Policies.RAWUCB module¶
author: Julien Seznec
Rotting Adaptive Window Upper Confidence Bounds for rotting bandits.
Reference : [Seznec et al., 2019b] A single algorithm for both rested and restless rotting bandits (WIP) Julien Seznec, Pierre Ménard, Alessandro Lazaric, Michal Valko
-
class
Policies.RAWUCB.
EFF_RAWUCB
(nbArms, alpha=0.06, subgaussian=1, m=None, delta=None)[source]¶ Bases:
Policies.FEWA.EFF_FEWA
Efficient Rotting Adaptive Window Upper Confidence Bound (RAW-UCB) [Seznec et al., 2019b, WIP] Efficient trick described in [Seznec et al., 2019a, https://arxiv.org/abs/1811.11043] (m=2) and [Seznec et al., 2019b, WIP] (m<=2) We use the confidence level :math:`delta_t =
rac{1}{t^lpha}`.
-
__module__
= 'Policies.RAWUCB'¶
-
-
class
Policies.RAWUCB.
EFF_RAWklUCB
(nbArms, subgaussian=1, alpha=1, klucb=CPUDispatcher(<function klucbBern>), tol=0.0001, m=2)[source]¶ Bases:
Policies.RAWUCB.EFF_RAWUCB
Use KL-confidence bound instead of close formula approximation. Experimental work : Much slower (!!) because we compute many UCB at each round per arm)
-
__init__
(nbArms, subgaussian=1, alpha=1, klucb=CPUDispatcher(<function klucbBern>), tol=0.0001, m=2)[source]¶ New policy.
-
__module__
= 'Policies.RAWUCB'¶
-
-
class
Policies.RAWUCB.
RAWUCB
(nbArms, subgaussian=1, alpha=1)[source]¶ Bases:
Policies.RAWUCB.EFF_RAWUCB
Rotting Adaptive Window Upper Confidence Bound (RAW-UCB) [Seznec et al., 2019b, WIP] We use the confidence level :math:`delta_t =
rac{1}{t^lpha}`.
-
__module__
= 'Policies.RAWUCB'¶
-
-
class
Policies.RAWUCB.
EFF_RAWUCB_asymptotic
(nbArms, subgaussian=1, beta=2, m=2)[source]¶ Bases:
Policies.RAWUCB.EFF_RAWUCB
Efficient Rotting Adaptive Window Upper Confidence Bound (RAW-UCB) [Seznec et al., 2019b, WIP] We use the confidence level :math:`delta_t =
- rac{1}{t(1+log(t)^Beta)}`.
\(\Beta=2\) corresponds to an asymptotic optimal tuning of UCB for stationnary bandits (Bandit Algorithms, Lattimore and Szepesvari, Chapter 7, https://tor-lattimore.com/downloads/book/book.pdf)
-
__module__
= 'Policies.RAWUCB'¶