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Gene expression and fluorescence reporting
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Gene expression variability



Intrinsic vs. extrinsic noise

(Elowitz et al,Science 2002)

• Intrinsic : Random transcription and translation events
• Extrinsic : Other sources of variability

(parameters, promoter activity,  ... )



Outline

• Cell-to-cell parameter variability in osmotic shock 
response

(Llamosi et al., PloS 2016)

• Stochastic variability in promoter activity

(Cinquemani, arXiv 2017 and under review)



Intercellular variability in osmotic shock 
response



Target system : 
Osmotic shock response in yeast

• Low-osmolarity environment : 

Cells are fine
• Increase of environmental osmolarity : 

Cells feel bad and react

• Eventually, cell adapt to the new medium 

(b) Loss of turgor, water rushes out of the cells. 
(c) glycerol efux channel closed, accumulaton 
of glycerol, Hog1 phosphorylaton. 
(d) Hog1 migrates to nucleus, upregulates 
expression in several genes

(e) cell reinfaton decreases HOG 
signaling. Phosphatases deactvate 
HOG pathway, turgor is restored and 
Fps1 reopens.



HOG1 pathway : Gene expression monitoring

(Uhlendorf et al., PNAS 2012)

• Focus on expression dynamics of osmosensitive genes
• Fluorescent reporter monitoring of STL1 activity under short osmolarity 

pulses :

• Feedback regulation is cut or not triggered (adaptation prevented)



Experimental setup

Control



Life according to single cells...

• Question #1 : How to better control this ?
• Question #0: How to make sense of (i.e. model) this ?  



Single-cell kinetic model

 

 

 

 

Input: Osmotc shock signal u(t)

Gene expression:

Protein maturaton:

Output:

Measurement noise intensity: Parameters:

Our focus:



Mixed-Effects paradigm

• N cells are different individuals of the same population

• Different cell parameters following a common population distribution

• Inference from data : Learn population statistics from the ensemble 
of the individual-cell data

• Key point : Every individual contibutes to learning population 
features, and so it helps learning features of all other individuals



Mixed-Effects model inference 

• Estimate population statistics by marginal likelihood maximization

 

• Estimate single-cell parameters via Maximum-A-Posteriori

• Effective implementation (SAEM):

Stochastic Approximation of Expectation-Maximization 



Mixed-Effects vs. naive inference

• Parameter distribution from ME 
inference more structured and 
compact 

• Naive approach:  Empircal parameter statistics from individual cell fits



ME inference does retrieve population statistics

Single-cell 
trajectories from 
parameter estimates
(confidence bounds)

Resimulation of  
single-cell trajectories 
via parameter 
resampling
(confidence bounds)

Naive approach ME approach



Mother-daughter parameter inheritance

• Daughter cell parameters 
statistically closer to those of 
their mothers

• A formal yet 'irrefutable' 
observation to be 
investigated further



Stochastic variability in promoter activity



Population snapshot data
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Fluorescence distribution in samples 
from a population of cells:



Goal : Inference of promoter activity statistics
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Random telegraph model

• Reactions :

• Stoichiometry matrix and reaction rates :



Random telegraph model

• Reaction rates are affine in the state :



Moment Equations

• First- and second-order statistics of X :

• If U ( that is, F ) is a deterministic function :



Generalized Moment Equations

• Now assume F is a(ny) stochastic process :

• Assuming absence of feedback from X to F :



Inference of promoter activity statistics

• Given empirical statistics (population snapshot data)

with k=1,...,K and i.i.d. approx Gaussian noise

• Estimate unknown mean and autocovariance function of U

• Ill-posed linear inversion : Solve with (Tikhonov) regularization



Special case : U stationary, X
0
=0

• Unknown stationary statistics :                       ,

• Estimate constant mean by fitting mean data with the solution of

• Estimate autocovariance as the solution of the convex optimization

• Implementation : Finite-dimensional LQP

PSD functions
(convex cone)

Inverse of meas.
error variance
Inverse of meas.
error variance

Solution at t
k
 of

with Q known function of the mean and Λ known functional 

Convex penalization of
irregular solutions



Results from numerical simulations

• Binary process U with stochastic switching rates
• Estimator mean ± 2 std for samples of 105 cells
• Automated vs. fixed choice of γ (vs. true autocovariance)



eugenio.cinquemani@inria.fr
team.inria.fr/ibis

… Thanks !
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