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Abstract—In this paper, we propose and evaluate different
learning strategies based on Multi-Arm Bandit (MAB) algo-
rithms. They allow Internet of Things (IoT) devices to improve
their access to the network and their autonomy, while taking
into account the impact of encountered radio collisions. For that
end, several heuristics employing Upper-Confident Bound (UCB)
algorithms are examined, to explore the contextual information
provided by the number of retransmissions. Our results show
that approaches based on UCB obtain a significant improvement
in terms of successful transmission probabilities. Furthermore,
it also reveals that a pure UCB channel access is as efficient as
more sophisticated learning strategies.

Index Terms—Low Power Wide Area, Multi-Armed Bandits,
Upper-Confident Bound, retransmissions, Internet of Things.

I. INTRODUCTION

Nowadays, the Internet of Things (IoT) and in particular

the Low Power Wide Area (LPWA) technology is considered

a main driver for a vast variety of application that will support

the communications among a large number of devices. In fact,

network operators are starting to deploy Machine to Machine

(M2M) solutions using LPWA networking technologies [1].

For instance, LoRaWAN and SigFox technologies have been

most adopted in the monitoring of large scale systems (e.g.,

smart cities, metering), where a large number of devices

compete for the transmission of their packets in the unlicensed

Industrial, Scientific and Medical (ISM) bands.

Nevertheless, this demand to fit a growing number

of energy-limited end-devices requires the development of

contention-based protocol more tailored for LPWAN technolo-

gies. Thus, novel access mechanisms considering collision-

avoidance methods need to be addressed to avoid degrading

the network performance in these unlicensed bands. In fact,

the number of packet collisions increases as more devices

without coordination share the same band. Hence, an important

concern in the Medium Access (MAC) design is to reduce the

Packet Loss Ratio (PLR) due to the interference caused by the

collisions among the devices.
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In this regard, in the context of Cognitive Radio [2], [3],

Multi-Arm Bandit (MAB) algorithms [4], [5], [6] have been

recently proposed as a potential solution for channel access in

LPWA networks [7], [8], [9]. For instance in [9], the impact of

non-stationarity on the network performance using MAB algo-

rithms is studied. In this work, low-cost algorithms following

two well-known approaches, such as the Upper-Confidence

Bound (UCB) [4], [5], and the Thompson Sampling (TS)

algorithms [10] have reported encouraging results. Other recent

directions include theoretical analysis [11], [12], and realistic

empirical simulations [13], [14], of the application of MAB

algorithms for slotted wireless protocols in a decentralized

manner, or applications to multi-hoping networks [15], [16].

None of the above mentioned articles discusses in detail

the impact of retransmissions on the performance of MAB

learning algorithms as we do in this paper.

The aim of this paper is to assess the performance of

MAB algorithms [6] for channel selection in LPWA networks,

while taking into account the impact of retransmissions on the

network performance. For this reason, several decision making

strategies are applied after a first retransmission (i.e., when

a collision occurs). Proposed approach employs contextual

information provided by the number of retransmissions, and

implemented at each device, so that no coordination among

them is needed. Moreover, our UCB-based heuristics show

low complexity making them suitable for being embedded in

LPWA devices.

The contributions of this paper are summarized as follows:

• Firstly, we provide a close form approximation of the

radio collision probability after a first retransmission. By

doing this, we highlight the need to develop a learning

approach for channel selection upon collision.

• Secondly, different heuristics are proposed to cope with

retransmissions.

• Lastly, we conduct simulations in order to compare the

performance of the proposed heuristics with a naive

uniform random approach, and a UCB strategy (i.e.,

without any learning for the retransmissions).

The rest of the paper is organized as follows. First the

system model is introduced in Section II. Our motivations

are exposed in Section III, and a formal description of the



MAB learning algorithms is given in Section IV. The proposed

UCB-based heuristics are presented in Section V, while the

corresponding numerical results are shown in Section VI.

Finally, some conclusions are drawn in Section VII.

II. SYSTEM MODEL

A. LPWA Network

We consider in this paper an LPWA network composed of a

gateway and a large number of end-devices that regularly send

short data packets, where K channels (K > 1) are available

for the transmission of their packets.

We assume that this network is constituted by two types

of devices: on one hand, we have static devices that operate

in one channel1 in order to communicate with the gateway.

On the other hand, there are IoT devices, that possess the

additional advantage of being able to select any of the K
available channels to perform their transmissions.

Regardless the type of devices, each of them follows a

slotted ALOHA protocol [17], and has a probability p > 0
to transmit a packet in a time slot. We make the hypothesis

that the transmission is successful if the channel is available,

otherwise upon radio collision, these devices will attempt to

transmit their packet up-to M times, with M ∈ N. Note that,

every retransmission is carried out after a random back-off

time, uniformly distributed in J0,m−1K, where m ∈ N,m > 0
is the length of the back-off interval.

B. Model of our IoT devices

The aforementioned contention process can be described by

a Markov chain model [18] similar to the one presented in

[19], as it is depicted in Fig. 1. A device containing a packet

for transmission goes from an idle state to a transmission state,

while considering retransmissions due to different collision

probabilities, i.e., {pc, pc1, . . . , pcM−2}, at each M − 1 back-

off stage. At each time slot, a transition from an idle state

to a transmission state (denoted as Trans.) occurs if a

packet transmission is required, while waiting states (denoted

as Wait), correspond to a m back-off interval.

A device aims to select a channel with the highest prob-

ability of successful transmission, for which it resorts to a

reinforcement learning approach. It is formulated as a MAB

problem, where each channel (also called arms) is viewed as

a gambling machine (bandit), and each bandit has a reward.

Then, at every trial, a device chooses a channel that maxi-

mizes the sum of the collected rewards. These rewards are

the acknowledgment (Ack) signals received after transmitting

packets to the gateway. In this way, a successful transmission

is considered when an acknowledgment is received, and a

learning approach is employed to select the best channel.

We address the problem of channel selection taking into

account the described Markov model for the retransmissions of

end-devices. It motivates our present work for which we con-

sider the retransmissions in the analysis of MAB algorithms.

1 Note that, for unlicensed bands, this definition also encompasses any
device following a different standard or trying to establish communication
with gateways of other networks.

Fig. 1. All devices in the network follow the same Markov behavior.

III. MOTIVATIONS FOR THE PROPOSED APPROACH

When a device experiments a collision, it goes in a back-off

state to retransmit the same packet on a channel. If all devices

remain in the same channel for retransmissions, it could result

in a sequence of successive collisions with the same devices’

packets that previously collided. Thus, it seems interesting

to consider in the decision making policy the possibility for

a device to retransmit in a different channel. One of our

motivations to develop new MAB algorithms for our problem

is this option of using a different communication channels

between the first transmission and the next retransmissions.

By considering this possibility, the device will have to learn

more, thus, we expect the learning time to be longer, but

it could be possible that the final performance gain (i.e., in

terms of successful transmission rate) increases too. The next

Section VI presents analysis to check this performance gain,

for various heuristics based on the UCB algorithm.

Here after, we start by presenting a mathematical derivation

that backups this idea. To do so, we study the collision proba-

bilities considering the Markov process depicted in Fig. 1, and

foresee the impact of addressing bandit strategies, as well as

setting guidelines for the design of heuristic approaches.

A. Probability of collision at the second transmission slot

As it is well known, having a collision during an access

time can be overcome by a retransmission procedure (this can

take several retransmission attempts). What interest us here,

is to obtain a mathematical approximation of the collision

probability at the second transmission slot pc1, as a function

of the first collision probability pc.

We consider two hypotheses H1 and H2 defined as,

• H1: The probability pc1, is composed by the sum of two

probabilities: i) the probability of colliding consecutively

twice, i.e., the devices that collide at a given time slot and

collide again when retransmitting their packets, and ii) the

probability of collision among devices that did not collide

in the same previous collision. Moreover, we suppose that

the number of devices involved in a collision is small in

comparison to the total number of devices.



• H2: The total number of the back-off stages at time t is

constant, and it is assumed to be large enough to consider

that no device will ever be in the last failure state (this

case is the one on the right side in Figure 1), after M
successive failed retransmissions.

Considering one device and a channel, we denote xi
t the

probability that it is transmitting a packet for the i+1 time in a

given time slot t (with i ∈ J0,M−1K), and let xt =
∑M−1

i=0
xi
t

be the probability that it transmits a packet. We consider N
active devices following the same policy.

We assume to be in the steady state [18], in our Markov

chain model depicted in Figure 1, and thus the probabilities

no longer depend on the slot number t (i.e., ∀t, xt = x).

Therefore, the probability that this device has a collision at

the first transmission is pc, and has the following expression

pc = 1− (1− x)
N−1

⇐⇒ x = 1− (1− pc)
1

N−1 . (1)

Moreover, from (1) we define the probability pcp(n) that

involves the collision of n packets sent by each IoT device

(for any 1 ≤ n ≤ N − 1), during the first transmission slot,

and is defined by the following equation

pcp(n) =

(
N − 1

n

)
xn (1− x)

N−1−n
.

As explained above, if an IoT device experiences a collision

at the first transmission, it proceeds for the retransmission of

its packet after a random back-off interval. We denote pca
the probability to have a collision with a packet involved in

the previous collision. Under the H1 assumption, the number

of packets involved in the same previous collision remains

very small in comparison to the total number of devices that

may transmit during this time. In other words, this collision

probability does not depend on previous retransmissions and

is equal to pc. So, the probability that the same device’s packet

experiences again a collision at the second time slot is

pc1 = pca + (1− pca) pc. (2)

If the device has a collision at the first attempt, we consider

pbp(n) the probability that it has a collision with exactly n
packets (for any 1 ≤ n ≤ N − 1), and that at least one of

the n devices involved in this first collision chooses the same

back-off interval,

pbp(n) =

(
N − 1

n

)
xn (1− x)

N−1−n

[
1−

(
1−

1

m

)n]
.

(3)

Besides, pca is the conditional probability of collision with a

packet sent by a device involved in the previous collision given

that the packet experienced collision at its first transmission.

Hence, under hypothesis H2, we can use Bayes theorem and

the law of total probability to relate pca with pbp(n), and the

different probabilities that a device experienced a collision

during the first slot and has the same back-off interval for

its retransmission is,

pca =
1

pc

N−1∑

n=1

pbp(n). (4)
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Fig. 2. Our proposed approximation for the probability of collision at the
second transmission. It is more precise for smaller values of N .

Therefore, the expression of pca is

1

pc

N−1∑

n=1

(
N − 1

n

)
xn (1− x)

N−1−n

[
1−

(
1−

1

m

)n]

= 1−
1

pc

N−1∑

n=1

(
N − 1

n

)
xn (1− x)

N−1−n

(
1−

1

m

)n

. (5)

Once again under H1, assuming that the number of devices

involved in the first collision is small compared to N − 1, the

first N0 ≪ N − 1 terms of the sum in (5) are predominant.

We derive,

pca ≃ 1−
1

pc

N0∑

n=1

(
N − 1

n

)
xn (1− x)

N−1−n

(
1−

1

m

)n

.

(6)

Moreover, for these terms, n is small compared to N − 1,

and so N−1−n can be approximated to N−1. Thus it gives,

pca ≃ 1−
(1− x)

N−1

pc

N0∑

n=1

(
N − 1

n

)
xn

(
1−

1

m

)n

. (7)

Assuming H1 amounts to consider that x ≪ 1. As a

consequence, the sum in equation (7) can be supplemented

by negligible terms,

pca ≃ 1−
(1− x)

N−1

pc

N−1∑

n=1

(
N − 1

n

)
xn

(
1−

1

m

)n

. (8)

We use the binomial theorem to compute the sum in (8),

and we rewrite the expression of pca as

pca ≃ 1−
(

1

pc
− 1

)[
1 +

(
1− (1− pc)

1

N−1

)(
1−

1

m

)]N−1

. (9)

Finally, our approximation of pc1 can be obtained by insert-

ing (9) in (2).



B. Behaviour analysis of pc and pc1

In order to assess the proposed approximation, we suppose

a unique channel where all the devices follow the same con-

tention Markov process. We simulate an ALOHA protocol with

a maximum number of retransmissions M = 10, a maximum

back-off interval m = 10, and a transmission probability

p = 10−3. In Fig. 2, we show the collision probabilities for

different number of devices N (from N = 50 up-to N = 400),

for both pc and pc1.

From this simulations, we can verify that our approximation

is very precise for lower values pc1 ≤ 30% (i.e., red and orange

curves are quite close). Moreover, a significant gap between

pc1 and pc, of up-to 10%, can be observed, which suggests us

to resort to MAB algorithms for the channel selection for both

the first transmission and next retransmissions.

C. Learning is useful for non-congested networks

It is worth to highlight that, if we write (2) as pc1 =
pc + pca (1− pc), then it is obvious that pc1 is always larger

than pc (as pca (1− pc) > 0). But for large values of pc,

pca (1− pc) ≃ 0 so the gap gets small, and for small values

of pc the gap is significant. Moreover, we can verify (e.g.,

numerically or by differentiating) that the gap decreases when

pc increases (for fixed N and m). This backups mathematically

the observation we made from Fig. 2: the smaller pc, the larger

is the gap between pc and pc1.

We interpret this fact in two different situations. On one

hand, in a congested network, when devices suffer from a large

probability of collision on their first transmission (i.e., pc is

not so small), then pc1 ≃ pc and so devices cannot really

hope to reduce their collision probabilities even if the use a

different channel for retransmission. On the other hand, if pc
is small enough, i.e., in a network not yet too congested, then

our derivation shows that pc1 ≫ pc, meaning that the possible

gain of retransmitting in a different channel that the one used

for the first transmission can be large, in terms of collision

probability (e.g., up-to 10% in this experimental setting). In

other words, when learning can be useful (small pc), learning

to retransmit in a different channel can have a large impact on

the global collision rate, thus justifying our approach.

IV. A WELL-KNOWN MAB ALGORITHM: UCB

Without loss of generality, we have adopted a well-studied

stochastic MAB learning algorithm, where the reward dis-

tributions are unknown and assumed to be independent and

identically distributed (i.i.d). The arms model the channels

denoted as C(t) ∈ J1,KK, and the players, the dynamic

devices, learn the distributions to be able to progressively focus

on the best arm, i.e., the arm with largest mean representing

the mean availability of a given channel k.

Before presenting our proposed heuristics, we describe a

UCB bandit algorithm [4]. It has reported to be efficient, while

featuring a low complexity for its implementation. For this

reason, it has been employed for IoT applications [9], and we

employ this approach to develop our proposals.

A. The UCB algorithm

A first approach is to only use an empirical mean estimator

of the rewards in every channel, and select the channel with

highest estimated mean at every time step; but this greedy

approach is known to fail dramatically [5]. Indeed, with this

policy, the selection of arms depends too much on the first

draws: if the first transmission in one channel fails and the

first one on other channels succeeds, the device will never use

the first channel again, even if it is the best one (i.e., the most

available, in average).

Rather than relying on the empirical mean reward, UCB
algorithms instead use a confidence interval on the unknown

mean µk of each arm, which can be viewed as adding a

“bonus” exploration to the empirical mean. They follow the

“optimism-in-face-of-uncertainty” principle: at each step, they

play according to the best model, as the statistically best

possible arm (i.e., the highest UCB) is selected.

More formally, for one device, let Nk(t) be the number of

times the channel k (for k ∈ J1,KK) was selected up-to time

t− 1, for t ≥ 0 for any t ∈ N,

Nk(t) =

t−1∑

τ=0

✶(C(τ) = k), (10)

where ✶ is an indicator function that is equal to 1, if the IoT

device chooses, for its τ -th transmission, the channel k, and 0
otherwise. The empirical mean estimator µ̂k(t) of channel k
is defined as the mean reward obtained up-to time t− 1,

µ̂k(t) =
1

Nk(t)

t−1∑

τ=0

rk(τ)✶(C(τ) = k). (11)

where rk(t) is the reward obtained after transmission in

channel k at time t (1 for a successful transmission, and 0
otherwise) A confidence term Bk(t) is given by [5],

Bk(t) =
√

α log(t)/Nk(t), (12)

where α refers to an exploration coefficient2, that we chose

equal to 1/2, as suggested in [20] and as done in previous

works [7], [9]. Then, an upper confidence bound in each

channel k is defined as

Uk(t) = µ̂k(t) +Bk(t). (13)

Finally, the transmission channel at time step t is the one

maximizing this UCB index Uk(t), as it is the one expected

to be the best one at the current time step t,

C(t) = arg max
1≤k≤K

Uk(t). (14)

The UCB algorithm is implemented independently by each

device, and we present it in Algorithm 1. Note that a device

using this first approach is only able to select a channel for

the first and all the corresponding retransmissions of a packet.
2 In fact, the larger this coefficient is, the longer the exploration, while

the UCB algorithm is proven to be order optimal for α > 0.5 [6], and has
reported a good performance for lower values of α > 0.



for t = 0, . . . , T do
Compute for each channel Uk(t) = µ̂k(t) +Bk(t).

following Eqs. (10), (11), and (12);
Transmit in channel C(t) = argmax1≤k≤K Uk(t);
Reward rC(t)(t) = 1, if Ack is received, else 0;

end
Algorithm 1: The UCB algorithm for channel selection.

V. PROPOSED HEURISTICS

A device that implements the UCB algorithm is led to focus

is transmissions and retransmissions in the channel which

has been identified as the best. As explained in Section III,

focusing in one channel increases the collision probability

in retransmissions. In this Section, we describe the proposed

heuristics for the channel selection in a retransmission. It is

carried out taking into account that a device can incorporate

a different channel selection strategy while being in a back-

off state. Hence, a natural question is to evaluate whether

using this additional contextual information can improve the

performance of a learning policy.

For that end, all of our heuristics comprise two stages: the

first stage is a UCB algorithm employed for the first attempt

to transmit, and the second stage is another algorithm used for

channel selections for the next retransmissions.

We present below four heuristics for this second stage (short

names in “quotes” correspond to the legend on Figures 3, 4).

A. Uniform random retransmission (“Random”)

In this first proposal, the device uses a random channel

selection, following a uniform distribution (in J1,KK). It is

described below in Algorithm 2.

for t = 0, . . . , T do
if First packet transmission then

Use first-stage UCB as in Algorithm 1.
else // Random retransmission

Transmit in channel C(t) ∼ U(1, . . . ,K);
end

end
Algorithm 2: Uniform random retransmission.

B. UCB for retransmission (“Only UCB”)

Instead of applying a random channel selection, another

heuristic is to use a second UCB algorithm in the second

stage. In other words, we expect that this algorithm is able to

learn the best channel to retransmit a packet. It is described

in Algorithm 3, and it is still a practical approach, since the

storage requirements and time complexity remains linear w.r.t.

the number of channels K (i.e., of order O(K)).
Note that, we use the superscript (r) to denote the vari-

ables µ̂r
k(t), B

r
k(t) and Ur

k (t), related to the UCB algorithm

employed for the retransmission.

C. K different UCBs for retransmission (“K UCB”)

Another heuristic is to not use the same algorithm no matter

where the collision occurred, but to use K different UCB

for t = 0, . . . , T do
if First packet transmission then

Use first-stage UCB as in Algorithm 1.
else // Packet retransmission with UCBr

Compute for each channel Ur
k (t) = µ̂r

k(t) +Br
k(t)

following Eqs. (10), (11), and (12);
Transmit in channel Cr(t) = argmax1≤k≤K Ur

k (t);
Reward rrCr(t)(t) = 1, if Ack is received, else 0;

end
end

Algorithm 3: UCB for retransmission.

algorithms. Meaning that after a failed first transmission in

channel j, the device relies on the k-th algorithm to decide

its retransmission. The corresponding algorithm is depicted in

Algorithm 4. Each of these algorithms are denoted using the

superscript (j), for j ∈ J1,KK.

Although, this approach increases the complexity and stor-

age requirements (of order O(K2)). For our LPWA networks

of interest, such as LoRaWAN, the cost of its implementation

is still affordable, since a small number of channels is used. For

instance, for K = 4 channels, the memory to store K+1 = 5
algorithms is of the order of the requirements to storing one.

for t = 0, . . . , T do // At every time step

if First packet transmission then
Use first-stage UCB as in Algorithm 1.

else // Packet retransmission with UCBj

j ← last channel selected by first-stage UCB;

Compute for each channel U
j

k(t) = µ̂k
j(t) +B

j

k(t)
following Eqs. (10), (11), and (12);

Transmit in channel Cj(t) = argmax1≤k≤K U
j

k(t);

Reward r
j

Cj(t)
(t) = 1 if Ack is received, else 0;

end
end
Algorithm 4: K different UCBs for retransmission.

D. Delayed UCB for retransmission (“Delayed UCB”)

This last heuristic is a composite of the random retransmis-

sion (Algorithm 2) and the UCB retransmission (Algorithm 3)

approaches. Instead of starting the second stage UCB directly

from the first retransmission, we introduce a fixed delay

∆ ∈ N, ∆ ≥ 1, and start to rely on the second stage UCB after

∆ transmissions. The selection for the first steps is handled

with the random retransmission.

The idea behind this delay is to allow the first stage UCB
to start learning the best channel, before starting the second

stage UCB (see details in Algorithm 5). The number of

transmissions to wait before applying the second algorithm

is denoted by ∆, it has to be fixed before-hand.

Note that, we use the superscript (d) to denote the variables

related to the delayed second-stage UCB algorithm.

VI. SIMULATIONS TO COMPARE OUR HEURISTICS

We simulate our network considering N devices following

the contention Markov process described in Section II, and

a LoRa standard with K = 4 channels. Each device is set to



for t = 0, . . . , T do // At every time step

if First packet transmission then
Use first-stage UCB as in Algorithm 1.

else if t ≤ ∆ then // Random selection with

UCBd

Transmit randomly in a channel
C(t) ∼ U(1, . . . ,K).

else // Delayed UCB

Compute for each channel Ud
k (t) =

̂µd
k(t) +Bd

k(t)
following Eqs. (10), (11), and (12);

Transmit in channel Cd(t) = argmax1≤k≤K Ud
k (t);

Reward rd
Cd(t)(t) = 1 if Ack is received, else 0;

end
end

Algorithm 5: Delayed UCB for retransmission.

transmit with a fixed probability p = 10−3, i.e., a packet about

every 20 minutes for time slots of 1 s.

For the evaluation of the proposed heuristics, a total number

of T = 20 × 104 time slots is considered, and the results are

averaged over 103 independent random simulations.

In a first scenario, we consider a total number of N = 1000
IoT devices, with a non-uniform repartition of static devices

given by 10%, 30%, 30%, 30% for the four channels. In other

words, the channels are occupied 10%, 30%, 30%, and 30%
of time, and the contention Markov process considered is

given by M = 5, and m = 5. In Fig. 3, we show the

successful transmission rate versus the number of slots, for

all the proposed heuristics.

A first result is that all the heuristics clearly outperform the

non-learning approach that simply use random channel selec-

tion for both transmissions and retransmissions (i.e., the no

UCB curve). The improvement of the heuristics over the non-

learning approach is evident, and for every heuristic that use

a kind of learning mechanism it can be observed a successful

transmission rate that increases rapidly (or equivalently an PLR

decreasing). Moreover, all of these approaches show a fast

convergence making them suitable for the targeted application.

It is also worths mentioning that the employment of the same

UCB algorithm for retransmissions denoted here as “Only

UCB” achieves the best performance, while a “Random”

retransmission features a slight degradation. This result can

be explained as follows: the loss of performance related to

the separation of information for several algorithms is greater

than the gain obtained by considering the first transmissions

and retransmissions separately.

We also consider in our analysis the case where M = 5,

and m = 10 using ALOHA protocol, a statistic distribution of

the devices about 40%, 30%, 20%, 10% for the four channels,

and N = 2000 IoT devices. The corresponding results are

depicted in Fig. 4. In this case the successful transmission

rate is degraded compared with achieved results in Fig. 3, this

can be explained with the fact that we are considering in our

network more devices that increase the collision probability.

It is important to highlight, that the “Random” retransmission

heuristic shows a poor performance in comparison to the other
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Fig. 3. Comparison among the exposed heuristics for the retransmission: Only
UCB, Random, UCB, K UCB, and Delayed UCB. First scenario: learning
helps but learning to retransmit smartly is not needed, as we observe that the
random retransmission heuristic achieves similar performance than the others.

heuristics, and it can be attributed to the fact that the number

of retransmission is increased, and consequently a learning

approach is able to take advantage of it. Furthermore, the

“UCB”, “K UCB” and “Delayed UCB” heuristics behave

similarly than “Only UCB”, after a similar convergence time.
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Fig. 4. Second scenario: learning helps a lot (a gain of 30% in terms of
collision probability), and learning to retransmit smartly is needed.

The conclusions we can draw from depicted results are

twofold. First, MAB learning algorithms are very useful to

reduce the collision rate in LPWA networks, a gain of up-

to 30% of successful transmission rate is observed after

convergence. A second conclusion that can be highlighted is

that, using learning mechanisms for retransmissions can be an

interesting way to reduce collisions in networks with massive



deployments of IoT as this can be checked in Fig. 4, where

the random retransmission heuristic is not very advantageous

in front of the UCB-based approaches that use learning for

channel selection during the retransmission procedure.

VII. CONCLUSIONS

In this paper, we presented a retransmission model of LPWA

networks based on an ALOHA protocol, slotted both in time

and frequency, in which dynamic IoT devices can use machine

learning algorithms, to improve their PLR when accessing

the network. The main novelty of this model is to address

the packet retransmissions upon radio collision, by using a

Multi-Armed Bandit framework. We presented and evaluated

several learning heuristic that try to learn how to transmit and

retransmit in a smarter way, by using the UCB algorithm for

channel selection for first transmission, and different proposals

based on UCB for the retransmissions upon collisions.

We showed that incorporating learning for the transmission

is needed to achieve optimal performance, with significant

gain in terms of successful transmission rate in networks

with a large number of devices (up-to 30% in the example

network). Our empirical simulations show that each of our

proposed heuristic outperforms a naive random access scheme.

Surprisingly, the main take-away message is that a simple

UCB learning approach, that retransmit in the same channel,

turns out to perform as well as more complicated heuristics.

Future works

The utility and impact of the proposed approaches for

LPWA networks motivates us to address several subjects as

future works. Among them, the non-stationarity of the channel

occupancy caused by the learning policy employed by the IoT

devices. For that end, modifications of MAB algorithms have

been proposed, such as Sliding-Window-UCB or Discounted-

UCB [21] or more recently M-UCB [22], that nevertheless

have not been explored for the targeted problem.

In order to validate our results in a realistic experimental

setting and not only with simulations, future works include a

hardware implementation of the analyzed models to complete

our recent works [23], [24]. A hardware demonstrator could

be also benefit to study other settings by removing some

hypotheses, for instance by studying a similar model in non-

slotted time.

Note on the simulation code

The source code (MATLAB or Octave) used for the simula-

tions and the figures is open-sourced under the MIT License, at

Bitbucket.org/scee_ietr/ucb_smart_retrans.
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