRing.class [in ssralg]
GRing.UnitRing.clone [in ssralg]
GRing.UnitRing.eqType [in ssralg]
GRing.UnitRing.EtaMixin [in ssralg]
GRing.UnitRing.pack [in ssralg]
GRing.UnitRing.ringType [in ssralg]
GRing.UnitRing.zmodType [in ssralg]
GRing.zero [in ssralg]
GRing.Zmodule.choiceType [in ssralg]
GRing.Zmodule.class [in ssralg]
GRing.Zmodule.clone [in ssralg]
GRing.Zmodule.eqType [in ssralg]
GRing.Zmodule.pack [in ssralg]
gtn [in ssrnat]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (5434 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (89 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (58 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2752 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (233 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (145 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (139 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (50 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1267 entries)
Moduleid Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (47 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (24 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (609 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (21 entries)