Policies.UCBH module¶
The UCB-H policy for bounded bandits, with knowing the horizon. Reference: [Audibert et al. 09].
-
class
Policies.UCBH.
UCBH
(nbArms, horizon=None, alpha=4, lower=0.0, amplitude=1.0)[source]¶ Bases:
Policies.UCBalpha.UCBalpha
The UCB-H policy for bounded bandits, with knowing the horizon. Reference: [Audibert et al. 09].
-
__init__
(nbArms, horizon=None, alpha=4, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
horizon
= None¶ Parameter \(T\) = known horizon of the experiment.
-
alpha
= None¶ Parameter alpha
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k:
\[I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{\alpha \log(T)}{2 N_k(t)}}.\]
-
__module__
= 'Policies.UCBH'¶
-