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Context

I discrete-state stochastic models (applied to biology)
I continuous-time Markov chains (CTMCs)
I more generally discrete-event stochastic processes (DESPs)

I Performance analysis (desiderata):
I languages for definition of key performance indicators (KPIs)
I tools for (automatically) assessing KPIs of a given model
I in this talk: hybrid automata as a means to express KPIs

I What kind of performance indicators ?:
I temporal logic reasoning: allow for sophisticated indicators, e.g.:

I what is the population of nucleic β-catenin at time T if LRP5
receptor gets inhibited at least N times within T?

I how many mRNA are transcribed within T if gene X stay
repressed at most T ′<T? ...
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Discrete event stochastic process (DESP)
I a countable set of states S = {s0, s1, . . . }
I a fine set of events E = {e1, e2, . . . en}

I events occurr with a continuous delay given by a distribution of
probability
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a DESP trajectory σA showing the population of species A



What kind of analysis for a DESP model ?

I computing state-probability distributions: probability to be in a
given state s

I at-time-t (transient-state distribution)
I in-the-long-run, t →∞ (steady-state distribution)

I computing average values: e.g. the average population of X at
time t

I boils down to computing state-probability distributions

I computing probability of a path event

I path event: set of trajectories fulfilling given temporal conditions



Classification of path events

time-bounded state-reachability: reaching a state-region within given
delay [Continuous Stochastic Logic, Aziz 2000]

y1

T↵ �

nb

na �y1

“within time t ∈ [α, β] population y1 reaches [0,na] without leaving
[na,nb]”



Classification of path events
event-conditioned state-reachability: reaching a state by observing
only specific events [asCSL, Baier et al., 2003]
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X
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X

“within time t ∈ [α, β] population y1 reaches [0,na] by traversing first
[na,nb], where only events of E1 ⊂ E are observed, then [nb,nc ],
where only events of E2 ⊂ E are observed”



Classification of path events

multiple-bounded state-reachability: several time bounds on a single
reachability condition [1-clock time-automaton, CSLTA, Haddad et al. 2007]
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nc
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“within time t ∈ [α′, β′] y1 reaches [nb,nc ] by traversing [na,nb], then
within time t ∈ [α′′, β′′] it reaches [0,na] while staying within [nb,nc ]



Temporal logic for performance evaluation

allow for reasoning (to different extent) about behaviour of a DESP
through a combination of:

I state-condition: CSL, pLTL,

I state/event-condition: asCSL, CSLTA

I reward-based-condition: CSRL (to some extent)

Hybrid Automata Specification Language: using of Hybrid
Automata to specify path events.

I very powerful specification language

I allow for combining state+event+reward-based conditions for
selecting relevant paths
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HASL-based performance evaluation

SYSTEM PROPERTY / MEASURE

EXPR.

A
LHADiscrete Event 

Stochastic Process
D

width: �
✏conf:

[Z��, Z+�]

HASL
MODEL

CHECKER

Z

Conf-Interval 
parameters

Expression
(target measure)

Hybrid Automata
(accepted paths) 

confidence interval 
of target measure Z

I input:
I model: a DESP D
I formula: a pair (A,Z )

I output:
I 100(1−ε)% confidence

interval of E [Z ]



Synchronizying a DESP with a Hybrid Automata

Pro

RNAp RNA

ProxExp(0.25)

_RNA Γ(1000,0.09)

init

termin

transc

Exp(1/400)

RBS

D: a DESP

×

constraint synch-action update

autonomous-action

real-valued flows

location invariants

l0
ẋ0 : 0

ẋ1 :Pro

Pro�1

l1
ẋ0 : 1

ẋ1 : �1

Pro0

x13x0,transc,x0++
synchronous-edge

x13x0, ], ;
autonomous-edge

A:⇒ selects specific paths ofD

HASL model-checking scheme (intuitively):

I a timed-path σ of D is generated through stochastic simulation
I A decides whether σ is accepted or not, meanwhile collecting data

about σ
I collected data is used for estimating relevant measures (wrt accepted

paths)



example: selecting paths of gene-exp. toy model

D:

Pro

RNAp RNA

ProxExp(0.25)

_RNA Γ(1000,0.09)

init

termin

transc

Exp(1/400)

RBS

DESP toy-model of gene-expression in Stochastic Petri Net form

Linear Hybrid Automata for selecting paths of DESP D

time-bounded measures event-bounded measures

A1

l0
ṫ : 1

ṅ1 : 0
ṙ : 0

l1

{transc},(t<T ),{n1++,r=RBS}

E\{transc},(t<T ),{r=RBS}

],(t=T ),∅
A2

l0
ṫ : 1

ṅ1 : 0
ṙ : 0

l1

{transc},(t<T ),{n1++,r=RBS}

E\{transc},(t<T ),{r=RBS}

],(n1=N),∅

select all paths of duration T and store select all paths
in n1 the num. of completed transcriptions containing N completed transcriptions



specifying the quantity to estimate w.r.t. the selected
paths

time-bounded measures event-bounded measures

A1

l0
ṫ : 1

ṅ1 : 0
ṙ : 0

l1

{transc},(t<T ),{n1++,r=RBS}

E\{transc},(t<T ),{r=RBS}

],(t=T ),∅
A2

l0
ṫ : 1

ṅ1 : 0
ṙ : 0

l1

{transc},(n1<N),{n1++,r=RBS}

E\{transc},(n1<N),{r=RBS}

],(n1=N),∅

select all paths of duration T and store select all paths
in n1 the num. of completed transcriptions containing N completed transcriptions

I φ1≡(A1,E [last(n1)]) : avg. number of completed transcriptions within T

I φ′1≡(A2,E [max(r)−min(r)]) : max. deviation of RBS population within

completing N transcriptions

I φ2≡(A2,PDF (last(t), step, start , end)) : PDF of delay for completing N

transcriptions calculated by histogram over support [start , end ] discretised into

step-wide sub-intervals
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Gene-expr. with stochastic delayed dynamics
gene expression: the process through which proteins are synthesized from
a sequence of DNA.

R1 : Pro + ∗RNAp
kt−→ Prox

R2 : Prox
λ1−→ Pro + RBS + R(Γ(Glen, 0.09))

R3 : ∗Rib + RBS
ktr−→ RBS(δ(τ1)) + Rib(Γ(Glen, 0.06))+

+ P(Γ(τ5sh
, τ5sc ))

R4 : RBS rbsd−→ ∅

R5 : Pro + Rep
kr−→ ProRep

R6 : ProRep
kunr−→ Pro + Rep

a single-gene model ([Ribeiro et al. 2006, Journal Comp. Biology]):

i_ribi_rep

Rep

ProRep

Rib

_RBS

_P

_Rib

P

Exp(kt)

Exp(kr)

Exp(ku)

Γ(glen,0.06)

Γ(τ5sh,τ5sc)

i_rna

Pro

RNAp RNAProx _RNA Γ(1000,0.09)Exp(0.25)

init termintransc

Exp(1/400)

RBS

rep

unrep

transl
Exp(rbsd)

decRBS

δ(τ3)

clearRBS

prodP

relRib

R1 R2

R3

R4

R5  

R6

(repression)

(unrepression)
(initialisation) (transcription)

(translation)(RBS decay)



1- measuring PDF of completed transcriptions

Model settings:
I unrep: no repressor
I rep(1): one mol. of repressor
I rep(2): two mol. of repressor

LHA settings:

I N: completed transcriptions

A2

l0
ṫ : 1

ṅ1 : 0
ṙ : 0

l1

{transc},(t<T ),{n1++,r=RBS}

E\{transc},(t<T ),{r=RBS}

],(t=T ),∅

φ2≡ (A2, PDF (last(n1), 1, 0, 300))
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2- measuring sustainment of translation
sustainment of translation : "how long does it take for an on-going
translation to halt since repression kicks in (given that translation halts)"

X X

Translation ON

repress unrepress

repression-interval

X X
repress unrepress

repression-interval

trans-sustain

"positive"-interval: 
translation stopped

"negative"-interval:
translation didn't stop

TIME

ABOUT SUSTAINMENT OF TRANSLATION UNDER REPRESSION 



an LHA for measuring sustainment of translation
sustainment of translation under repression

A5

l0
ṫ : 1
˙ts : 0

Ṫs : 0
ṅs : 0

ProRep = 0
(REPR-OFF)

l1
ṫ : 1
˙ts : 0

Ṫs : 0
ṅs : 0

ProRep > 0∧
RBS = 0∧

_RBS = 0∧
_P = 0∧
_Rib = 0

(REPR-ON & TRANS-OFF)

l2
ṫ : 1
˙ts : 1

Ṫs : 0
ṅs : 0

ProRep > 0∧
(RBS > 0∨
_RBS > 0∨

_P > 0∨
_Rib > 0)

(REPR-ON & TRANS-ON)

l3

E,(t<T ),∅

E,(t<T ),∅ E,(t<T ),∅

E,(t<T ),∅

E,(t<T ),∅

],(t=T
),∅

E,(t<T ),∅

E,(t<T ),{ts :=0}

],(t=T
),∅ ],(

t=T
),∅

E,(t<T ),∅
E,(t<T ),{Ts :=ns+ts,ts :=0,ns++}

φ7 ≡ (A5,E [last(Ts)/last(ns)])

legend of used variables:
t :total time ts :sustain time (inter-repression) Ts :total sustain time
ns : num. of repress-intervals where translation halted



measuring the sustainment of gene translation
experiment settings:

I constant repression duration i.e. unrepress ∼ δ(10)
I varying RBS decay rate
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that translations never stops for the majority 
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3- Probability of inter-transcription translations
"with what probability N translations will complete in between two
consecutive transcription events?"

X X
transc transc

transcription-interval

X X
trans

with N=2 "positive"-interval: 
2 translations occurred

TIME

INTER-TRANSCRIPTION   TRANSLATIONS 

X
transl transl

XX
transltransc

X
transl

X

with N=2 "negative"-interval: 



measuring PDF of inter-transcription translations
experiment settings:

I repressed vs unrepressed model
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I unrepressed model: probability density with maximum around N ∼ 1.2
I repressed model: PDFs asymptotically decreasing (independent of the level of

repression)
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the problem: formal analysis of oscillations

Q1: can we find a temporal logic characterisation of oscillations for a
stochastic model? Yes, through automata specifications

Q2: can we use it to decide whether a stochastic model oscillates ? Yes
for CTMC [Spieler 2014]

Q3: can we use it to measure the characteristics (i.e. period, amplitude)
of an oscillator ? to different extend with either timed or hybrid automata

I oscillation: the repetitive variation (in time), of some measure about a
central value

oscillating trace divergent trace convergent trace



measuring the period: noisy periodicity [Spieler 2009,2014]

I given two thresholds L < H, a function σA is noisy periodic iff it
(perpetually) crosses the intervals low [0,L), mid [L,H),
low [H,+∞).

p1

L

H

low

mid

high

p2p0
T

⌧3"⌧1" ⌧1# ⌧2# ⌧3# ⌧4#

#A

⌧2"

I noisy period realisation: delay between two consecutive mid-low
crossing points interleaved by a visit to the high region



Formal characterisation of noisy period (1)

p1

L

H

low

mid

high

p2p0
T

⌧3"⌧1" ⌧1# ⌧2# ⌧3# ⌧4#

#A

⌧2"

I τj↓ (resp. τj↑): the j th mid-to-low (resp. mid-to-high) crossing point

I T↓=∪jτj↓(resp. T↑=∪jτj↑) set of all low-crossing points

I Tk↓ ⊆ T↓: k -th sequence of contiguous low-crossing points not interleaved by
any high-crossing point

T1↓ = {τ1↓, τ2↓},T2↓ = {τ3↓}, . . .



Formal characterisation of noisy period (2)

p1

L

H

low

mid

high

p2p0
T

⌧3"⌧1" ⌧1# ⌧2# ⌧3# ⌧4#

#A

⌧2"

For σA a noisy periodic trajectory we define:

I tpk =min(T(k+1)↓)−min(Tk↓) (k thnoisy period realisation)

I tp(n)= 1
n

∑n
k=1 tpk (average period estimator)

I s2
tp(n)=

1
n

∑n
k=1(tpk − tp(n))2 (period variance estimator)



Hybrid automata for noisy period detection

E,(n<N),;

E,(n<N ^ top = 0),;

E,(n<N),{top :=1}

E,(n<N),;

],(n=N),;

],(
n=N),;

],(n
=

N
),;

A  L
LAH A�H

E,(n<N),; E,(n<N),;
E,(n<N),;

E,(n=�1 ^ top = 1), {n++, t :=0, top :=0}

E,(2n<N ^ top = 1), {n++, top :=0}
tp :=f(tp, n), ftp :=g(ftp , t̄p, n), tp :=0}

E,(0n1 ^ top = 1), {n++, top :=0,
t̄p :=f(t̄p, n), tp :=0}

low

ṫ : 1

mid

ṫ : 1

high

ṫ : 1

Aperiod
end

I detect noisy-periodic traces of observed species A (stops at N th period)
I variables: t (total duration of periods) n (counter of periods) top (boolean flag) tp

(duration of last detected period); µtp (avg. period until last detected); s2
tp (period

variance until last detected)
I output measures:

I Z1 ≡ E [last (̄tp)] (average period duration)
I Z2 ≡ PDF (̄tp, s, l, h) (PDF of the average period duration)
I Z3 ≡ E [last(s2

tp )] (variance of period duration)



Circadian-clock oscillator [Vilar et al. 2002]
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mean/variance of oscillation period measured with
Aperiod
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I HASL specifications: φ1 : (Aperiod ,E [last (̄tp)]) φ2 : (Aperiod ,E [last(s2
tp )])

I experiment setting: num. of observed periods (per trace) N =100, L=1, H=1000
partition

I outcome: slowing repressor degradation increases the period duration, but
makes oscillations more “stochastic” (larger variance of period duration)



Measuring the amplitude: noisy alternance
given a noise value δ > 0, a function σA is δ alternating if it contains
infinitely many δ-separated local minima (and equivalently
δ-separated local maxima).

I goal: to locate the peaks of oscillation

I local max : the maximum value distanced at least δ from previous local
min

Tm�[2]

M�[1]
M�[2]

m�[3]

�

�

�

�

m[2]

M [1]

m[3]

m[4]

M [3]

M [4]

M [5]

M [7]

m[6]

m[7]

m[1]

detected max
detected max

detected min

#A

I remark: we don’t impose any specific L < H thresholds



Hybrid automata for detecting peaks of δ alternating
traces

start

ṫ : 1
noisyDec

ṫ : 1

noisyInc

ṫ : 1

Min

ṫ : 1

],(x>A+�)^(n
M <N�1), {n

M ++,

Lmax[x]++, Smax+=
x, x :=A} ],(

x>
A),{x

:=
A}

E+A
,>,;

E=A,>,;

Max

ṫ : 1

E+A,>,{x :=A}
E=A,>,;

],(
x<

A),{x
:=

A}

E,>,; E,>,;

],(x
<A��),{x

:=A}

],(x>A+�),{x :=A}

end

Apeaks

E,>,;

E�A,>,{x :=A}

E�A
,>,;

],(x<A��)^(nm = N�1),
{Lmin[x]++, Smin+= x,

nm++}

],(x>A+�)^(nM = N�1),
{Lmax[x]++, Smax+= x,

nM ++}

],(x<A��)^(n
m <N�1), {n

m ++,

Lmin[x]++, Smin+=
x, x :=A}

I detect local maxima and minima for observed species A (stops at N th maxima)
I requires: i) partitioning event set (E =EA=∪EA−∪EA+); ii) setting δ par.
I variables: Lmax (detected local max); Lmin (detected local min)
I output measures:

I Zmax ≡ E [last(Smax)/nM ] (average height of δ-separated maxima)
I Zmin ≡ E [last(Smin)/nm] (average height of δ-separated minima)



Circ. clock max/min peaks measured with Apeaks
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I HASL measures: (Apeaks,E [last(Smax)/nM ])), (Apeaks,E [last(Smin)/nm]))

I degradation of R reduces maximal peaks of R but has no effects on A’s
I num. of observed local Max N =100 per trace
I δ=10% of absolute max of observed species



Message to bring home ...

I hybrid automata are powerful means for expressing performance indicators of
biological models

I Example: need to measure oscillations =⇒ you can !

I tool support: COSMOS statistical model-checker
(https://www.lacl.fr/~barbot/cosmos/)

I perspectives:
I HASL driven parameter estimation: devise the parameters of a DESP

model so to maximise an HASL measure
I improving HASL runtime: resorting to approximated stochastic simulation

techniques
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