

¹ Aalto University, Espoo, Finland

² ENS Paris-Saclay, Université Paris-Saclay, France

OPODIS 2022, December 14th, UCLouvain

Motivation 000 nfinite trees

Landscape 00000 $\underset{OO}{\mathrm{Conclusion}}$

Fixing a partial solution

Partial 4-coloring:

- 4 colors + unlabeled
- no two adjacent vertices of the same color
- anything is allowed next to an unlabeled vertex

Motivation

nfinite trees

Landscape 00000 Conclusion 00

Fixing a partial solution

Impossible to complete the partial solution : no color available for the unlabeled vertex

Motivation 000 Infinite trees

Landscape 00000 Conclusion 00

Fixing a partial solution

Erase some labels...

Motivation 000 nfinite trees

Landscape 00000 Conclusion 00

Fixing a partial solution

...then recolor.

Number of erased labels \rightarrow volume of the mend

 $\begin{array}{l} \mbox{Greatest} & \mbox{distance} & \mbox{to} & \mbox{erased} \\ \mbox{label} \rightarrow \mbox{radius} & \mbox{of the mend} \end{array}$

Motivation 000 nfinite trees

Landscape 00000 Conclusion 00

Fixing a partial solution

Mend with volume 5 and radius 4

LCL problems (Locally Checkable Labelings)

- input is a graph G = (V, E)
- assign to each vertex v a label $\lambda(v)\in\Sigma$
- φ a verifier is local with radius r
- \bullet all labeled neighborhoods $\mathcal{N}_r(v)$ must be accepted by φ

LCL problems (Locally Checkable Labelings)

LCLs: *n*-vertex-coloring, *n*-edge-coloring, sinkless orientation, maximal independent set, minimal edge cover Not LCLs: maximum independent set, minimum cut, tree height

What is mending ? 0000	$\underset{000}{\text{Motivation}}$	Infinite trees 000	Landscape 00000	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$
Partial solutio	ns of LCLs			

- fresh label \perp : "unlabeled"
- $\bullet\,$ any neighborhood that contains \perp is accepted

What is mending ? $000 \bullet$		Infinite trees 000	Landscape 00000	$\begin{array}{c} \operatorname{Conclusion} \\ \operatorname{oo} \end{array}$
Mending LCLs	5			

For an LCL problem Π , An instance of a mending problem is (G, λ, u)

- $\bullet~G$ is a graph
- λ is a partial solution on G
- u is unlabeled in λ

Task: produce λ'

- λ' must be a partial solution
- u must be labeled in λ'
- λ' must not introduce new unlabeled vertices

• λ' should minimize the cost $|\{v : \perp \neq \lambda(v) \neq \lambda'(v)\}|$

The mending volume of a problem is the optimal cost of the worst-case instance

What is mending ? 0000	Infinite trees 000	Landscape 00000	$\begin{array}{c} {\rm Conclusion} \\ {\rm OO} \end{array}$
Why mend ?			

Studied a lot: given an LCL, how hard is it to *solve* it ? Our question: given an LCL, how hard is it to *mend* it ?

What is mending ? 0000	Motivation ●00	Infinite trees	Landscape 00000	Conclusion 00
Why mend ?				
			1	

Studied a lot: given an LCL, how hard is it to *solve* it ? Our question: given an LCL, how hard is it to *mend* it ?

For distributed systems

- less costly than to compute a new solution from scratch
- less disruption

What is mending ? 0000		Infinite trees 000	Landscape 00000	Conclusion 00
Why mend ?				
Studied a let:	rivon an I Cl	how hard is it to	a calva it ?	

Studied a lot: given an LCL, how hard is it to *solve* it ? Our question: given an LCL, how hard is it to *mend* it ?

For distributed systems

- less costly than to compute a new solution from scratch
- less disruption

For centralized parallel algorithms

- mending procedure provides sequential solving algorithm
- efficient mendability implies efficient parallel solvability

What is mending ? Motivation Infinite trees Landscape Conclusion 000 000 000 00

Prior work: landscape of the mending radius

Landscape of the mending radius

What is mending ? 0000	Infinite trees 000	Landscape 00000	$_{ m OO}^{ m Conclusion}$

Prior work: landscape of the mending radius

Landscape of the mending radius

What is mending ? 0000	Infinite trees 000	Landscape 00000	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$

Prior work: landscape of the mending radius

Setting	O(1)		$\Theta(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths, Cycles	\checkmark	×	×	×	×	\checkmark
Trees	\checkmark	×	\checkmark	×	×	\checkmark

Landscape of the mending radius

What is mending ? 0000	Infinite trees	Landscape 00000	$\begin{array}{c} \operatorname{Conclusion} \\ \operatorname{oo} \end{array}$

Prior work: landscape of the mending radius

 $\underset{\text{OO}}{\text{Motivation}}$

Infinite trees

Landscape 00000 Conclusion 00

Same radius, different volumes

On rooted binary trees:

- $\Sigma = \{ \mathsf{red}, \mathsf{white} \}$
- root must be red
- a red vertex must have *i* red children

Radius ?

Volume ?

Motivation 00●

Infinite trees

Landscape 00000 $\underset{OO}{\mathrm{Conclusion}}$

Same radius, different volumes

On rooted binary trees:

- $\Sigma = \{ \mathsf{red}, \mathsf{white} \}$
- root must be red
- a red vertex must have i = 1 red children

Radius $\log_2 n$

Volume $\log_2 n$

 $\underset{\text{OO}}{\text{Motivation}}$

Infinite trees

Landscape 00000 $_{\rm OO}^{\rm Conclusion}$

Same radius, different volumes

On rooted binary trees:

- $\Sigma = \{ \mathsf{red}, \mathsf{white} \}$
- root must be red
- a red vertex must have i = 2 red children

Radius $\log_2 n$

Volume n

 $\underset{\text{OO}}{\text{Motivation}}$

Infinite trees

Landscape 00000 Conclusion 00

Same radius, different volumes

• problems with the same radius can have different volumes

Propagation problems in infinite regular trees

Problem restrictions:

- ${\, \bullet \,}$ infinite $\Delta\mbox{-regular}$ rooted trees
- only labeling constraints of the form

any vertex labeled l must have at least $c_{l,l'}$ children labeled l'

This class is complex enough to exhibit previously unobserved complexities

What is mending ? 0000	$\substack{\text{Motivation}\\000}$	Infinite trees $0 = 0$	Landscape 00000	Conclusion 00

What is mending ? 0000	$\underset{000}{\text{Motivation}}$	Infinite trees $0 = 0$	Landscape 00000	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$

What is mending ? 0000	$\underset{000}{\text{Motivation}}$	Infinite trees $0 = 0$	Landscape 00000	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$

What is mending ?	Motivation	Infinite trees $0 \bullet 0$	Landscape	Conclusion
0000	000		00000	00

What is mending ?	Motivation	Infinite trees $0 = 0$	Landscape	Conclusion
0000	000		00000	00

What is mending ? 0000	$\underset{000}{\text{Motivation}}$	Infinite trees 000	Landscape 00000	Conclusior 00

Complexity landscape

Matrix growth	$\rightarrow 0$	$\Theta(1)$	$\operatorname{poly}(n)$	$\exp(n)$
Mending volume	$\Theta(1)$	$\Theta(\log n)$	$\operatorname{poly}(\log n)$	n^{lpha} , $0 < lpha \leqslant 1$

For a well-chosen degree Δ

What is mending ? 0000	$\substack{\text{Motivation}\\000}$	Infinite trees 000	Landscape ●0000	Conclusion 00

\sim	
U	verview

Setting	O(1)		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths & Cycles	\checkmark	×	×				\checkmark
Rooted trees	\checkmark	×	\checkmark				\checkmark
Trees	\checkmark	×	\checkmark				\checkmark
General graphs	\checkmark	×	\checkmark				\checkmark
Landscape of the mending volume							

What is mending ? 0000	$\substack{\text{Motivation}\\000}$	Infinite trees 000	Landscape ●0000	Conclusion 00

\sim	
()	verview
	1 02 1 20 11

Setting	O(1)		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths & Cycles	\checkmark	×	×			×	\checkmark
Rooted trees	\checkmark	×	\checkmark			\checkmark	\checkmark
Trees	\checkmark	×	\checkmark			\checkmark	\checkmark
General graphs	\checkmark	×	\checkmark			\checkmark	\checkmark
Landscape of the mending volume							

What is mending ?	Motivation	Infinite trees	Landscape	Conclusion
0000	000	000	0●000	00

Polynomial complexities

$$\bigcap_{i=1}^{2} M = (2)$$

Motivation 000 Infinite trees

Landscape 0●000

Conclusion 00

Polynomial complexities

 $\bigcap^{2} \qquad M = (2)$

What is mending ?MotivationInfinite treesLandscapeCor0000000000000000

Polynomial complexities

$$\bigcap^{2} \qquad M = (2)$$

Matrix growth rate: exponential

For $\Delta = 3$, volume $\Theta(n^{\ln 2 / \ln 3})$

What is mending ?MotivationInfinite treesLandscape0000000000000

Polynomial complexities

$$\bigcap^{2} \qquad M = (2)$$

Matrix growth rate: exponential

For $\Delta=3$, volume $\Theta(n^{\ln 2/\ln 3})$

Generalization:

$$\xrightarrow{2^p} \bigcirc$$

for
$$\Delta=2^q$$
 , volume $\Theta(n^{p/q})$

What is mending ? 0000	$\substack{\text{Motivation}\\000}$	Infinite trees 000	Landscape 00●00	Conclusion 00

\sim	
()	verview
\sim	1011010

Setting	O(1)		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths & Cycles	\checkmark	×	×			×	\checkmark
Rooted trees	\checkmark	×	\checkmark			\checkmark	\checkmark
Trees	\checkmark	×	\checkmark			\checkmark	\checkmark
General graphs	\checkmark	×	\checkmark			\checkmark	\checkmark
Landscape of the mending volume							

What is mending ?	Motivation	Infinite trees	Landscape	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$
0000	000	000	00●00	

\sim	
()	verview
\sim	1011010

Setting	O(1)		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths & Cycles	\checkmark	×	×	×		×	\checkmark
Rooted trees	\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark
Trees	\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark
General graphs	\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark
Landscape of the mending volume							

What is mending ?	Motivation	Infinite trees	Landscape	$\begin{array}{c} {\rm Conclusion} \\ {\rm oo} \end{array}$
0000	000	000	000●0	

Polylogarithmic complexities

What is mending ?	Motivation	Infinite trees	Landscape	$\begin{array}{c} \operatorname{Conclusion} \\ \operatorname{oo} \end{array}$
0000	000	000	000●0	

Polylogarithmic complexities

For $\Delta = 3$, volume $\Theta(\log^2 n)$

What is mending ?	Motivation	Infinite trees	Landscape	Conclusion
0000	000	000	000●0	00

Polylogarithmic complexities

Generalization:

$$M = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & 0 \\ 0 & 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

for $\Delta = 3$, volume $\Theta(\log^k n)$

What is mending ?	Motivation	Infinite trees	Landscape	Conclusion
0000	000	000	0000●	00

\cap	
()	verview
\sim	10111011

Setting	O(1)		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths & Cycles	\checkmark	×	×	×		×	\checkmark
Rooted trees	\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark
Trees	\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark
General graphs	\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark
Landscape of the mending volume							

What is mending ? 0000	Infinite trees	Landscape 0000●	$\begin{array}{c} \operatorname{Conclusion} \\ \circ \circ \end{array}$

\sim	
()	verview

Setting	O(1)		$\Theta(\log n)$	$\operatorname{poly}(\log n)$		$\Theta(n^{\alpha})$	$\Theta(n)$
Paths & Cycles	\checkmark	×	×	×	×	×	\checkmark
Rooted trees	\checkmark	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Trees	\checkmark	×	\checkmark	\checkmark	?	\checkmark	\checkmark
General graphs	\checkmark	×	\checkmark	\checkmark	?	\checkmark	\checkmark
Landscape of the mending volume							

What is mending ? 0000	Motivation 000	ation Infinite trees		$\begin{array}{c} \operatorname{Conclusion} \\ \bullet 0 \end{array}$

Future research directions

• Can we design alternative (algorithmic) measures of the mending volume that take into account the difficulty of finding a mend ? https://arxiv.org/abs/2209.05363

What is mending ?	Motivation	Infinite trees	Landscape	$\begin{array}{c} \operatorname{Conclusion} \\ \bullet \end{array}$
0000	000	000	00000	

Future research directions

- Can we design alternative (algorithmic) measures of the mending volume that take into account the difficulty of finding a mend ? https://arxiv.org/abs/2209.05363
- How do those algorithmic measures compare to the mending volume ?

Future research directions

- Can we design alternative (algorithmic) measures of the mending volume that take into account the difficulty of finding a mend ? https://arxiv.org/abs/2209.05363
- How do those algorithmic measures compare to the mending volume ?
- Is the landscape of the mending volume complete ? (gap between polylogarithmic and polynomial)

What is mending ? 0000	Motivation 000	Infinite trees 000	Landscape 00000	$\operatorname{Conclusion}_{O \bullet}$
Summary				

