Mending Partial Solutions with Few Changes

Darya Melnyk ${ }^{1}$ and Jukka Suomela ${ }^{1}$ and Neven Villani ${ }^{1,2}$
${ }^{1}$ Aalto University, Espoo, Finland
${ }^{2}$ ENS Paris-Saclay, Université Paris-Saclay, France

OPODIS 2022, December 14th, UCLouvain

école

 normale
Fixing a partial solution

Partial 4-coloring:

- 4 colors + unlabeled
- no two adjacent vertices of the same color
- anything is allowed next to an unlabeled vertex

Fixing a partial solution

Impossible to complete the partial solution : no color available for the unlabeled vertex

Fixing a partial solution

Erase some labels...

Fixing a partial solution

...then recolor.

Number of erased labels \rightarrow volume of the mend

Greatest distance to erased label \rightarrow radius of the mend

Fixing a partial solution

Mend with volume 5 and radius 4

LCL problems (Locally Checkable Labelings)

- input is a graph $G=(V, E)$
- assign to each vertex v a label $\lambda(v) \in \Sigma$
- φ a verifier is local with radius r
- all labeled neighborhoods $\mathcal{N}_{r}(v)$ must be accepted by φ

LCL problems (Locally Checkable Labelings)

LCLs: n-vertex-coloring, n-edge-coloring, sinkless orientation, maximal independent set, minimal edge cover
Not LCLs: maximum independent set, minimum cut, tree height

Partial solutions of LCLs

- fresh label \perp : "unlabeled"
- any neighborhood that contains \perp is accepted

Mending LCLs

For an LCL problem Π,
An instance of a mending problem is (G, λ, u)

- G is a graph
- λ is a partial solution on G
- u is unlabeled in λ

Task: produce λ^{\prime}

- λ^{\prime} must be a partial solution
- u must be labeled in λ^{\prime}
- λ^{\prime} must not introduce new unlabeled vertices
- λ^{\prime} should minimize the cost $\left|\left\{v: \perp \neq \lambda(v) \neq \lambda^{\prime}(v)\right\}\right|$

The mending volume of a problem is the optimal cost of the worst-case instance

Why mend ?

Studied a lot: given an LCL, how hard is it to solve it ?
Our question: given an LCL, how hard is it to mend it ?

Why mend ?

Studied a lot: given an LCL, how hard is it to solve it ? Our question: given an LCL, how hard is it to mend it ?

For distributed systems

- less costly than to compute a new solution from scratch
- less disruption

Why mend ?

Studied a lot: given an LCL, how hard is it to solve it ?
Our question: given an LCL, how hard is it to mend it ?

For distributed systems

- less costly than to compute a new solution from scratch
- less disruption

For centralized parallel algorithms

- mending procedure provides sequential solving algorithm
- efficient mendability implies efficient parallel solvability

Prior work: landscape of the mending radius

Landscape of the mending radius

From "Local Mending" (2021) by A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela; https://arxiv.org/abs/2102.08703

Prior work: landscape of the mending radius

Setting	$O(1)$		$\Theta(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths, Cycles	\checkmark	\times	\times	\times	\times	\checkmark

Landscape of the mending radius

From "Local Mending" (2021) by A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela; https://arxiv.org/abs/2102.08703

Prior work: landscape of the mending radius

Setting	$O(1)$		$\Theta(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths, Cycles	\checkmark	\times	\times	\times	\times	\checkmark
Trees	\checkmark	\times	\checkmark	\times	\times	\checkmark
Landscape of the mending radius						

From "Local Mending" (2021) by A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela; https://arxiv.org/abs/2102.08703

Prior work: landscape of the mending radius

Setting	$O(1)$		$\Theta(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths, Cycles	\checkmark	\times	\times	\times	\times	\checkmark
Trees	\checkmark	\times	\checkmark	\times	\times	\checkmark
General graphs	\checkmark	\times	\checkmark	$?$	\checkmark	\checkmark

Landscape of the mending radius

From "Local Mending" (2021) by A. Balliu, J. Hirvonen, D. Melnyk, D. Olivetti, J. Rybicki, J. Suomela; https://arxiv.org/abs/2102.08703

Same radius, different volumes

On rooted binary trees:

- $\Sigma=\{$ red, white $\}$
- root must be red
- a red vertex must have i red children

Radius ?
Volume?

Same radius, different volumes

On rooted binary trees:

- $\Sigma=\{$ red, white $\}$
- root must be red
- a red vertex must have $i=1$ red children

Radius $\log _{2} n$
Volume $\log _{2} n$

Same radius, different volumes

On rooted binary trees:

- $\Sigma=\{$ red, white $\}$
- root must be red
- a red vertex must have $i=2$ red children

Radius $\log _{2} n$
Volume n

Same radius, different volumes

Volume $\Theta(\log n)$

Volume $\Theta(n)$

- problems with the same radius can have different volumes

Propagation problems in infinite regular trees

Problem restrictions:

- infinite Δ-regular rooted trees
- only labeling constraints of the form
any vertex labeled l must have at least $c_{l, l^{\prime}}$ children labeled l^{\prime}

the root must be labeled l_{0}

This class is complex enough to exhibit previously unobserved complexities

Layer partition of a mend

$$
M=\left(\begin{array}{cccc}
\nearrow & \bullet & \bullet & \bullet \\
\bullet & 0 & 1 & 1 \\
\bullet & 1 & 0 & 0 \\
\bullet & 0 & 0 & 1
\end{array}\right)
$$

Layer partition of a mend

$$
M=\left(\begin{array}{cccc}
\nearrow & \bullet & \bullet & \bullet \\
\bullet & 0 & 1 & 1 \\
\bullet & 1 & 0 & 0 \\
\bullet & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{lll}1 & 0 & 0\end{array}\right) 2 \times M$
$\left(\begin{array}{lll}0 & 1 & 1\end{array}\right) 2 \times M$
$\left(\begin{array}{lll}1 & 0 & 1\end{array}\right) 2 \times M$
$\left(\begin{array}{lll}0 & 1 & 2\end{array}\right) 2 \times M$
$\left(\begin{array}{lll}1 & 0 & 2\end{array}\right) 2 \times M$
$\left(\begin{array}{lll}0 & 1 & 3\end{array}\right)$

Complexity landscape

Matrix growth	$\rightarrow 0$	$\Theta(1)$	$\operatorname{poly}(n)$	$\exp (n)$
Mending volume	$\Theta(1)$	$\Theta(\log n)$	$\operatorname{poly}(\log n)$	$n^{\alpha}, 0<\alpha \leqslant 1$

For a well-chosen degree Δ

Overview

Setting	$O(1)$		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths \& Cycles	\checkmark	\times	\times				\checkmark
Rooted trees	\checkmark	\times	\checkmark				\checkmark
Trees	\checkmark	\times	\checkmark				\checkmark
General graphs	\checkmark	\times	\checkmark				\checkmark
Landscape of the mending volume							

Overview

Setting	$O(1)$		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths \& Cycles	\checkmark	\times	\times			\times	\checkmark
Rooted trees	\checkmark	\times	\checkmark			\checkmark	\checkmark
Trees	\checkmark	\times	\checkmark			\checkmark	\checkmark
General graphs	\checkmark	\times	\checkmark			\checkmark	\checkmark
Landscape of the mending volume							

Polynomial complexities

$$
M=(2)
$$

Polynomial complexities

Polynomial complexities

$$
M=(2)
$$

Matrix growth rate: exponential

For $\Delta=3$, volume $\Theta\left(n^{\ln 2 / \ln 3}\right)$

Polynomial complexities

$$
M=(2)
$$

Matrix growth rate: exponential

For $\Delta=3$, volume $\Theta\left(n^{\ln 2 / \ln 3}\right)$

Overview

Setting	$O(1)$		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths \& Cycles	\checkmark	\times	\times			\times	\checkmark
Rooted trees	\checkmark	\times	\checkmark			\checkmark	\checkmark
Trees	\checkmark	\times	\checkmark			\checkmark	\checkmark
General graphs	\checkmark	\times	\checkmark			\checkmark	\checkmark
Landscape of the mending volume							

Overview

Setting	$O(1)$		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths \& Cycles	\checkmark	\times	\times	\times		\times	\checkmark
Rooted trees	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark
Trees	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark
General graphs	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark
Landscape of the mending volume							

Polylogarithmic complexities

$$
M=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Polylogarithmic complexities

$$
M=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Polylogarithmic complexities

$$
M=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Matrix growth rate: linear

For $\Delta=3$,
volume $\Theta\left(\log ^{2} n\right)$

Polylogarithmic complexities

Generalization:

$$
M=\left(\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \ddots & 0 \\
0 & 0 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

for $\Delta=3$, volume $\Theta\left(\log ^{k} n\right)$

Overview

Setting	$O(1)$		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths \& Cycles	\checkmark	\times	\times	\times		\times	\checkmark
Rooted trees	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark
Trees	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark
General graphs	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark
Landscape of the mending volume							

Overview

Setting	$O(1)$		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta\left(n^{\alpha}\right)$	$\Theta(n)$
Paths \& Cycles	\checkmark	\times	\times	\times	\times	\times	\checkmark
Rooted trees	\checkmark	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark
Trees	\checkmark	\times	\checkmark	\checkmark	$?$	\checkmark	\checkmark
General graphs	\checkmark	\times	\checkmark	\checkmark	$?$	\checkmark	\checkmark
Landscape of the mending volume							

Future research directions

- Can we design alternative (algorithmic) measures of the mending volume that take into account the difficulty of finding a mend ? https://arxiv.org/abs/2209.05363

Future research directions

- Can we design alternative (algorithmic) measures of the mending volume that take into account the difficulty of finding a mend ? https://arxiv.org/abs/2209.05363
- How do those algorithmic measures compare to the mending volume?

Future research directions

- Can we design alternative (algorithmic) measures of the mending volume that take into account the difficulty of finding a mend ? https://arxiv.org/abs/2209.05363
- How do those algorithmic measures compare to the mending volume?
- Is the landscape of the mending volume complete? (gap between polylogarithmic and polynomial)

Summary

