Policies.MOSSH module¶
The MOSS-H policy for bounded bandits, with knowing the horizon. Reference: [Audibert & Bubeck, 2010](http://www.jmlr.org/papers/volume11/audibert10a/audibert10a.pdf).
-
class
Policies.MOSSH.
MOSSH
(nbArms, horizon=None, lower=0.0, amplitude=1.0)[source]¶ Bases:
Policies.MOSS.MOSS
The MOSS-H policy for bounded bandits, with knowing the horizon. Reference: [Audibert & Bubeck, 2010](http://www.jmlr.org/papers/volume11/audibert10a/audibert10a.pdf).
-
__init__
(nbArms, horizon=None, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
horizon
= None¶ Parameter \(T\) = known horizon of the experiment.
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k, if there is K arms:
\[I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\max\left(0, \frac{\log\left(\frac{T}{K N_k(t)}\right)}{N_k(t)}\right)}.\]
-
__module__
= 'Policies.MOSSH'¶
-