Policies.OCUCBH module¶
The Optimally Confident UCB (OC-UCB) policy for bounded stochastic bandits. Initial version (horizon-dependent).
Reference: [Lattimore, 2015](https://arxiv.org/pdf/1507.07880.pdf)
There is also a horizon-independent version,
OCUCB.OCUCB
, from [Lattimore, 2016](https://arxiv.org/pdf/1603.08661.pdf).
-
Policies.OCUCBH.
PSI
= 2¶ Default value for parameter \(\psi \geq 2\) for OCUCBH.
-
Policies.OCUCBH.
ALPHA
= 4¶ Default value for parameter \(\alpha \geq 2\) for OCUCBH.
-
class
Policies.OCUCBH.
OCUCBH
(nbArms, horizon=None, psi=2, alpha=4, lower=0.0, amplitude=1.0)[source]¶ Bases:
Policies.OCUCB.OCUCB
The Optimally Confident UCB (OC-UCB) policy for bounded stochastic bandits. Initial version (horizon-dependent).
Reference: [Lattimore, 2015](https://arxiv.org/pdf/1507.07880.pdf)
-
__init__
(nbArms, horizon=None, psi=2, alpha=4, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
psi
= None¶ Parameter \(\psi \geq 2\).
-
alpha
= None¶ Parameter \(\alpha \geq 2\).
-
horizon
= None¶ Horizon T.
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k:
\[I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{\alpha}{N_k(t)} \log(\frac{\psi T}{t})}.\]Where \(\alpha\) and \(\psi\) are two parameters of the algorithm.
-
__module__
= 'Policies.OCUCBH'¶
-
class
Policies.OCUCBH.
AOCUCBH
(nbArms, horizon=None, lower=0.0, amplitude=1.0)[source]¶ Bases:
Policies.OCUCBH.OCUCBH
The Almost Optimally Confident UCB (OC-UCB) policy for bounded stochastic bandits. Initial version (horizon-dependent).
Reference: [Lattimore, 2015](https://arxiv.org/pdf/1507.07880.pdf)
-
__init__
(nbArms, horizon=None, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k:
\[I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{2}{N_k(t)} \log(\frac{T}{N_k(t)})}.\]
-
__module__
= 'Policies.OCUCBH'¶