Policies.Experimentals.klUCBlog10 module¶
The generic kl-UCB policy for one-parameter exponential distributions. By default, it assumes Bernoulli arms. Note: using \(\log10(t)\) and not \(\log(t)\) for the KL-UCB index. Reference: [Garivier & Cappé - COLT, 2011].
-
class
Policies.Experimentals.klUCBlog10.
klUCBlog10
(nbArms, tolerance=0.0001, klucb=CPUDispatcher(<function klucbBern>), c=1.0, lower=0.0, amplitude=1.0)[source]¶ Bases:
klUCB.klUCB
The generic kl-UCB policy for one-parameter exponential distributions. By default, it assumes Bernoulli arms. Note: using \(\log10(t)\) and not \(\log(t)\) for the KL-UCB index. Reference: [Garivier & Cappé - COLT, 2011].
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k:
\[\begin{split}\hat{\mu}_k(t) &= \frac{X_k(t)}{N_k(t)}, \\ U_k(t) &= \sup\limits_{q \in [a, b]} \left\{ q : \mathrm{kl}(\hat{\mu}_k(t), q) \leq \frac{c \log_{10}(t)}{N_k(t)} \right\},\\ I_k(t) &= U_k(t).\end{split}\]If rewards are in \([a, b]\) (default to \([0, 1]\)) and \(\mathrm{kl}(x, y)\) is the Kullback-Leibler divergence between two distributions of means x and y (see
Arms.kullback
), and c is the parameter (default to 1).
-
__module__
= 'Policies.Experimentals.klUCBlog10'¶
-