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Abstract. In this paper, we study the notion of mending, i.e. given a partial solution to a
graph problem, we investigate how much effort is needed to turn it into a proper solution. For
example, if we have a partial coloring of a graph, how hard is it to turn it into a proper coloring?

In prior work (SIROCCO 2022), this question was formalized and studied from the perspective
of mending radius: if there is a hole that we need to patch, how far do we need to modify the
solution? In this work, we investigate a complementary notion of mending volume: how many
nodes need to be modified to patch a hole?

We focus on the case of locally checkable labeling problems (LCLs) in trees, and show that
already in this setting there are two infinite hierarchies of problems: for infinitely many values
0 < α ≤ 1, there is an LCL problem with mending volume Θ(nα), and for infinitely many values
k ≥ 1, there is an LCL problem with mending volume Θ(logk n). Hence the mendability of LCL
problems on trees is a much more fine-grained question than what one would expect based on
the mending radius alone.

We define three variants of the theme: (1) existential mending volume, i.e., how many nodes
need to be modified, (2) expected mending volume, i.e., how many nodes we need to explore
to find a patch if we use randomness, and (3) deterministic mending volume, i.e., how many
nodes we need to explore if we use a deterministic algorithm. We show that all three notions are
distinct from each other, and we analyze the landscape of the complexities of LCL problems for
the respective models.

1 Introduction

If we have a partial solution to a graph problem, how much effort is needed to turn it into a
proper solution? For example, if we have a partial coloring of a graph, how hard is it to turn it
into a proper coloring? In this work we present three formalisms that capture the essence of this
question; the first one is purely graph-theoretic while the other two are algorithmic:

1. Existential mending volume: How many labels do we need to change to “patch a hole”
in the solution?

2. Expected mending volume: In expectation, how many nodes do we need to explore to
learn enough about the input graph so that we can “patch a hole”?

3. Deterministic mending volume: In the worst case, how many nodes do we need to
explore to learn enough about the input graph so that we can “patch a hole”?

We will define these concepts formally in Definition 4.1 and 5.3, but for now the following
informal description will suffice to understand what we mean by “patching a hole”. We are given
a graph G, a partial solution λ for some graph problem Π, and some node v that is unlabeled in
λ. We would like to find a new solution λ′ such that node v is labeled in λ′, and also all nodes
that were already labeled in λ remain labeled in λ′. We say that λ′ is a mend of λ at node v; we
have “patched a hole” at v. Now the key complexity measure is the Hamming distance between
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λ and λ′, i.e., the number of nodes that we had to change. If for any G, λ, and v there is a mend
λ′ that is within distance T1(n) from λ, we say that the existential mending volume of Π is at
most T1(n). If there is a randomized algorithm that after exploring in expectation T2(n) nodes
around v can find a mend, we say that the expected mending volume is at most T2(n), and if
there is a deterministic algorithm that after exploring in the worst case T3(n) nodes around v
can find a mend, we say that the deterministic mending volume is at most T3(n).

1.1 Motivation

Mending volume is intimately connected with the analysis of local search. In particular, if the
mending volume of problem Π is bounded by T , then we can start with any partial solution
and walk towards a valid solution so that at each step we only need to consider modifications in
which we change T labels.

Moreover, mending volume naturally captures the reconfiguration effort in computer systems.
The system is initially in a valid state, but the physical structure of the system changes (e.g., a
new component is installed), leading to an invalid state λ in which at least one component is
unable to fulfill its task. We need to find a new configuration λ′ in which all components again
function correctly. Further, in order to minimize service disruptions, we should also ensure that
λ′ is as close to λ as possible.

1.2 Contributions

It is easy to come up with graph problems where mending is trivial or very hard—these
are problems with existential mending volume O(1) or Θ(n). The work of Panconesi and
Srinivasan [20] shows that the mending volume of ∆-coloring in a graph of maximum degree
∆ ≥ 3 is O(log n). But is the mending volume for problems of this flavor always O(1), Θ(log n),
or Θ(n)?

We formalize this question by considering locally checkable labeling problems (LCLs), as
defined by Naor and Stockmeyer [19]; these are problems in which we are given a graph with
some maximum degree ∆, and the task is to label the nodes with labels from some finite set Σ,
subject to some local constraints. Graph coloring with k = O(1) colors in a graph of maximum
degree ∆ = O(1) is a model example of an LCL problem.

We show that already in the case of trees, it is possible to construct two infinite hierarchies of
problems: for infinitely many values 0 < α ≤ 1, there is an LCL problem with mending volume
Θ(nα), and for infinitely many values k ≥ 1, there is an LCL problem with mending volume
Θ(logk n).

This shows that there is a striking difference between existential mending volume that we
study here and the mending radius that was defined recently in prior work [6]. In trees, the
mending radius of any LCL problem is known to be O(1), Θ(log n), or Θ(n). Hence mending
volume makes it possible to classify LCL problems into infinitely many classes, while mending
radius only leads to three classes of problems.

We also explore the landscape of mending volume beyond the case of trees; the results are
summarized in Table 1. In Section 5, we then further study the relation between existential,
expected, and deterministic mending volumes. We show that there are LCL problems in which all
three notions coincide, but that there are also problems that separate existential and randomized
mending volumes, as well as problems that separate randomized and deterministic mending
volumes. That is, in the worst-case partial solutions of some LCL problems, the most efficient
mend can be well-hidden in the sense that it is hard to find by probing a graph. A summary of
these results is presented in Table 2; we refer to Table 3 in Appendix B for more details on the
landscape of possible mending volumes.
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Table 1: An overview of the landscape of existential mending volume (∃MVol) for LCL problems on the
classes of paths, trees and general graphs. Here ✓ denotes that LCL problems with this mending volume
exist, × denotes that such LCL problems cannot exist, and ? denotes an open question. See Table 3 in
Appendix B for the landscape of other notions of mending.

Setting Possible mending volumes

O(1) . . . Θ(log n) Θ(logk n) . . . Θ(nα) Θ(n)
k > 1 0 < α < 1

Paths and cycles ✓ × × × × × ✓
Rooted trees ✓ × ✓ ✓ × ✓ ✓
Trees ✓ × ✓ ✓ ? ✓ ✓
General graphs ✓ × ✓ ✓ ? ✓ ✓

Table 2: An overview of the hierarchy of different measures of mending: MRad is the mending radius as
defined in [6], ∃MVol is the existential mending volume, EMVol is the expected mending volume, DMVol
is the deterministic mending volume, and |NMRad| is the maximum number of nodes in a neighborhood
of radius MRad. In the table, x ∼ y indicates that x and y are asymptotically equivalent for all LCL
problems, and x ≁ y indicates that there is at least one LCL problem for which this does not hold.
Whether ∃MVol ∼ EMVol holds in trees is an open question.

Any graph family MRad ≤ ∃MVol ≤ EMVol ≤ DMVol ≤ |NMRad|
Paths and cycles MRad ∼ ∃MVol ∼ EMVol ∼ DMVol ∼ |NMRad|
Infinite trees MRad ≁ ∃MVol ∼ EMVol ≁ DMVol ∼ |NMRad|
Trees MRad ≁ ∃MVol EMVol ≁ DMVol ∼ |NMRad|
General MRad ≁ ∃MVol ≁ EMVol ≁ DMVol ∼ |NMRad|
Reference Sect. 4.4 Sect. A.4 Sect. 5.3.1 Sect. B.2

2 Related work

One of the first papers that make explicit use of the fact that some LCL problems have a
logarithmic mending volume is by Panconesi and Srinivasan [20]. They compute a ∆-coloring of
a graph by recoloring an augmenting path of length up to O(log n) whenever there is a conflict.
However, their main interest is solving the problem in a distributed message passing model
and they therefore mainly focus on the mending radius instead of the mending volume of this
problem.

The idea of refining the radius measure into a volume measure in the study of the landscape
of LCL problems can be attributed to Rosenbaum and Suomela [22], who show similarities
and differences between the models. The volume complexity for LCL problems has been
further refined by Grunau at al. [7]. However, the focus of these papers is only on solvability
(constructing a solution from nothing) rather than mendability (editing a partial solution to
the closest complete solution) of a problem. They nevertheless highlight the fact that merely
looking at the radius complexity does not capture all details of what information within that
radius is actually necessary, and some problems that have the same radius complexity exhibit
very different volume complexities.

Mending radius. Balliu et al. [6] introduced the first formal graph-theoretic notion of
mending radius. The authors show how to use mending as a tool for algorithm design and
analyze the complexities of mending on paths, rooted trees and grids.

In contrast to the definition of mending radius, our definition of mending volume captures
more complexity classes of problems. A concrete example of the mending volume being more

3



Figure 1: From left to right, solutions of R1, R2, R3 (as defined in Problem 1) with the least number
of red labels are visualized. In the case of R2 (middle), each red vertex starting from the root in the
center has two of its three children colored red, and this continues down to the leaves. The radius in this
example is 4 and its growth rate as the graph gets larger is Θ(log3 n), the volume is 24+1 − 1 which grows
as Θ(nlog 2/ log 3). On each of these three solutions the set of vertices recolored red has the same radius
Θ(log3 n), yet the volume of the red zone is Θ(log3 n) for R1, Θ(nlog 2/ log 3) for R2, and Θ(n) for R3.

accurate than the mending radius is the group of three problems R1, R2, R3 defined in Problem 1.
Assume that we start with a partial solution where the root is uncolored and all other nodes are
colored white. Naturally, any mending algorithm must color the root red, and start updating
the descendants of the root down to the leaves. The mending radius of all three problems is
therefore Θ(log3 n). The mending volume, however, differs for all three problems Ri, and the
corresponding complexities are discussed in Figure 1.

Also other papers made use of mending radius, mainly as an algorithm design tool. Chechik
and Mukhtar [10] design an algorithm for 6-coloring planar graphs using the observation that
some small structures can be properly colored for any proper coloring of their surrounding
vertices. Such structures can be removed from the graph temporarily while coloring the rest
of the vertices. Similar observations have been made for computing a ∆-coloring [20] and
solving an edge-orientation with maximum out-degree (1 + ε)a [14]. Recently, it has been shown
that mending algorithms with a constant radius can also be transformed into self-stabilizing
algorithms in anonymous networks [11]. On the other hand, there were also attempts to extract
an explicit notion of mending, although using different definitions of partial solutions and
complexity measures. This includes for example König and Wattenhofer [16], and Kutten and
Peleg [18]. König and Wattenhofer [16] consider only faults that are an addition or a deletion of
a single vertex or edge at a time, and hence feature only at most a constant number of unlabeled
vertices. Kutten and Peleg [18] are interested in the time needed to compute a complete solution
as a function of the initial number of failures.

Local search. The idea of mending volume is closely related to local search in optimization
problems (in the context of traditional centralized algorithms). Often one starts with a suboptimal
solution and tries to converge to a better solution from there. Usually a problem is first solved
by computing some possibly random initial variable assignment that satisfies the constraints, see
e.g. [8, 12,21]. Then, a local search algorithm is applied to find a better solution in the vicinity
of the previous one.

Problem 1 Ri

Input: A balanced rooted ternary tree
Labels: red and white
Task: Color the vertices so that the root is red, and every red vertex has at least i red children.
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A classic application of local search in combinatorial optimization is the traveling salesman
problem; local search is often applied to hard problems in order to achieve a good approximation
of the optimal solution [1,2]. On the negative side, Johnson et al. [15] showed that an exponential
number of iterations may be needed if the cost function can take exponential values. Ausiello
and Protasi [4] later defined the class of guaranteed local optima (GLO) problems where the
values of the cost function are bounded by a polynomial and showed that such problems can
be solved in a polynomial number of iterations. Halldórsson [13] showed that local search can
help to improve worst-case approximation guarantees by starting with a greedy solution and
improving it locally using local search. He provides approximation results for various problems,
such as the independent set, k-dimensional matching and k-set packing in nearly-linear sequential
time. Chandra and Halldórsson [9] later showed an 2(k + 1)/3 approximation algorithm for the
weighted k-set packing problem, thus improving a previous result from Bafna et al. [5], and
Arkin and Hassin [3].

3 Preliminaries

Our definition of the mending volume is built along the lines of the definition of the mending
radius in [6]: we define the mending volume as a measure entirely independent of any distributed
computing model and we place ourselves in the context of Locally Checkable Labeling problems
(LCLs) first introduced in [19]. We use the same definition of partial solutions as [6] in order
to make our results comparable. A reader who is familiar with the notions of graph labeling
problems—and LCLs in particular—as well as with the specific definition of partial solutions
from [6] may skip directly to the next section in which we introduce a formal definition of the
mending volume.

3.1 Locally checkable labelings

LCLs are labeling problems on bounded-degree graphs. In these problems, an input graph
with maximum degree ∆ = O(1) is given and the task is to produce an assignment of labels to
vertices in a way that satisfies some predetermined local constraints. The specification of an
LCL problem is done by means of a local verifier.

Definition 3.1 (Local verifier). A verifier ϕ is a function that maps tuples (G,λ, v) to
{happy, unhappy}, where v is a vertex and λ a labeling of G. We say that the verifier ϕ
accepts λ if ϕ(G,λ, v) = happy for all v, otherwise it rejects λ.

In addition, ϕ is local if, for some constant radius r, whenever (G1, λ1) and (G2, λ2) coincide
over the radius-r neighborhood of v1 and v2 then they have the same image according to ϕ.
That is, (G1, λ1)|Nr(v1) ≃ (G2, λ2)|Nr(v2) implies ϕ(G1, λ1, v1) = ϕ(G2, λ2, v2)

An LCL problem is entirely characterized by a finite set of labels and a local verifier.

Definition 3.2 (Locally Checkable Labeling). A Locally Checkable Labeling problem Π is
represented by a finite set of labels Σ, a class of input graphs G, and a local verifier ϕ. An
instance of Π is a graph G ∈ G. A solution is a labeling λ of G over Σ that is accepted by ϕ.

3.2 Partial solutions

Mending takes as input an incomplete labeling and extends it into one that is a little closer to
being complete. Since graph labelings were defined to be complete over all vertices, the most
natural way to define partial solutions is to extend the set of labels with one fresh label ⊥ that
is interpreted as “unlabeled”, and adapt the local constraints to allow labelings that involve this
new label. We will often refer to vertices that are labeled ⊥ simply as “unlabeled vertices” or
“holes”.

A desirable definition of partial solutions should satisfy the following three properties:
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1. A partial solution without any hole is a complete solution;

2. the empty labeling (the constant function λ⊥ : 7→ ⊥) is a partial solution;

3. a sub-solution of a partial solution is also a partial solution. That is, if λ is a partial
solution then any labeling

λS : x 7→
{

λ(x) if x ∈ S
⊥ otherwise

is a partial solution.

As stated in [6], the following is a simple way to satisfy all of these constraints: extend the
verifier ϕ′ to be happy whenever an unlabeled vertex is visible in the radius-r neighborhood,
otherwise fall back to the same rules as ϕ.

Definition 3.3 (Partial solution). For Π = (Σ,G, ϕ), where ϕ has radius r, define a relaxation
Π∗ = (Σ∗ := Σ ⊔ {⊥} ,G, ϕ∗) of Π to allow empty labels.

For a labeling λ′ over Σ∗, define ϕ∗(G,λ′, v) as follows: if there exists a node u⊥ within
distance r of v such that λ′(u⊥) = ⊥, then ϕ∗(G,λ′, v) := happy; otherwise, let λ be any labeling
over Σ that agrees with λ′ on G|Nv(r) and set ϕ∗(G,λ′, v) := ϕ(G,λ, v).

We define domΣ(λ
′) to be the set of vertices that λ′ labels with labels from Σ. A labeling

(resp. solution) of Π∗ is called a partial labeling (resp. partial solution) of Π.

One can easily check that all the desirable properties stated above are satisfied by Defini-
tion 3.3; this fact is also proven in [6]. Note that this definition of partial solutions has a notion
of locality that is consistent between labelings and partial labelings: the verifiers ϕ and ϕ∗ have
the same locality radius.

We can now define what it means to mend a partial solution: a mend of λ is a new partial
solution with one specific vertex no longer labeled ⊥, and no additional ⊥ labels.

Definition 3.4 (Mend). For a partial solution λ of Π on an instance G, we say that λ′ is a
mend of λ at v ∈ G if the following hold:

Validity: λ′ is a partial solution.

Progress: domΣ(λ) ∪ {v} ⊆ domΣ(λ
′), that is, no ⊥ was added and v is no longer labeled ⊥.

The mending problem Mend(Π) associated with an LCL Π is the following task: given G ∈ G,
λ solution of Π∗ and v hole of λ, produce λ′ a mend of λ at v.

4 Complexity landscape of existential mending volume

Having defined LCLs and partial solutions, we can now introduce mending volume. In this section,
we consider an existential definition of the mending volume. This definition (see Section 4.1) is
a purely graph-theoretic measure of the optimal solution for a worst-case instance of a mending
problem. Later, in Section 4.2, we develop a technique for designing LCLs that have a specific
existential mending volume on infinite rooted trees. In Section 4.3, we show that these problems
can be transferred to finite and non-oriented trees while keeping the same mending volume
complexity. Finally, in Sections 4.4 and 4.5, we apply these design techniques to obtain problems
that have mending volume Θ(nα), 0 < α < 1 or Θ(logk n), k ∈ N∗, thereby providing examples
of complexities that the mending volume exhibits that were not observed previously in the study
of the mending radius.
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4.1 Existential mending volume: Definition

For two labelings λ and λ′, we define diff(λ, λ′) := {v : λ(v) ̸= λ′(v)} such that |diff(λ, λ′)| is the
Hamming distance between two partial solutions. We define the existential mending volume of a
problem Π as the distance between the partial solution and the optimal mend for the worst-case
instance (G,λ, v) of Mend(Π). Here, G is an input graph from the family on which Π is defined,
λ is a partial solution, and v is a hole s.t. λ(v) = ⊥ at which λ must be mended.

Definition 4.1 (Existential mending volume).

∃MVol(Π) := max
G,λ,v

min
{
| diff(λ, λ′)| : λ′ mend of λ at v

}

4.2 Mending in infinite rooted trees

In the following sections, we will establish a landscape of possible complexities that the existential
mending volume can exhibit. For a summary, please refer to Table 1 that was introduced earlier.
To this end, we describe examples of LCL problems that have logarithmic, polylogarithmic and
polynomial existential mending volumes. The statement of these examples is made easier by
the fact that all problems we show are of a specific type and we refer to them as propagation
problems. The complexity analysis of problems in this class is very straightforward for two
reasons: (1) they admit a simple matrix description by an encoding shown in Section 4.2.2, and
(2) we only need to study their behavior in infinite trees thanks to results from Section 4.3. The
advantage of infinite trees is that the complexity analysis is simplified by the absence of cycles,
high-degree nodes, leaves, and other irregularities of the input graph. This restriction of only
considering infinite regular rooted trees also has the complementary effect of illustrating that
even simple problems already exhibit a rich variety of mending volume complexities. Since any
propagation problem with mending volume T can be transformed into a problem on general
trees or graphs with the same mending volume T , our choice does not restrict the generality of
our results.

4.2.1 Propagation problems

In this section, we define propagation problems on infinite rooted trees, with the goal to use
them as a design tool for LCLs that exhibit specific mending volume complexities.

Definition 4.2 (Infinite ∆-regular rooted trees). We call trees that satisfy the following
properties

• there are infinitely many vertices;

• exactly one vertex is distinguished as the root;

• every vertex admits a unique directed path to the root;

• every vertex has exactly ∆ incoming edges.

infinite ∆-regular rooted trees, or simply infinite rooted trees when ∆ is clear from the context.

Note that this class of graphs only consists of a single graph for a fixed ∆. On this class of
input graphs, we define propagation problems as any LCL problem that is constructed according
to the procedure explained in Definition 4.3.

Definition 4.3 (Construction of a propagation problem). On the label set Σ, distinguish two
special labels—the initial label l0, and the wildcard label l−. Let Σ

′ := Σ \ {l−}. Choose some
µ : Σ′×Σ′ → N and some ∆ ≥ maxl∈Σ′

∑
l′∈Σ′ µ(l, l′). This defines an LCL on infinite ∆-regular

rooted trees, with locality 1, where the radius-1 neighborhood of v labeled by λ is accepted if all
of the following constraints are satisfied:
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• λ(v) = l0 if v is the root;

• if λ(v) = l ̸= l− then, for every l′ ∈ Σ′, there are at least µ(l, l′) children of v labeled l′.

In other words, we only allow labeling constraints of the form “any vertex labeled l must
have at least µ(l, l′) children labeled l′” or “the root must be labeled l0”. The requirement
∆ ≥ maxl∈Σ′

∑
l′∈Σ′ µ(l, l′) is chosen such that all constraints are compatible with each other.

Note that there are no constraints involving the wildcard label l− in this definition: it may
appear as a child of any other label, and it may have any labels as its own children. In particular,
the labeling where the root is unlabeled and all non-root vertices are labeled l− is always a valid
partial solution. We will show in Corollary 4.5 that this labeling is the worst-case instance for
most propagation problems.

Since the input graphs on which these problems are defined are infinite, and since these
problems often produce mends that have infinite volume, we study the volume not in terms of
the total number of modified labels but in terms of the number of modified labels at distance at
most dmax from the hole.

4.2.2 Matrix representation

Let M be a matrix of size |Σ′| × |Σ′| defined as M [l, l′] = µ(l, l′). Observe that the coefficient
Md[l, l′] of the d-th power of M is the tightest lower bound on how many children labeled l′

a vertex labeled l must have at distance d for a complete solution to be accepted. Indeed, by
induction, a vertex labeled l must have at least M [l, l′] children labeled l′ at distance 1; it must
then have at least

∑
l′′∈Σ′ Md[l, l′′]M [l′′, l′] = Md+1[l, l′] children labeled l′ at distance d+1. We

argue in Theorem 4.4 that this provides bounds for ∃MVol.
We write ∥LlM

d∥ := ∑
l′∈Σ′ Md[l, l′], where Ll is the line vector with a 1 only in position

l. We show in Theorem 4.4 that this quantity expresses both upper and lower bounds on the
mending volume up to distance dmax of the propagation problem described by M .

Theorem 4.4 (Mending complexity of a propagation problem). The mending volume up
to distance dmax of a propagation problem represented by M is between

∑dmax
d=0 ∥Ll0M

d∥ and

maxl∈Σ′
∑dmax

d=0 ∥LlM
d∥

Proof. We start with the lower bound. Recall that in the input graph all vertices have degree
exactly ∆. Consider an initial partial labeling λ in which the root is initially unlabeled, and all
other vertices are labeled l−. A mend λ′ of λ at the root will have to be a complete solution, and
thus require the root to be labeled l0. By the previous observation, at distance d, there must
be at least Mp[l0, l

′] vertices in λ′ labeled l′ that must have been modified during the mending.
This way,

∑dmax
d=0 ∥Ll0M

d∥ is a lower bound for how many labels were modified at distance at
most dmax.

We can now show the upper bound. An important characteristic of the family of propagation
problems is that the output of the verifier depends only on a portion of the labels of the children.
Once sufficiently many children are labeled correctly, the remaining ones have no impact. This
means that no initial configuration can force more than Md[l, l′] labels l′ to be added at distance
d from a vertex v labeled l: in the worst case, it suffices to arbitrarily choose M [l, l′] children at
each level for each and color them accordingly while ignoring all the other children. Thus the
worst-case instance has mending cost at distance dmax no more than maxl∈Σ′

∑dmax
d=0 ∥LlM

d∥

Corollary 4.5 (Worst-case instance of a propagation problem). If l0 is such that ∥Ll0M
d∥ =

Ω(maxl∈Σ′∥LlM
d∥) then the initial instance where the root is unlabeled and all other vertices

are labeled l− is the worst-case instance.

The condition for Corollary 4.5 is satisfied at least for problems where all labels are reachable
from l0 in the sense that for every l′ ∈ Σ′ there exists some dl′ for which Mdl′ [l0, l

′] ̸= 0.
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4.2.3 Landscape of the growth rate of matrix exponentiation

In this section, we turn to a study of possible growth rates of the quantity ∥LlM
d∥ introduced

in Section 4.2.2. This quantity is bounded by |Σ′| ×maxl′∈Σ′ Md[l, l′]. In order to determine
the mending volume of a propagation problem, it is sufficient to look at the growth rate as a
function of d of maxl,l′∈Σ′ Md[l, l′]—the greatest coefficient of Md. We will denote it as maxMd.

In the following analysis, we make use of the interpretation of M as the adjacency matrix of
a graph GM . GM is a directed graph with one vertex for each element of Σ′. For every pair
(vl, vl′) there are exactly M [l, l′] directed edges from vl to vl′ . Further, there are Md[l, l′] walks
of length exactly d from vl to vl′ in GM . Let c(l) be the number of cycles in G that contain vl.
We say that a vertex vl is of type 0 (resp. 1 or 2) if c(l) = 0 (resp. c(l) = 1 or c(l) ≥ 2). We will
show that the type of the vertices fully determines the growth rate of |Mp|: if some vertex is
part of several cycles, then there are exponentially many paths of length d from that vertex to
itself. Otherwise, if all vertices are part of at most one cycle, then there are only polynomially
many paths of length d from one vertex to another.

Lemma 4.6. Consider a vertex vl of type 2. It holds that Md[l, l] = Ω((1+β)d) for some β > 0.

Proof. Let C1, C2, . . . be the c(l) distinct cycles that contain vl. Let L1, L2, . . . denote their
lengths respectively, and let L := lcm(L1, L2, . . . ). There are at least c(l) walks of length L from
vl to itself, each following only one of the cycles Cj L/Lj number of times. Hence, for all k,
there are at least c(l)k walks of length d := kL from vl to itself and therefore Md[l, l] ≥ c(l)d/L

walks for infinitely many values of d. Thus Md[l, l] = Ω((c(l)1/L)d).

Corollary 4.7. Let vertex vl be of type 2 and reachable from vl0. Then Md[l0, l] = Ω((1 + β)d)
for some β > 0.

Lemma 4.8. If there is no vertex of type 2 reachable from vl0 then |Md|l0 = O(dk) for some
constant k.

Proof. For each vertex vl, we denote C(l) to be the cluster of vl, defined as follows: C(l) := {l}
if c(l) = 0; otherwise, C(l) := {l′ | vl →∗ vl′ →∗ vl} describes the vertices in the same cycle as vl.
Since c(l) ≤ 1, the clusters form a partition of Σ′. We use K to denote the number of clusters.

Construct G′
M whose vertices are the clusters of GM , by contracting each cluster into a

single vertex while keeping duplicate edges between different clusters, and removing edges inside
a cluster. The resulting graph G′

M is acyclic. Any walk W of length exactly d in GM from vl to
vl′ is uniquely defined by

• a walk W ′ in G′
M from C(l) to C(l′), let C(l) = C1 → C2 → · · · → C|W | = C(l′) be this

walk;

• the length di of the walk within Ci, for each 1 ≤ i ≤ |W | (because no vertex is of type 2,
there is only one such walk for a given length).

Note that d1+ · · ·+ d|W |+(|W | − 1) ≤ d and |W | ≤ K ≤ |Σ′|. There are finitely many walks

W ′ in G′
M and for each of them the number of possible tuples (d1, . . . , d|W |) is bounded by dK .

Thus the number of walks W of length d is polynomially bounded by O(dK).

We observe further that if there is a walk in G′
M that goes through two or more cycles, then

there are at least Ω(d) paths of length d. Whereas if G′
M contains only isolated cycles, then

there are at most O(1) paths of length d. Thus Theorem 4.9 holds.

Theorem 4.9 (Landscape of maxMd). The growth rate of p 7→ max |Md| is either eventually
zero, or Θ(1), or O(d p) for some value p ≥ 1, or Ω((1 + β)d) for some β > 0.
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Problem 2 Generalization of Π to finite and non-∆-regular trees

Input: Any tree
Labels: Same as Π
Task: Any vertex of degree exactly ∆ must satisfy the labeling constraints from Π

Combining these results with the known bounds from Theorem 4.4 stating how to relate the
mending volume to the growth of maxMd, we obtain Corollary 4.10.

Corollary 4.10 (Landscape of the mending volume on infinite rooted trees). The mending
volume up to distance d := log∆ n of a propagation problem is either

• O(1) if maxMd is eventually zero;

• or Θ(log n) if maxMd = Θ(1);

• or O(logk n) for some k > 1 if maxMd = O(d p);

• or Ω(nα) for some 0 < α < 1 if maxMd = Ω((1 + β)d).

This concludes the survey of the landscape of propagation problems on infinite rooted trees.
We found that there are complexity classes O(1), poly(log n) and Ω(nα), with a gap between
ω(log n) and o(log2 n). In Sections 4.4 and 4.5 we will look more closely at the classes of growths
Ω(nα) and Θ(logk n) to show that infinitely many values of α and k can appear.

4.3 Finite and non-regular trees

Some of the presented results from Section 4.2.3 are fortunately applicable to trees even if they
are no longer infinite rooted and regular. Indeed there is a straightforward translation that
transforms a propagation problem on infinite ∆-regular rooted trees into one that has the same
growth properties, but can be defined on finite rooted trees where some vertices are of degree
lower than ∆. This construction is shown in Problem 2.

We now argue that the fact that these trees are finite does not affect the conclusions made
earlier about the possible complexities. The worst-case instance can namely still be constructed as
a balanced finite ∆-regular tree. We prove that (1) randomness does not decrease the performance
and (2) the mending process is just as efficient in the case that the tree is unbalanced as it is in
a balanced tree.

Theorem 4.11 (Generalization to finite unbalanced trees does not change the mending volume
complexity). If Π is a propagation problem, then its generalization Π′ to unbalanced trees has
the same mending volume complexity.

Proof. Assume that we wish to label a tree of size n+1 rooted in v. Each of the ∆ subtrees that
are children of v have size n/∆+ di for 1 ≤ i ≤ ∆ where

∑∆
i=1 di = 0, and we wish to assign a

new labeling to each of them. The growth rate fbal
j (1 ≤ j ≤ δ) of the number of labels that

would need to be modified for a balanced tree is uniquely determined by its assigned root label
li. A key observation is that as fbal

j is defined by some
∑dmax

d=0 ∥LlM
d∥, it is either eventually

zero or eventually convex. The total number of modified labels if the tree was balanced would be

fbal(n+ 1) = 1 +

δ∑

i=1

fbal
i (n/δ).

Assume inductively that the true number of modified labels in any non-balanced tree of
size n′ is less than fbal

j (n′), i.e. that a balanced tree is the worst-case input. Let ci,j denote
this number for the subtree i if it were assigned root label j. The average performance of an

10



algorithm that distributes the required labels randomly among all children with equal probability
is then

c′ = avgσ∈Sδ
1 +

δ∑

i=1

ci,σ(i)

≤ avgσ∈Sδ
1 +

δ∑

i=1

fbal
σ(i)(n/δ + di) induction hypothesis

≤ 1 +
δ∑

i=1

avgσ∈Sδ
fbal
i (n/δ + dσ(i)) reassign indices

≤ 1 +
δ∑

i=1

fbal
i (n/δ) by convexity of all fbal

j

≤ fbal(n+ 1).

The induction hypothesis holds for a balanced tree of size 1. Since the optimal mend has
volume at most the expected volume of a mend picked at random, it follows that the existential
mending volume on unbalanced trees is the same as the existential mending volume on balanced
trees.

4.4 Application: ∃MVol = nΘ(1)

In the following two sections, we show examples of problems that exhibit polynomial and
polylogarithmic complexities, with a particular focus on showing which values of 0 < α < 1 and
k ≥ 1 can appear for complexities Θ(nα) and Θ(logk n).

The prior analysis resulting in Corollary 4.10 suggests that, in order to construct a problem
with volume nΘ(1), we should consider a propagation problem whose matrix M has exponential
growth for d 7→ maxMd. A good candidate is the problem described by M =

(
2

)
for ∆ = 3.

It describes the following problem:

Problem 3 Polynomial propagation

Input: An infinite rooted ∆-regular tree
Labels: red and white
Task: Color the vertices according to the following rules, by order of precedence:

• any labeling is valid for a vertex that does not have exactly 3 children;

• any labels are valid for the children of a vertex labeled white;

• if a vertex is red, it needs at least two of its children to be red;

• the root has to be red.

Using the terminology of Definition 4.3, red is the initial label, and white is the wildcard
label. From the initial labeling consisting of the root being unlabeled and all other vertices being
white, a mend needs to recolor 2d vertices at layer d from white to red. For a balanced ternary
tree, this will produce a total of 2log3 n+1 − 1 recolored vertices, i.e. Θ(nln 2/ ln 3).

We further argue that by slightly adjusting the parameters, we can engineer any rational
power of n: the problem described by M =

(
2p

)
for ∆ = 2q, where q > p > 1, will exhibit

complexity Θ(nln 2p/ ln 2q) = Θ(np/q).
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Figure 2: Mk of size k × k exhibits growth Θ(pk) for the root label l1

4.5 Application: ∃MVol = (logn)Θ(1)

We now show how to construct a problem that has mending volume logk n for any chosen k ≥ 1.
This time, Corollary 4.10 suggests to look for a matrix for which d 7→ maxMd has growth rate
Θ(pk). This is satisfied by the matrix illustrated in Figure 2: its size is k, and it has entries 1
along and immediately above the diagonal, and entries 0 everywhere else. A solution to the
problem described by this matrix has the following form: a path from a leaf to the root is labeled
l0 including both ends. From each vertex labeled l0 there is a path labeled l1 from another leaf,
and so on until each vertex labeled lk−2 being the endpoint of a path labeled lk−1 from a leaf.

5 Algorithmic definitions of volume mending

The mending volume introduced in Definition 4.1 and studied throughout Section 4 does not
consider the complexity of finding a mend. For distributed systems, where no entity has a
complete view of the input graph, a naive algorithm to compute the optimal mend may need
to query an exponential number of vertices compared to how many of them will actually be
relabeled in the end. For such applications, it may be more appropriate to consider alternative
measures of mending where the cost is not just the number of labels that were modified but also
the number of vertices that need to be queried before an algorithm with only local knowledge of
the graph can compute a mend.

5.1 Mending with local knowledge

We will now focus on the process of computing the mend and make sure that each step of
the computation can be completed with only local knowledge. A single-step definition like
Definition 4.1 cannot express such restrictions. Therefore we will introduce a step-by-step
definition of a process that computes a mend.

Such a process should take as input a graph G, an initial partial solution λ, and a hole v
of λ that needs to be mended. We consider the following model describing the knowledge that
the process has access to: initially it only knows W = {v} and the list of its direct neighbors.
Whenever a vertex v′ that is a direct neighbor of W is queried, the process can add v′ to W
and it acquires knowledge of all the neighbors of v′. Thus at each step of the computation, the
process has access to the connected set W of all vertices previously explored, and it can choose
to explore any direct neighbor of W as its next vertex. Such an exploration model is similar to
local computation algorithms discussed in [23] where we can learn the graph by probing it one
node at a time.

The process can stop its exploration whenever the set of explored vertices W contains a
mend in the following sense: there exists a mend of λ at v —λ′— in which only vertices from W
are relabeled, i.e. such that {v′ : λ′(v′) ̸= λ(v′)} ⊆ W . We choose to model this exploration
process with a Markov chain: each state represents a possible value for W . Having explored W ,
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the process may choose that its next vertex to explore should be v′. In this case, the Markov
chain will assign a nonzero probability to the transition W →W ∪ {v′}.

Definition 5.1 (Mender). For an input graph G = (V,E), an initial partial labeling λ, and
a hole v of λ, let MG,λ,v be a Markov chain over P(V ) the subsets of V . We call M a local
mender if the following properties hold for every G,λ, v:

Progress: MG,λ,v(W,W ′) > 0 implies W ⊆W ′.

Termination: MG,λ,v(W,W ) = 1 iff there exists a mend of λ at v contained in W .

Locality: MG,λ,v(W, ·) depends only on NG
1 (W ), i.e. W and its direct neighborhood.

Progress states that the set of explored vertices can only grow from one step to the next,
and termination expresses that the computation will halt as soon as a mend is found. Locality
ensures that at all steps of the computation the information accessible to the mender is exactly
what it has already explored.

Observation 5.2 (MG,λ,v has a stationary distribution). Observe the following:

1. There must exist a mend of λ at v ∈ V , so that V is absorbing. Since all other states
of the Markov chain are subsets of V , the conditions of Termination and Progress from
Definition 5.1 are compatible.

2. All non-absorbing states eventually lead to an absorbing state in finitely many steps with
nonzero probability since there are only finitely many subsets of V and hence finitely many
states.

3. There are no loops involving more than one state.

From the above properties it follows thatMG,λ,v is an absorbing Markov chain, and therefore it
has a stationary distribution that we denoteM∗

G,λ,v.

We call all subsets of V that contain a mend final states. Due to the existence of a stationary distri-
bution, a final state WF is reachable from the initial state W0 if and only ifM∗

G,λ,v(W0,WF ) > 0.

We write FM
G,λ,v(W0) for the set of final states reachable from W0.

In Definition 5.3, we formally define the three notions of mending volume. We therefore use
the formalism of Markov chains developed in Definition 5.1. These mending volume complexities
are defined as measures of the sizes of the elements of FM

G,λ,v(W0), where W0 = {v} the hole to
be mended. For all of these measures we consider the worst-case instance by taking a max over
all possible values of λ and v.

Definition 5.3 (Complexity). Consider a menderM and a graph G. We define the best-case
volume, expected volume, worst-case volume, and radius as measures of FM

G,λ,v({v}):

∃MVol ′(M,G) := max
λ,v

min
{
|WF | : WF ∈ FM

G,λ,v({v})
}

best-case volume

EMVol (M,G) := max
λ,v

∑

WF

M∗
G,λ,v({v} ,WF ) · |WF | expected volume

DMVol (M,G) := max
λ,v

max
{
|WF | : WF ∈ FM

G,λ,v({v})
}

worst-case volume

MRad (M,G) := max
λ,v

min
WF∈FM

G,λ,v(W )
max
w∈WF

d({v} , w) best-case radius

Intuitively, ∃MVol′ (best-case mending volume) is the size of the smallest reachable final
state, EMVol (expected mending volume) is the expected size of an explored set given by the
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probability distribution of the mender, DMVol (deterministic mending volume) is the size of the
largest reachable final state, and MRad (mending radius) is the smallest radius of a final state.

We have also redefined the notion of existential mending volume ∃MVol′ using the formalism
of Markov chains. As suggested by the notation, this measure coincides with ∃MVol introduced
in Definition 4.1. We prove this fact in Lemma A.1 using a straightforward construction of a
Markov chain that explores all possible mends so that the “min” in the definition of ∃MVol′

results in the optimal mend.
The worst-case volume is written DMVol, i.e. Deterministic Mending Volume, because an

equivalent definition of DMVol is to remove all randomness fromM and define DMVol as the
deterministic size of the final state. This connection is explored in detail in Section B.2. The
definition of MRad also coincides with the mending radius introduced in [6], as is shown in
Lemma A.2.

Further, for a function T on integers and a family of input graphs G, we say that Π has
∃MVol′ = O(T ), if there exists M that has performance ∃MVol′(M, Gn) = O(T (n)) on all
Gn ∈ Gn instances of size n. That is, there is a mender which performs at least as well as T
asymptotically. Similarly, we say that Π has ∃MVol′ = Ω(T ) if for allM there exists Gn ∈ Gn
such that ∃MVol′(M, Gn) = Ω(T (n)), i.e., no mender can guarantee performance asymptotically
better than T on all instances. The above notation extends to all combinations of o, O, ω, Ω, Θ
and ∃MVol′, EMVol, DMVol, MRad.

Having concluded the definitions, we will next lay some foundations for a rough landscape of
the existing mending complexities, extended with the new measures introduced in Definition 5.3.
The first step will be to establish the hierarchy between all the measures of complexity introduced
previously, and to handle some simple cases such as the setting of paths and cycles.

5.2 Hierarchy of complexities

We first establish that MRad ≤ 2r × ∃MVol, where r is the radius of the local verifier that
defines the problem Π. Consider an initial labeling λ, and a mend of λ at v called λ′. Denote
D = {v : λ(v) ̸= λ′(v)} the set of relabeled vertices. We argue that NG

r (D) is connected.
Assume the opposite, and consider a maximal subset of D denoted D′ that does not contain v
where NG

r (D′) is connected. Construct a new labeling λ′′ as follows

λ′′ : x 7→
{

λ(x) if x ∈ D′

λ′(x) otherwise.

Observe that λ′ is a valid partial labeling: for every vertex, its neighborhood in λ′′ is identical
to its neighborhood either in λ or in λ′. In addition, λ′′ coincides with λ′ over the neighborhood
of v. It is therefore a mend of λ at v. Since λ′′ coincides with λ over D′, it modifies fewer labels
than λ′. This shows that λ′ is not minimal.

Therefore if λ′ is a minimal mend then the radius-r neighborhood of the vertices it relabels
is connected. By definition, any mend modifies a label at distance at least MRad, therefore it
must also modify at least one label every distance 2r on a path from v to distance at least MRad.
This shows MRad ≤ 2r × ∃MVol.

Observe further that there is an easy strategy to ensure that DMVol ≤ |NMRad|: consider a
naive menderM that always selects the next step to be the neighborhood of the current state
with probability 1, i.e. MG,λ,v(W,NG

1 (W )) = 1. By construction, it will halt after MRad steps
on the final state NG

MRad({v}) since by definition the radius-MRad neighborhood always contains
a mend. Using the minimum, the expectation, and the maximum in Definition 5.3 leads to
obvious inequalities ∃MVol′ ≤ EMVol ≤ DMVol.

These observations provide the following hierarchy of mending complexities (we ignore
constant multiplicative factors here):

MRad ≤ ∃MVol ≤ EMVol ≤ DMVol ≤ |NMRad| (1)
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As shown in [6], the mending radius can only exhibit complexities on trees that are O(1),
Θ(log n), or Θ(n), and this is further restricted to O(1) or Θ(n) on paths and cycles. Since our
definition of MRad is equivalent, the same gaps hold. In the following settings, the hierarchy
from Equation 1 collapses:

• if MRad is Θ(n), so are all the other greater measures;

• if MRad is O(1), then |NMRad| is also O(1) and also all the smaller measures.

Hence the landscape is only diverse when the MRad is logarithmic and the other measures are
between Ω(log n) and O(n). In Section 5.3, we will exhibit separations between these measures
on trees. They will necessarily rely on problems that have radius Θ(log n) since no separations
exist otherwise.

5.3 Separations

Equation 1 shows a chain of inequalities between the different measures of mending that we have
introduced. We can complement this equation by showing that all measures we have introduced
are distinct from each other. This is done by proving that well-chosen LCL problems and classes
of graphs feature separations between these measures: on some instance, one measure of mending
is arbitrarily smaller than another.

In Section 5.3.1 we show that EMVol is distinct from DMVol, and in Section 5.3.2 we show
that ∃MVol is distinct from EMVol. These results are complemented by Section A in which we
show that

• DMVol is distinct from |NMRad| on balanced trees (Section A.2);

• MRad is distinct from ∃MVol using propagation problems (Section A.3);

• ∃MVol is distinct from EMVol (Section A.4); in this case, the separation does not rely on a
promise unlike in Section 5.3.2, but it only works on general graphs instead of trees.

5.3.1 EMVol is distinct from DMVol on trees and general graphs

Most propagation problems described in Section 4—for example the one with polynomial
complexity from Section 4.4—feature a separation between EMVol and DMVol when executed on
finite trees that are not necessarily balanced. Indeed when mending such a propagation problem
on an unbalanced tree, the expected mending volume is the same as the existential mending
volume as proved in Section 4.3. However there is no way to deterministically guarantee that
the subtree explored is not a very unbalanced one, which could have size up to Θ(n). This way,
we have already shown several examples of problems with expected mending volume o(n) but
deterministic mending volume Θ(n).

5.3.2 ∃MVol is distinct from EMVol on trees with a global promise

For this separation, we again resort to a promise. In fact we conjecture that on non-promise
families of trees ∃MVol is equivalent to EMVol. The promise is as follows: we guarantee that the
input tree is balanced and that there exists at least one vertex with a degree of exactly 2. The
chosen problem is described in Problem 4.

A solution to this problem requires finding a specific vertex of a tree that has degree 2. Even
with access to randomness, there is no algorithm that can guarantee to find such a vertex in
fewer than Θ(n) queries. On the other hand, if there is a guarantee that such a vertex exists,
then it is at distance O(log n) and can easily be found if one has access to a complete view of
the graph. These properties make the EMVol linear, while the ∃MVol as well as the MRad are
only logarithmic.
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Problem 4 Degree-2 sink

Input: A balanced tree with at least one vertex of degree exactly 2
Labels: Orientations of the edges
Task: Orient the edges so that vertices have out-degree 0 only if they have degree exactly 2.

As mentioned earlier, a similar separation result between ∃MVol and EMVol is developed in
Section A.4. It uses general graphs instead of trees, but it also does not need to rely on a global
promise unlike the separation on trees shown here.
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[11] Johanne Cohen, Laurence Pilard, Mikaël Rabie, and Jonas Sénizergues. Making Self-
Stabilizing any Locally Greedy Problem, 2022. doi:10.48550/ARXIV.2208.14700.

[12] Philippe Galinier and Alain Hertz. A survey of local search methods for graph coloring.
Computers & Operations Research, 33(9):2547–2562, 2006. Part Special Issue: Anniversary
Focused Issue of Computers & Operations Research on Tabu Search. doi:10.1016/j.cor.
2005.07.028.
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A Separations

As announced in Section 5.3 we complement Equation 1 by proving separations between the
different measures of mending featured, as well as some equivalences between different definitions
of the same measure.

A.1 Equivalent definitions

The study of the landscape of the different measures of mending in Section 5.2 assumes some
equivalences between different definitions of the same measure. In particular we must prove
that ∃MVol introduced in Definition 4.1 is asymptotically equivalent to ∃MVol′ introduced in
Definition 5.3. We must also show that MRad from Definition 5.3 is equivalent to the notion of
mending radius defined in [6].

The usage of “min” in the definitions of ∃MVol′ and MRad suggests that as long as a process
explores sufficiently many configurations, it will have ∃MVol′ and MRad close to the optimum. In
particular, a mender that has all subsets as its reachable final states has the minimum possible
size of a set that contains a mend as ∃MVol′, and the minimum radius as MRad. Note that there
exists such a mender, for example a mender that always explores one neighbor of its current
explored set with equal probability.

Lemma A.1 (Equivalence of ∃MVol and ∃MVol′). ∃MVol is asymptotically equivalent to ∃MVol′.

Proof. We can easily show ∃MVol = O(∃MVol′): ∃MVol is the minimum size of a mend, while
∃MVol′ is the minimum size of a connected set that contains a mend.

Reciprocally by the same argument as in Section 5.2, the radius-r neighborhood of the set of
relabeled vertices is connected, and it thus is of greater size than the set whose size is measured
by ∃MVol′. Thus ∃MVol′ ≤ ∆r × ∃MVol.

Lemma A.2 (MRad is the mending radius). MRad defined in Definition 5.3 is equivalent to the
mending radius defined in [6].

Proof. Assuming that all connected subsets of V are reachable states of the mender, MRad is
then by definition the minimum radius of a mend.

A.2 DMVol is distinct from |NMRad| on balanced trees

As we will show later in Theorem B.2, the DMVol exhibits very few different complexities on
trees, and it is always asymptotically of the same size as NMRad. As such a separation between
DMVol and |NMRad| needs to rely on a promise on the structure of the graph. A sufficient
promise is that the input tree is a balanced binary tree. We will consider the problem of sinkless
orientation, defined in Problem 5. Note that the verifier has radius 1, where valid configurations
are those where either the vertex has at most one neighbor, or it has out-degree at least 1. A
mending procedure works as follows: starting from the initial hole, explore exactly one path
to any leaf. This path can be mended simply by ensuring that all of its edges are directed
towards the leaf. Since any leaf is acceptable, the explored path can be computed locally in a
deterministic manner, and it has size O(log n) as all leaves are at an at most logarithmic distance
from the hole.

Problem 5 Sinkless orientation on balanced trees

Input: A balanced binary tree
Labels: Orientations of the edges
Task: Orient the edges so that all vertices with degree at least 2 have out-degree at least 1.
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A worst-case instance is one where all edges are oriented towards the hole and labeling the
hole would produce a sink. This case can require that at least the path from the hole to the
nearest leaf is relabeled, which produces a mending radius of at least Ω(log n) if all leaves are at
an at least logarithmic distance from the hole.

Thus sinkless orientation on balanced trees has DMVol(Π) = Θ(log n) whereas |NMRad| =
Θ(n)

A.3 MRad is distinct from ∃MVol on trees and general graphs

In Sections 4.5 and 4.4 we have constructed problems that exhibit ∃MVol either Θ(logk n) or
Θ(nα) while having MRad = Θ(log n). These problems illustrate a separation between MRad
and ∃MVol.

A.4 Separating EMVol from ∃MVol without a promise

We observed that EMVol is equal to ∃MVol in the case of propagation problems on both finite
and infinite rooted trees. We will next show that EMVol and ∃MVol can be separated in general
graphs. We will therefore construct a family of directed graphs and a simple problem that
together lead to existential mending volume complexity ∃MVol = O(log n) and expected mending
volume complexity EMVol = ω(log n). We then show that this family of graphs can be extended
to all undirected graphs while preserving the upper bound on ∃MVol. This construction will
also naturally preserve the lower bound on EMVol.

A.4.1 Problem description

We first define the family of graphs T =
⋃

h∈N Th built by adding horizontal layers to a tree
skeleton in the following way.

Definition A.3 (T ). Start with the balanced binary rooted tree th that has height h+ 1 for
any h ∈ N. We will assign coordinates to each of the vertices, consisting of the distance from
the root and the horizontal index. The root gets coordinate (0, 0) and the children of (i, j) are
assigned coordinates {(i+ 1, 2j), (i+ 1, 2j + 1)}.

We add an undirected edge between the sibling vertices (i, j)− (i, j + 1) for every 0 ≤ i < h
and 0 ≤ j < 2i − 1. Additionally, consider a vertex (h, j0) on the bottom layer for some
0 ≤ j0 < 2i and add a directed edge from (h, j) → (h, j + 1) for every 0 ≤ j < j0 and from
(h, j)← (h, j + 1) for every j0 ≤ j < 2i − 1.

This way, the pair (h, j0) uniquely defines one graph th,j0 with h layers and all edges on the
bottom layer pointing towards the vertex at position j0. We call the vertex (h, j0) the sink of
th,j0 .

The infinite family of graphs T is then defined as T :=
⋃

h∈N Th =
⋃

h∈N
{
th,j0 | 0 ≤ j0 < 2h

}
.

One such graph is illustrated in Figure 3, with a height of 5 and a sink at position 4.
For this family of graphs T , we define Problem 6. Observe that for any graph of T , there

is exactly one coloring that is complete and satisfies the labeling constraints from Problem 6.

Problem 6 Path to the sink

Input: Some th,j0 ∈ T
Labels: red and black
Task: Color the vertices so that

• the root is red

• any red vertex that is not the sink has at least one red child.
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Figure 3: A visualization of a t5,4. Elements of T are entirely characterized by their height (here 5) and
the position of the sink (marked red at position 4). The t5,4 features a skeleton in the form of a balanced
binary oriented tree, to which horizontal unoriented links (in blue) are added. On the bottom layer, there
are oriented edges (in red) towards the sink.

This case is visualized in Figure 4a for the input graph t5,4. In this coloring, all vertices are
colored white except for the unique path from the root to the sink. Note that there are many
valid incomplete labelings as visualized in Figures 4b–4d. If some leaves are unlabeled, then the
vertices above them can be colored red, and if the root is unlabeled then the entire graph can be
colored black.

We will show in Sections A.4.2 and A.4.4 that this problem has logarithmic ∃MVol, yet its
EMVol is ω(log n). We conjecture the complexity of EMVol to even be Ω(log2 n). This shows
that ∃MVol and EMVol are distinct from each other on oriented graphs, which is a separation
that is not observed on trees and proven to not exist on rooted trees. This result extends to
unoriented graphs thanks to an encoding of oriented graphs described in Section A.5.

A.4.2 Study of ∃MVol

We now show that Problem 6 has logarithmic ∃MVol. A mending algorithm that uses a complete
view of the graph to compute a mend with volume O(log n) is described in Algorithm 1.

Lemma A.4 (Algorithm 1 is correct). When Algorithm 1 terminates, λ is a valid mend of the
initial input labeling.

Proof. Observe that Algorithm 1 immediately assigns a label to the hole that it mends, and
it never writes a ⊥ label. Therefore Algorithm 1 is correct if and only if it outputs a valid
labeling. An invariant of Algorithm 1 is that at the beginning of any iteration of the main loop,
all vertices other than current have a valid labeling.

This invariant is preserved: recoloring the current vertex black makes current correctly labeled,
and can at most introduce an incompatibility in the labeling of its parent. In such a case, we
immediately perform current ← parent which restores the invariant. The situations in which
relabeling current does not introduce an inconsistency in the neighborhood of parent are the
following: parent is already black, or parent is red and it has another red child. In these situations,
the execution terminates with a valid labeling.

Phase 2 is only ever reached in the following situation: current is labeled red with two black
children, the sink is one of its descendants, and all vertices other than current are correctly
labeled. In this situation, relabeling a path from current to the sink to red restores all labeling
constraints and results in a valid mend.

Both phases terminate in no more than 2h = 2 log2 n relabeling steps and thus the problem
has ∃MVol = O(log n).
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(a) The unique valid complete labeling of t5,4

(b) Partial coloring where all nodes are black besides
the uncolored root.

(c) Partial coloring with one red path down to a
child. (d) Partial coloring with several red subtrees.

Figure 4: Example of four possible colorings of t5,4.

A.4.3 Simulating the problem in general oriented graphs

We now transfer the problem to work on general graphs without any promise on the structure of
the input. As a first step, we will keep the orientation and assume that the directed edges as
well as the parent-child relationship are part of the graph. We first show that the class T from
Definition A.3 can be defined by local constraints on directed graphs. These constraints are
listed in Problem 7: the graphs that satisfy all of these constraints are exactly the elements of T .

We call a vertex broken if it does not satisfy all the constraints from Problem 7. A (sub)graph
that has no broken vertices is called well-formed. Note that all graphs of T are well-formed.
Conversely, a non-empty well-formed graph is in T , as shown by the construction illustrated in
Figure 5. Constraints 1a and 1b from Problem 7 guarantee that the graph has a binary tree
structure, though it is not yet guaranteed to be balanced. Constraints 2b and 2c impose a
unique way of adding edges between sibling vertices, and guarantee that the tree is balanced.
The resulting structure can no longer be modified: 2a forbids any additional sibling of the
root (shown in red in Figure 5d); 2a’ similarly prevents internal vertices from having additional
siblings (shown in yellow); finally there are no available vertices that could be siblings of the
vertices on the border (shown in blue) because of constraints 2c and 2c’. Constraints 3a and 3b
then impose an orientation of the edges between sibling vertices of the bottom layer once a sink
is chosen.

It should be noted that a well-formed subgraph is not necessarily in T . Any subgraph of
a well-formed graph is well-formed, and there are many proper subgraphs from graphs of T
that are not themselves in T . However, for any well-formed subgraph G′ ⊆ G, there exists a
th′,j′0

∈ T of which G′ is a subgraph.
In general graphs, we extend the problem so that graphs outside of T can also be labeled.

In addition to the previous labeling rules from Problem 6, any labeling is valid for a vertex that
is broken (see Problem 8).

Lemma A.5 (Preservation of ∃MVol on oriented graphs). Problem 8 has the same existential
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Algorithm 1 Mending procedure of Problem 6

1: Input
2: t input graph from T
3: λ initial labeling
4: v hole of λ
5: current← v
6: Phase 1
7: loop
8: λ(current)← black
9: parent← parent of current

10: other← other child of parent
11: if λ(parent) = black or λ(parent) = ⊥ or λ(parent) = λ(other) = red then
12: return
13: else if the sink is a descendant of parent then
14: current← parent
15: go to Phase 2
16: else
17: current← parent
18: end if
19: end loop
20: Phase 2
21: Recolor red a path from current to the sink

mending volume as Problem 6, namely Θ(log n).

Proof. The key property to the preservation of ∃MVol = O(log n) is the following: for any vertex,
there exists a vertex at distance O(log n) that is either a sink or broken.

A modified version of Algorithm 1 where “the sink is a descendant of parent” is replaced
with “the sink or a broken vertex is a descendant of parent” terminates when a sink or a broken
vertex is found, and it leaves a valid labeling.

We now argue that it terminates in time O(log n). If no sink or broken vertex is found among
the descendants, then it implies the existence of a balanced binary tree of non-broken vertices
rooted at the current vertex. Each time we move to the parent of the current vertex, the size
of the corresponding tree doubles. Thus only O(log n) many iterations can be done before the
size of such a tree would exceed the total number of available vertices, and thus after O(log n)

Problem 7 Structural constraints for T
In a graph with some oriented edges, given a vertex v, we define the following constraints

1a. v has either zero or one parent u and there is an edge u→ v
1b. v has either zero or two children u1, u2 and there are edges v → ui
2a. v has no siblings if and only if it has no parent
2a’. v has exactly one sibling only if its parent has exactly one sibling
2a”. v has no more than two siblings
2b. if v has children then they are siblings
2c. if v has children v1 and v2 and u is a sibling of v, then u has children u1 and u2 and exactly

one of u1 or u2 is linked to exactly one of v1 or v2
2c’ if v is a sibling of u then either they have the same parent, or their parents are siblings
3a. the edges of v to its siblings are oriented if and only if v has no children
3b. v does not have edges oriented outwards to both of its siblings
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(a) Step 1 – apply constraints 1a and 1b (b) Step 2 – apply constraint 2b

(c) Step 3 – apply constraint 2c (d) Step 4 – no more links can be added

Figure 5: The construction of a well-formed graph results in a th,j0 : at each step of the construction,
there is only a single way to add edges in a way that satisfies the imposed local constraints.

Problem 8 Path to the sink – oriented graphs

Input: An oriented graph with a parent-child relationship
Labels: red and black (same as in Problem 6)
Task: Vertices that satisfy all structural constraints from Problem 7 must also satisfy the

labeling constraints from Problem 6

iterations there has to be either a sink or a broken vertex among the descendants of the current
vertex. Once there is such a descendant, it must be at distance O(log n).

Therefore Problem 8 has ∃MVol = O(log n) in general oriented graphs. Section A.5 will
further strengthen this result by showing that the orientation can be encoded in unoriented
graphs. A similar technique can be applied to eliminate the need for the parent-child relation in
the input graph.

A.4.4 Study of EMVol

We consider an arbitrary algorithm that relies on randomness and its local view of the graph in
order to find a mend. Throughout this study, we assume that the graph is among Th. Assuming
a graph of this structure, the performance of the algorithm is at least as good as the performance
if such an assumption is not available. Note that any mend of the worst-case initial configuration,
i.e., a configuration which consists of an unlabeled root and where all other vertices are black,
must contain a path from the root to the sink that has to be recolored. Hence any algorithm
that computes a mend must be able to find the sink. We show that the simple fact of finding
the sink is a problem that cannot be solved in O(log n).

Consider an execution of the algorithm as the sequence of all explored vertices, and call the
subsequence corresponding to the interval between the visit of two vertices at the bottom layer
a query. Since the vertices of the bottom layer are the only vertices holding information on the
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Algorithm 2 Generic structure of any algorithm for finding the sink in a graph of T
1: Input
2: t input graph from T
3: h height of t

4: low← 1; high← 2h

5: while low < high do
6: choose low ≤ l ≤ high
7: query l by exploring a path from any already explored vertex
8: if the right edge of l is oriented away from l then ▷ the sink is right of l
9: low← l

10: else if the left edge of l is oriented away from l then ▷ the sink is left of l
11: high← l
12: else ▷ the sink is l
13: low, high← l
14: end if
15: end while

position of the sink, the algorithm can be assumed to have a binary-search-like structure as
presented in Algorithm 2.

Algorithm 2 describes a generic structure that fits any optimal algorithm able to find the sink
in a graph from the family T . Indeed since the only information about the position of the sink
is recorded in the orientation of the edges on the bottom layer, the algorithm will necessarily
explore a certain number of vertices from the bottom layer before it finds the sink. We can
further assume that if the algorithm is optimal then it performs no useless query, i.e. if the
algorithm has already determined that the sink is right of a certain vertex l then it will never
again query vertices left of l.

We will separate the queries into two categories.

Definition A.6 (Short and long queries). In Algorithm 2, if vertex l is queried while min(high−
l, l − low) < h, we call the query short. Otherwise, we call the query long.

We consider the following loose bounds: if there are k candidates for vertices that could be
the sink (i.e. high− low = k), then a long query requires the exploration of at least ω(1) vertices
and by performing it, it eliminates at most n/2 vertices from the list of candidates to be the
sink; a short query requires the exploration of at least Ω(1) vertices, and, in the worst case, it
eliminates at most h vertices from the list of candidates.

We show that no matter the order in which the algorithm performs long and short queries, it
cannot guarantee to find the sink before exploring at least ω(log n) vertices.

Lemma A.7. If Algorithm 2 performs only long queries and explores O(log n) vertices, then it
can eliminate at most O(n1/4) of the candidates to be the sink.

Proof. Considering that each long query requires the exploration of ω(1) vertices, the algorithm
cannot perform more than o(log n) of these long queries before it exceeds the O(log n) limit
placed on the total number of explored vertices. Write (log n)/f(n) for the amount of long
queries performed, with f(n)→ +∞ when n→ +∞. These long queries reduce the number of
candidates by a factor at most 2(logn)/f(n) = n1/f(n). It follows that after all long queries have
been performed there still remain Ω(n1−1/f(n)) candidates for the sink, which can be bounded
from below by Ω(nα) for any 0 < α < 1. For example, picking α = 3/4 provides the statement
from Lemma A.7.

In the following, we will show a lower bound on the number of short queries:
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Theorem A.8. Algorithm 2 must explore at least ω(log n) vertices in order to find the sink.

Proof. After performing a certain number of long queries as analyzed in Lemma A.7, the
algorithm may no longer use long queries, and it only has access to short queries to find the sink
among n3/4 candidates. Assume a worst-case execution: each time the algorithm performs a
query, the sink is revealed to be in the biggest of the two halves – and halt this execution when
there are n1/4 remaining candidates. To get to this point, there must have been at least

n3/4 − n1/4

logN

queries performed. Observe further that the probability that such a worst-case occurs is the
probability that the actual sink is among the remaining n1/4 vertices. This worst-case execution
alone causes at least

n3/4 − n1/4

log n

n1/4

n3/4
=

n1/4

log n
(1 + o(1)) = ω(log n)

vertices to be explored on average. The total cost on average is at least as high as the weighted
cost attributed solely to a few worst-case instances. Hence the entire algorithm cannot find the
sink without exploring at least ω(log n) vertices on average.

Thus Theorem A.8 shows that no algorithm can find a mend for Problem 6 with expected
volume O(log n). Since we have shown in Section A.4.2 that the ∃MVol is Θ(log n), this shows a
separation between ∃MVol and EMVol. Sections A.4.3 and A.5 show that unlike the separation
shown in Section 5.3.2, this one does not need to rely on a promise.

This proves that there is a separation between ∃MVol and EMVol, since we have constructed
a problem that one can solve by modifying O(log n) labels with a complete view of the graph
and yet requires ω(log n) queries when one only has access to randomness.

Note that many of the bounds we have used here are very loose, most notably the actual
cost of a long query is estimated to be Ω(log logN) rather than ω(1). In practice, the average
number of vertices visited seems to be closer to Ω(log2N), even assuming that the tree has the
correct structure. Further, it is not clear whether a randomized algorithm could even achieve
such a bound if it also had to take into account inputs that do not satisfy the local constraints
of T .

A.5 Extension to unoriented graphs

The results from Sections A.4.2 and A.4.4 extend to unoriented graphs simply by encoding the
orientation within the structure of the graph. One possible encoding of the orientation is the
following: given an unoriented graph G, let leaves be the vertices with degree exactly 1. To
interpret G as an oriented graph G with maximum degree ∆, extract the subset V of vertices
that have at least ∆+1 leaves as neighbors. This provides the vertex set of G. An edge between
u and v is added if between the corresponding vertices u and v in G, there is a path of length
exactly 2, connected to at most one leaf. If there is such a leaf on the vertex of the path closest
to u, consider the edge oriented from v to u. Otherwise, if there is no leaf then the edge is not
oriented. Figure 6 visualizes this transformation.

A labeling λ of G is interpreted as a labeling λ of G by defining λ(v) := λ(v). Any local
property of λ can be computed locally on λ. Problem 9 shows how this encoding can be used to
define a version of Problem 6 that works on unoriented graphs.

B Landscape of mending volume

Table 1 provides an overview of the landscape only for the existential mending volume. We
can perform the same work for the other measures that we have defined, which provides the
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Problem 9 Path to the sink – unoriented graphs

Input: An unoriented graph G
Labels: red and black (same as in Problem 6 and Problem 8)
Task: Label G by λ so that λ is a labeling of G that satisfies the constraints of Problem 8

u uvv

v u v u

Figure 6: Oriented interpretation of an unoriented graph. Top: pairs of vertices in G; bottom: their
interpretation in G. This mapping can be computed locally.

results summarized in Tables 3a-3c. The results for the mending radius follow immediately from
Lemma A.2 which makes the results from [6] applicable to MRad.

B.1 Landscape of EMVol

The proof of Theorem 4.11 shows that for propagation problems, the expected mending volume
is equivalent to the existential mending volume. The same constructions apply to encode
complexity results obtained in infinite rooted trees to general trees and general graphs.

Although we have provided a problem for which ∃MVol = o(EMVol) in Section A.4, this does
not imply that the possible complexities are different, merely that they are obtained for different
problems. We conjecture that Problem 6 has EMVol = Θ(log2 n), which is a complexity that
exists for the ∃MVol on other problems.

Thus to the best of our knowledge, EMVol exhibits the same possible complexities as ∃MVol.

B.2 Landscape of DMVol

The DMVol from Definition 5.3 can be shown to be a deterministic volume. Indeed if all transition
probabilities areMG,λ,v(W,W ′) ∈ {0, 1} then so isM∗

G,λ,v({v} ,W ) ∈ {0, 1}. The Markov chain
collapses to a deterministic computational process that decides which vertices to explore next.

Our goal is to show that DMVol is either O(1) or Θ(n) on most classes of graphs. This is
stated by Theorem B.2.

We first prove that knowledge of the size of the instance does not increase the computational
power. This means that the definition is equivalent to its variant where the next step chosen by
M can depend on the size of the input graph, n. This invariance under the size of the instance
is essential for Theorem B.2.

Lemma B.1 (Knowledge of the size of the instance is useless). The version DMVol′ of the
deterministic volume whereMG,λ,v can depend on n the size of the instance is asymptotically
equivalent to DMVol.

Proof. This proof uses a similar technique to one featured in [17]: if an upper bound on the size
of the instance is necessary for the execution of the algorithm, we can simulate the algorithm
by guessing increasingly large values of the size of the instance until the algorithm executes
correctly.

Assume that a problem has DMVol′ = Θ(g(n)) where n is known to the menderM. Assume
further that g is upper bounded by some known f , where f is computable and increasing function.
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Table 3: An overview of the landscape of the existential mending volume (∃MVol), the expected mending
volume (EMVol), the deterministic mending volume (DMVol), and the mending radius (MRad) for LCL
problems on the classes of paths, trees and general graphs. Here ✓ denotes that LCL problems with this
mending volume exist, × denotes that such LCL problems cannot exist, and ? denotes an open question.
We assume k > 1 and 0 < α < 1.

(a) Landscape of ∃MVol and EMVol

Setting Possible existential and expected mending volumes

O(1) . . . Θ(log n) Θ(logk n) . . . Θ(nα) Θ(n)

Paths and cycles ✓ × × × × × ✓
Rooted trees ✓ × ✓ ✓ × ✓ ✓
Trees ✓ × ✓ ✓ ? ✓ ✓
General graphs ✓ × ✓ ✓ ? ✓ ✓

(b) Landscape of DMVol

Setting Possible deterministic mending volumes

O(1) . . . Θ(log n) Θ(logk n) . . . Θ(nα) Θ(n)

Paths and cycles ✓ × × × × × ✓
Rooted trees ✓ × × × × × ✓
Trees ✓ × × × × × ✓
General graphs ✓ × × × × × ✓

(c) Landscape of MRad

Setting Possible mending radius

O(1) . . . Θ(log n) Θ(logk n) . . . Θ(nα) Θ(n)

Paths and cycles ✓ × × × × × ✓
Rooted trees ✓ × ✓ × × × ✓
Trees ✓ × ✓ × × × ✓
General graphs ✓ × ✓ ? ? ✓ ✓

Let f−1(y) be the single value x such that f(x− 1) < y ≤ f(x). Note that this is computable as
well. Algorithm 3 presents a strategy that computes a mend of λ at x without the knowledge of
n, by guessing the size of the graph by successively increasing it.

The main loop from Algorithm 3 must terminate since, eventually, m ≥ n, and a mend is
found for the first such m. Let m0,m1, . . . ,mk be the successive values of m at each iteration.
Observe that f(mi+1) ≥ 2 · f(mi) + 1. Thus at each iteration the new explored vertices are as
many as all previously visited vertices, so the total number of vertices explored does not exceed

2× f(mk) ≤ 4 · f(mk−1) ▷ by definition of mi

≤ 4 · f(n). ▷ since f is increasing

Thus, only at a cost of a constant multiplicative factor, we can execute an algorithm that requires
the knowledge of n in a context where n is unknown. Or equivalently, where the result must be
independent of n. This means, that the mend computed by DMVol′ is independent of the size of
the graph and thus equivalent to DMVol.

We can now establish a complete landscape of the deterministic mending volume in Theo-
rem B.2.
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Algorithm 3 A simulation without knowledge of the size of the graph
1: m← 1
2: repeat
3: simulate an algorithm A computing DMVol′ assuming size m
4: if DMVol′ explores more than f(m) + 1 vertices then
5: abort the simulation
6: m← f−1(2 · f(m))
7: end if
8: until A halts naturally

Theorem B.2 (DMVol is trivial). For any problem on paths, trees, or general graphs, DMVol is
either Θ(1) or Θ(n).

Proof. Assume that DMVol = ω(1), then there is a sequence (Gi)i∈N of graphs for which there
are eventually arbitrarily many labels that are modified by the deterministic mender: |Mi| → ∞
as i → ∞, where Mi is the set of vertices of Gi whose label is modified. Define Ni to be the
radius-r neighborhood of Mi, and note that the size of Ni is at most |Mi| ×∆r. Since Ni is
indistinguishable from Gi on all radius-r neighborhoods of elements of Mi, the same mending
process operating on Ni will also explore exactly Mi. Hence for the sequence (Ni)i∈N of graphs
of arbitrary size, the mend is of size at least

|Mi| ≥
|Ni|
∆r

= Ω(n).

This proves a gap in deterministic volume: on the usual classes of paths, cycles, trees, and
general graphs, there exists no problem with DMVol between ω(1) and o(n).

Corollary B.3 (A deterministic mender explores the entire neighborhood). DMVol is asymp-
totically equivalent to |NMRad|.

Proof. From [6] and the equivalence established in Lemma A.2, we know that MRad can only be
one of Θ(1) or Θ(n) on paths and cycles, and Θ(1) or Θ(log n) or Θ(n) on trees.

If MRad is Θ(1) then DMVol is Θ(1) as well. If MRad is Θ(log n) or Θ(n) then DMVol is Θ(n).
In paths, cycles, and trees, these are also the sizes of the neighborhoods of radius MRad.
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