Coarse-grain Stochastic Abstractions of Biological Pathways

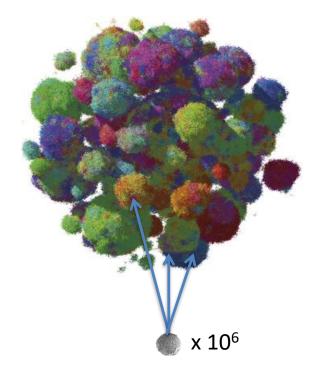
Blaise Genest, IRISA

Joint with: Gregory Batt, Eric Fabre, Matthieu Pichené, Sucheendra Palaniappan. [Bioinformatics 2017]

- PROJE

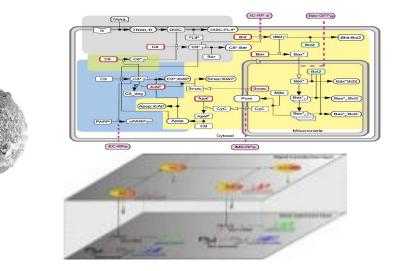
Setting

Population of cells.



for each cell,

model of the cell:



Could be ODEs, stochastic model, Hybrid stochastic deterministic model...

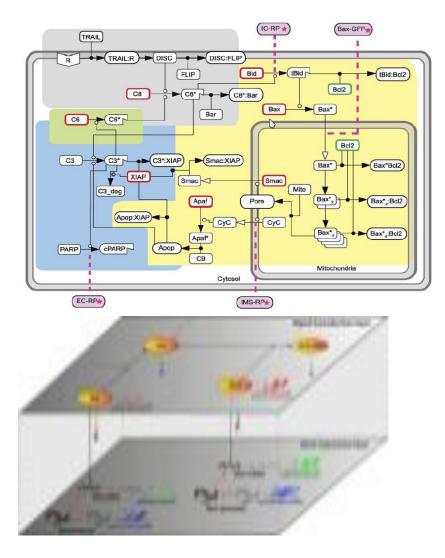
Question: How does the population behave?

Simple algorithm: simulate 10⁶ low level models and see.

Issue: High complexity model

=> Abstractions

An example: TRAIL-induced apoptosis

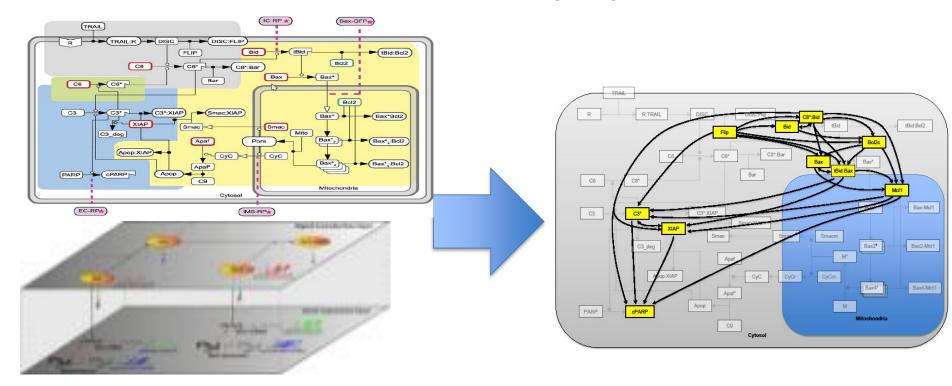


Hybrid stochastic deterministic model [François Bertaux, Szymon Stoma, Dirk Drasdo, Gregory Batt. Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance.PLoS Computational Biology 2014]

> 52 ODE species, 96 reactions + 40 stochastic variables (simple gene turnover model).

Very efficient implementation by François Berteaux (56sec/1000 simul.) 1 simulation step represents 1 second.

Abstracting the model for TRAIL-induced apoptosis

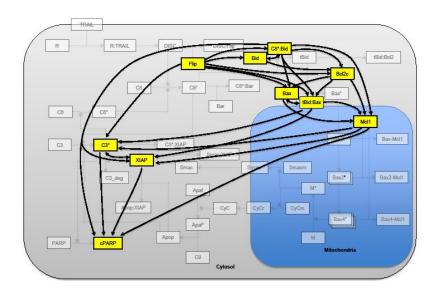


52 ODE species, 96 reactions + 40 stochastic variables

1 simulation step represents 1 second (fine grain) Around 10 variables (=species concentration)

1 time step corresponds to 15 min (coarse grain)

Abstracting the model for TRAIL-induced apoptosis



Problematic:

Choose variables.

Variables Representation.

Describe evolution of variables. (correlations between variables)

Around 10 variables (=species)

1 time steps corresponds to 15 min.

Main tool: Information theory.

- Entropy,
- (Conditional) Mutual information

Abstracting the model for TRAIL-induced apoptosis

Around 10 variables (= species)

1 time steps corresponds to 15 min

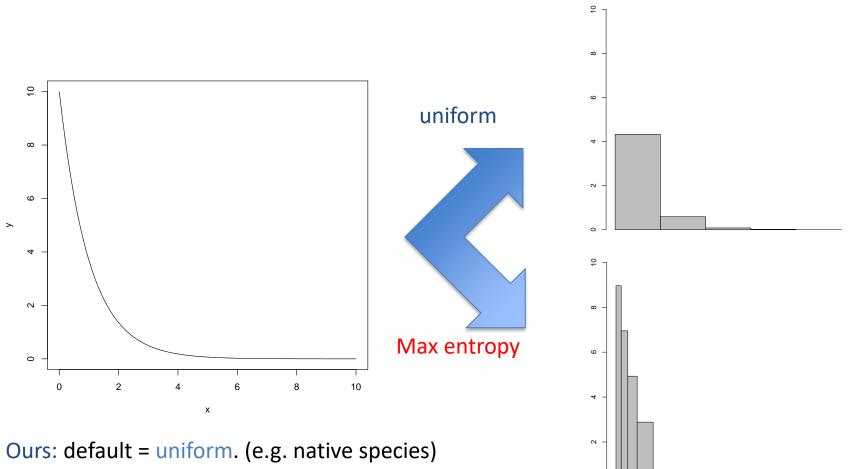
Variables Representation

=> should allow to understand if apoptosis will be triggered

=> that's the time step we are interested in.

=> few discretized values: around 5
(ex: « high/low » concentrations)

Discretization Methods



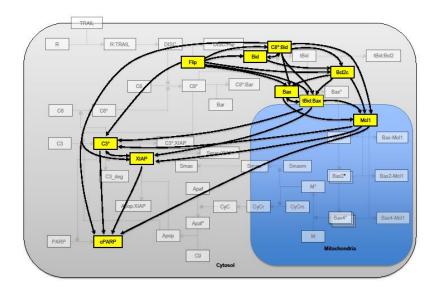
Ours: default = uniform. (e.g. native speci check entropy of discretized variable. If too low (<0.4), use max entropy (e.g. for polymerized complexes)

(ex : Lloyd-Max reducing distorsion)

5 discretized values

Choosing Variables

should allow to understand if apoptosis will be triggered



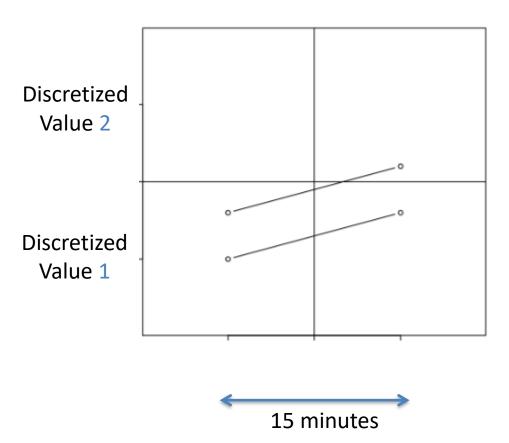
Correlate the initial value of variables With death/alive signal of the cell at the end of the pathway (8 hours).

using mutual information for that.

- \Rightarrow Select 6 native variables in that way.
- \Rightarrow Add the death signal (cPARP > some high level)

Evolution: Stochastic Model

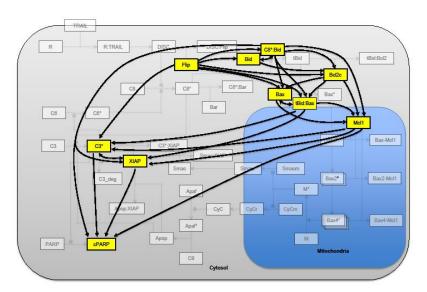
Represent evolution of discretized variables.



Even deterministic models (e.g. ODEs) become non-deterministic Because of discretization:

Cope with that using stochasticity (e.g. Markov chains). Prob(value 1 => value 1)=0.8 Prob(value 1=> value 2)=0.2

Markov Chains



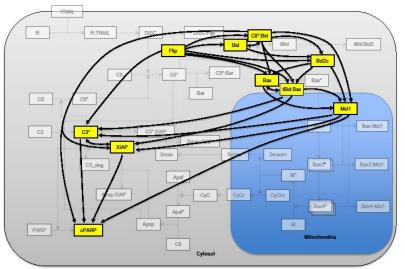
For performance reason, we use compact representation of Markov chains, in the form of Dynamic Bayesian Networks (DBNs).

Set of variables, and: Proba(Cvar₁^{t+1}=low ... Cvar₁₀^{t+1}=low | Cvar₁^t=low, ... Cvar₁₀^t=high...)=0.01

=> 5²⁰ = 95x10¹² values. Bit too much.

DBNs

Evolution of each variable is dependant only on past (no cross dependencies)



Each variable depends only on few variables at the previous time points called « parents »

Set of variables, and: Proba(Cvar₁^{t+1}=high | Cvar₁^t=low, Cvar₂^t=high) = 0.1.

 $=> 5^3 = 125$ values for each variable => 1250 values for 10 variables.

Parent relations

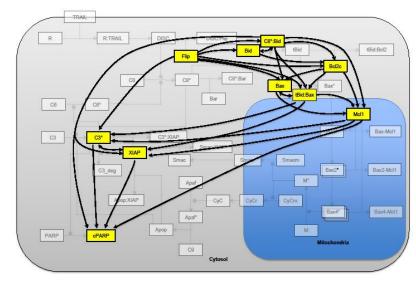
Represent evolution of variables. (correlations between variables)

Use conditional mutual information to select parents:

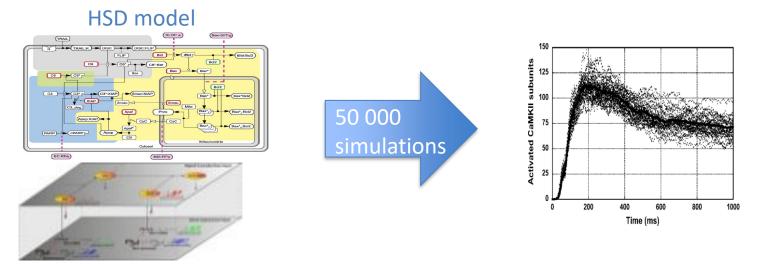
Select Y maximizing MI(X^{t+1},Y^t): Quantifies how much Y^t can predict X^{t+1}

Select Z maximizing CMI(X^{t+1},Z^t | Y^t) Quantifies how much Z^t can predict X^{t+1} on top of what Y^t tells

We found that 4 parents was a good compromise between accuracy and speed



Filling the Conditional Proba. Tables



Proba(X^{t+1}=high | Y^t=low, Z^t=high) =
$$\frac{nbr_simu(X^{t+1}=high | Y^t=low, Z^t=high)}{nbr_simu(Y^t=low, Z^t=high)}$$
$$= \frac{100}{1000} = 0.1$$

...

How good is the Abstraction?

HSD model 100 runs: 98% dead 100 runs: 44% dead TRAIL Bid Bd2 INITIAL CONFIGURATION:1012110 INITIAL CONFIGURATION:1010110 HSD 10 10⁶ C6 + 98 dead cells DEAD 10⁵ 104 10 10^{3} EC-RPA 102 nterval 3 10 10¹ 10 10^{0} 100 200 100 200 300 400 INITIAL CONFIGURATION:1010110 MIDBN10 INITIAL CONFIGURATION:1012110 10⁶ 10 98 dead cel 105 10 R tBid:Bcl2 104 10 10^{3} 10 10^{2} 102 ternet 1 10¹ 10¹ Apaf" 100 10⁰ 100 400 200 300 100

DBN abstraction

100 runs: 98% dead

100 runs: 40% dead

200

Less antiapop. molecules

More antiapop. molecules

300

HSD

400

MIDBN10

40 dead cel

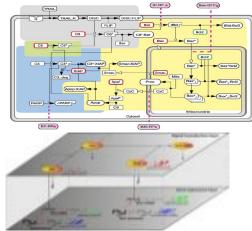
ntarvai 1

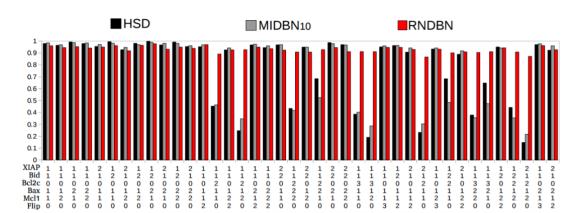
400

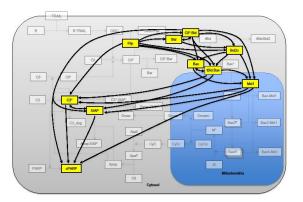
44 dead cells

How good is the Abstraction?

HSD model







DBN abstraction

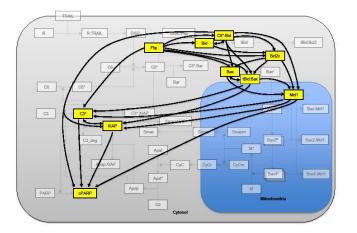
Model	cell death (HSD: 69.9%)	discerning power (HSD: 100%)	Time / 1000 simulations (HSD: 56s)
MIDBN ₇	70.43%	96.14%	2.13s (26.3X)
MIDBN ₈	69.57 %	96.31%	2.64s (21.21X)
MIDBN ₉	69.33%	96.37%	2.98s (18.8X)
MIDBN ₁₀	69.03%	$\mathbf{96.84\%}$	3.30s (17X)
MIDBN 58	66.85%	94.12%	73.05s
RNDBN	92.29%	85.53%	299s

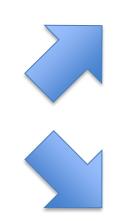
Time efficient:

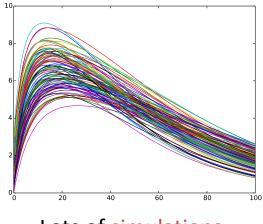
1 simu CMC 20x faster than 1 simu HSD 1 simulation of CMC = many simulations of HSD

Simulation vs Inference

To obtain the probability distribution produced by the DBN





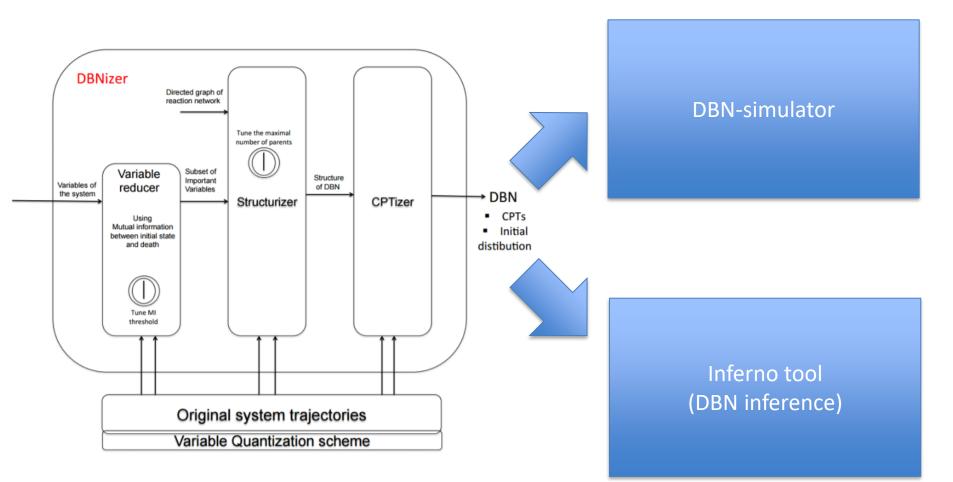


Lots of simulations [HSB'16]

$$P^{t}(\boldsymbol{X} = \boldsymbol{x}) = \sum_{\boldsymbol{u} \in V^{X}} P^{t-1}(\boldsymbol{X} = \boldsymbol{u}) \prod_{i=1}^{n} CPT_{t,i}(\boldsymbol{x}_{i} \mid \boldsymbol{u}_{i})$$

Inference (1 computation). ~10sec. [submitted]

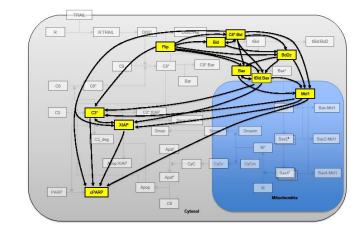
DBNizer: fully automatic abstraction tool

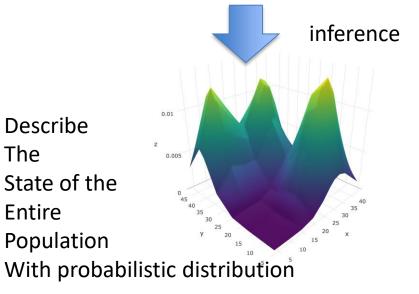


available freely at https://suchee.bitbucket.io/DBNizer/

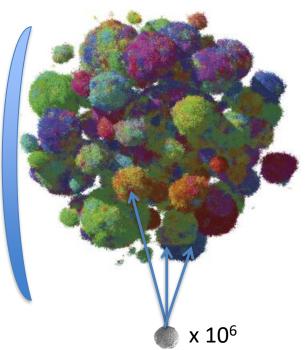
The big picture

for each cell, abstraction DBN:





Tumor



Cell death, Natural Tumor growth...