configuration_markovian module¶
Configuration for the simulations, for the single-player case for Markovian problems.
-
configuration_markovian.
CPU_COUNT
= 4¶ Number of CPU on the local machine
-
configuration_markovian.
HORIZON
= 1000¶ HORIZON : number of time steps of the experiments. Warning Should be >= 10000 to be interesting “asymptotically”.
-
configuration_markovian.
REPETITIONS
= 100¶ REPETITIONS : number of repetitions of the experiments. Warning: Should be >= 10 to be statistically trustworthy.
-
configuration_markovian.
DO_PARALLEL
= True¶ To profile the code, turn down parallel computing
-
configuration_markovian.
N_JOBS
= -1¶ Number of jobs to use for the parallel computations. -1 means all the CPU cores, 1 means no parallelization.
-
configuration_markovian.
VARIANCE
= 10¶ Variance of Gaussian arms
-
configuration_markovian.
TEST_Aggregator
= True¶ To know if my Aggregator policy is tried.
-
configuration_markovian.
configuration
= {'environment': [{'arm_type': 'Markovian', 'params': {'rested': False, 'transitions': [{(0, 0): 0.7, (0, 1): 0.3, (1, 0): 0.5, (1, 1): 0.5}, [[0.2, 0.8], [0.6, 0.4]]], 'steadyArm': <class 'Arms.Bernoulli.Bernoulli'>}}], 'horizon': 1000, 'n_jobs': -1, 'policies': [{'archtype': <class 'Policies.UCBalpha.UCBalpha'>, 'params': {'alpha': 1}}, {'archtype': <class 'Policies.Thompson.Thompson'>, 'params': {}}, {'archtype': <class 'Policies.klUCB.klUCB'>, 'params': {'klucb': CPUDispatcher(<function klucbBern>)}}, {'archtype': <class 'Policies.BayesUCB.BayesUCB'>, 'params': {}}], 'repetitions': 100, 'verbosity': 6}¶ This dictionary configures the experiments
-
configuration_markovian.
nbArms
= 3¶ Number of arms in the first environment
-
configuration_markovian.
klucb
¶ Warning: if using Exponential or Gaussian arms, gives klExp or klGauss to KL-UCB-like policies!