next up previous contents
suivant: Calcul des coordonnées des monter: Contrôle de la qualité précédent: Conclusions humaines   Table des matières

Bibliographie

1
Ph. BOUILLARD.
Méthodes de contrôle de la qualité de solutions éléments finis. (Application à l'acoustique).
PhD thesis, Service des Milieux Continus - Faculté des sciences appliquées - Université libre de Bruxelles, 1997.

2
Ph. BOUILLARD and S. SULEAU.
Element-free galerkin solutions for helmholtz problems : Formulation and numerical assessment of the pollution effect.
International Journal for Numerical Methods in Engineering, 1997.

3
V. LACROIX Ph. BOUILLARD and P. VILLON.
An iterative multilevel meshless method for acoustics.
2001.
In preparation.

4
B.NAYROLES, G.TOUZOT and P.VILLON .
A numerical approach to the testing of the fission hypothesis.
The Astronomical Journal, 82:1013-1024, 1977.

5
C.A.DUARTE and J.T.ODEN.
H-p clouds - an h-p meshless method.
Numerical methods for Partial Differential Equations, page 40, 1996.

6
E. DUFEU.
Calcul d'erreur et adaptation de maillages en 3 dimensions.
PhD thesis, Université de Liege, Février 1997.

7
T. STROUBOULIS I. BABUSKA F. IHLENBURG and S.K. GANGARAJ.
A posteriori errir estimation for finite element solutions of helmholtz' equation.
TICAM Technical report, 1996.

8
I.BABUSKA and J.Y.MELENK.
The partition of unity finite element method.
International Journal for Numerical Methods in Engineering, 40(4):727-758, February 1997.

9
P. LADEVÈZE.
Comparaison de modèles de milieux continus.
PhD thesis, Université Pierre et Marie Curie, 1975.

10
L.B. LUCY.
Generalizing the finite element method : diffuse approximation and diffuse elements.
Computational Mechanics, 10:307-318, 1992.

11
N.PERRONE and R.KAO.
A general finite difference method for arbitrary spaced points.
Computers and Structures, 5, 1975.

12
J.-F. ALLARD Ph. BOUILLARD and G. WARZÉE.
A posteriori error estimation for the finite element solution of the helmholtz equation.
Summaries of paper of the 9th int. conf. on the mathematics of finite element and applications, uxbridge, uk, 1996.

13
A. DERAEMAEKER S. SULEAU and Ph. BOUILLARD.
Dispersion and polltion of meshless solutions for the helmholtz equation.
International Journal for Numerical Methods in Engineering, 1999.

14
S. SULEAU.
Discrétisation par interpolation nodale - application à l'analyse de structures.
Master's thesis, Service des Milieux Continus - Faculté des sciences appliquées - Université libre de Bruxelles, 1996-97.

15
S. SULEAU and Ph. BOUILLARD.
1-d dispersion analysis for the element-free galerkin method for the helmholtz equation.
International Journal for Numerical Methods in Engineering, 47:1169-1188, 2000.

16
T. BELYTSCHKO, Y. KRONGAUZ, D. ORGAN, M. FLEMING, P. KRYSL.
Meshless methods : An overview and recent developments.
Computer methods in applied mechanics and engineering, 139:3-47, 1996.

17
T.BELYTSCHKO, Y.Y.LU and L.GU .
Element-free galerkin methods.
International Journal for Numerical Methods in Engineering, 51:221-258, 1994.

18
G. WARZÉE.
La méthode des éléments finis (structures).
Presses Universitaires de Bruxelles, 1994.

19
O.C. ZIENKIEWICZ.
The supraconvergent patch recovery technique and a posteriori error estimates part 1 : the recovery technique.
International Journal for Numerical Methods in Engineering, 33:1331-1364, 1992.

20
O.C. ZIENKIEWICZ.
The supraconvergent patch recovery technique and a posteriori error estimates part 2 : Error estimate and adaptativity.
International Journal for Numerical Methods in Engineering, 33:1365-1382, 1992.



greg 2001-08-07