Policies.MOSSAnytime module¶
The MOSS-Anytime policy for bounded bandits, without knowing the horizon (and no doubling trick). Reference: [Degenne & Perchet, 2016](http://proceedings.mlr.press/v48/degenne16.pdf).
-
Policies.MOSSAnytime.
ALPHA
= 1.0¶ Default value for the parameter \(\alpha\) for the MOSS-Anytime algorithm.
-
class
Policies.MOSSAnytime.
MOSSAnytime
(nbArms, alpha=1.0, lower=0.0, amplitude=1.0)[source]¶ Bases:
Policies.MOSS.MOSS
The MOSS-Anytime policy for bounded bandits, without knowing the horizon (and no doubling trick). Reference: [Degenne & Perchet, 2016](http://proceedings.mlr.press/v48/degenne16.pdf).
-
__init__
(nbArms, alpha=1.0, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
alpha
= None¶ Parameter \(\alpha \geq 0\) for the computations of the index. Optimal value seems to be \(1.35\).
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k, if there is K arms:
\[I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\left(\frac{1+\alpha}{2}\right) \max\left(0, \frac{\log\left(\frac{t}{K N_k(t)}\right)}{N_k(t)}\right)}.\]
-
__module__
= 'Policies.MOSSAnytime'¶
-