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1 Introduction
Unit Disk Graphs (UDGs) in n dimensions are undirected graphs for which there exists a mapping from the
vertices to points in Rn such that two points are linked if and only if they are close enough. This is interpreted
as them being within communication range of one another and can be used to model entities that are able to
communicate remotely. There are a few ways to define formally UDG, which are introduced in Section 2.
UDG arise in particular when a group of entities (e.g. mobile phones, drones, broadcast towers) can commu-
nicate with each other within a certain range. The radius R of the disks models the maximum communication
distance, and two vertices can communicate if their corresponding points are close enough. As for dynamic
graphs, they can model the evolution of relationships by means of a discrete sequence of graphs with the same
vertex set, with successive graphs (called snapshots) being interpreted as successive instants. These two notions
of temporal graphs and unit disk graphs can be used together to study the temporal evolution of a group of
communicating entities. There could be hope to reverse-engineer the movements of such entities from a record
of their contacts, the interest for this approach being that contact traces are cheaper to obtain and store than
accurate positional data: there is no need for costly measuring instruments, and there is less data to store.
In addition, inferred positional data allows for realistic transformations: adding vertices and increasing the
communication range in a way that is consistent.

Such is the path taken by [Plausible] (more information available at [Plausible_Web]), to produce the library
[DITL] in which heuristics are presented to infer movements of people or objects given their contact trace (the
times at which they were able to communicate). In other words, the goal is to construct a dynamic proximity
model from a temporal graph.
However in that paper it is assumed that there exists such a proximity model and some inaccuracies (vertices
being linked despite being far away, or being separated yet close) are tolerated. The effect of additional in-
formation on the accuracy is measured. This additional information includes knowing the position of some
vertices at all times, knowing the position of all vertices initially, or making assumptions on the movement of
disks. The heuristics proposed show that the movements reconstructed from a contact trace are often a decent
approximation of actual movements, but there is much room for improvement if inaccuracies are not tolerated.
This has to be done conjointly with the trace being perfect : there is no opportunity for contact that is missed
by inaccurate measuring instruments.
The paper in question also introduces the notion of a perfect contact trace, in which no contact opportunities
are missed, and these perfect traces are used mostly to evaluate the performance of the heuristics. This work
however assumes perfect traces throughout.

In the static case, UDG recognition is known to be NP-hard in two dimensions [UDG_NPHard]. Restriction
to trees is also NP-hard, but [Caterpillar] recently showed a linear-time algorithm for caterpillars (trees with
all leaves at distance 1 of a central path).
The one-dimensional static problem (in which disks are unit intervals) has also been extensively studied,
and at least three linear-time recognition algorithms have been proposed [Linear_PIG], [Simple_PIG],
[Consecutive_Ones].

The objective of this intership is to take a more theoretical look at the dynamic UDG recognition problem, with
the goal of studying the influence of the additional time parameter in the general case and finding restrictions
of the problem that are tractable yet physically plausible. More specifically, the aim is to:

• simplify the proof of NP-hardness in the general case (since the problem is more difficult we can expect
the proof of hardness to be simpler);

• study some restrictions of movements (integer coordinates, bounded speed, bounded acceleration);

• see if the caterpillar constraint can be adapted to a temporal setting;

• analyze the one-dimensional version of the problem.

2 Preliminaries

2.1 Unit Disk Graphs
A first formal definition of UDG is to describe a mapping from vertices to disks such that vertices are linked iff
the corresponding disks intersect
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Definition 1 (UDG – intersection model).
G = (E, V ) has a UDG intersection model with radius R when there exists ι : V →

{
B(x,R) | x ∈ Rn

}
⊂

P(Rn) such that for all v, v′ ∈ V , {v, v′} ∈ E ⇐⇒ ι(v) ∩ ι(v′) ̸= ∅.

Of course if ι(v) can take any value in Rn, the actual value of the radius is irrelevant since an intersection model
for a radius can be rescaled for any other radius.

As mentioned in [UDG_Clique], UDGs can also be defined as the graphs which have a proximity model :

Definition 2 (UDG – proximity model).
G = (E, V ) has a UDG proximity model with radius R when there exists ι : V → Rn such that for all
v, v′ ∈ V , {v, v′} ∈ E ⇐⇒ ∥ι(v)− ι(v′)∥ ⩽ R

i.e. two vertices are linked iff they are separated by at most a fixed distance. A third definition is the containment
model : vertices are again mapped to unit disks, but they are considered linked when the center of one disk is
contained in the other disk.

Definition 3 (UDG – containment model).
G = (E, V ) has a UDG containment model with radius R when there exists ι : V → Rn such that for all
v, v′ ∈ V , {v, v′} ∈ E ⇐⇒ ι(v) ∈ B(ι(v′), R)

It should be obvious that not only is the radius also irrelevant in these two alternative definitions, these three
kinds of models can be easily transformed into one another (possibly with some rescaling of embeddings).
In most of what follows, computations are performed using a proximity model for R = 1, and figures use either a
containment model with R = 2 or an intersection model with R = 1 depending on which one is the most readable.

2.2 Statement of the problem

Input: G = (V,E0, · · · , Eτ ) a temporal graph
Known: constraints on values which ιi+1 can take depending on ιi
Output: true/false depending on the existence of a mapping ι• : N → V → R2 that satisfies known
constraints and so that each ιi is a proximity model for (V,Ei), i.e. true iff there exists a temporal model
Output (alternative): a representation of one (or several) such mapping if it exists.

The input is to be interpreted as a sequence of graphs on the same vertex set, with each (V,Ei) a different
instant in time.

Example of known constraints: ∀i, ∀v, |ιi(v) − ιi+1(v)| ⩽ 1|, i.e. vertices have bounded speed. This is the
constraint that will be used in Section 3.
Section 4 introduces constraints that are more difficult to express concisely, but they can also be interpreted as
the trace being perfect.
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3 NP-hardness in two dimensions
The static problem is already known to be NP-hard [UDG_NPHard]. This automatically makes the dynamic
unrestricted problem NP-hard, however a new proof of hardness can have advantages. It may provide insights
about the added complexity of the temporal setting, and it can be extended to different settings, some of which
are irrelevant for the static case (initial positions known, one event at a time).
Given that the proof in the static case is quite difficult, there is also an opportunity to simplify it in a dynamic
setting.

3.1 Intuition
A reduction from 3-SAT is constructed. It uses a group of disks for each variable and these variables assemble
with each other to successively form clauses. This makes the number of disks linear with regard to the input
instead of quadratic in the static proof.
It is ensured that variables can only take two configurations, which are interpreted as true and false. Con-
straints are added so that variables cannot change configuration during the lifetime of the graph: it is assumed
that the speed of disks is bounded, in particular the maximum distance that a disk can move between two
snapshots does not exceed its radius. This prevents disks from crossing each other without an encounter, and
should be the baseline requirement for what can be considered “physically plausible” ([Plausible] also makes
this assumption that the detection range is greater than the distance travelled in one instant). Moreover it
would be uninteresting for a temporal graph to be dynamic UDG if and only if (iff) all of its snapshots are
UDG, hence the restriction.
This is also in accordance to the definition of Plausible Mobility in [Plausible]: “In order to be plausible, the
inferred movement must realistically limit the speed of the nodes”.

One major cause of difficulty can be identified to come from the fact that among several embeddings for each
instant, only a few are compatible with all future snapshots, and determining which ones exactly can take
exponential time.

3.2 Using “blinking” links to add constraints
A key phenomenon that appears in the dynamic case is that of “blinking” links. A link between two vertices u
and v is present if d(u, v) ⩽ 1 and absent if d(u, v) > 1, hence the static case can only constrain two nodes to
be either closer or further that one unit apart.

In the dynamic case however, a link u − v that is present on even timestamps and absent on odd timestamps
forces u and v to remain separated by a distance within [1− 2δ, 1+ 2δ] with δ being the distance each node can
travel in one unit of time.
Indeed, at t = 0, d(u, v) ⩽ 1 hence at t = 1 d(u, v) ⩽ 1 + 2δ if both moved in opposite directions at their
maximum speed, the constraint that at the next timestamp they be once again within 1 unit of each other
prevents their distance from being any bigger.
The same reasoning sets the lower bound to 1− 2δ.

More generally, if during any K consecutive timestamps a link is absent at least once and present at least once
then the nodes in question must remain at all times within 1 ±Kδ of each other (the above was for K = 2).
Given a sufficiently low maximum speed (a small but constant fraction of the radius) it is possible by setting
K small enough to force certain pairs of nodes to remain within 1± ε of each other.
What follows uses this property, although K will only be decided later.
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3.3 Structure for a variable

A⊕A⊕

B⊕

B⊕

A′⊕A′⊕

A′⊖A′⊖

B⊖
B⊖

A⊖

A⊖

X ′

X

X

X ′
O O

Figure 1: Intersection models of the structure representing a variable
Left: variable set to true. Right: variable set to false.

Both are identical except for the relative position of the X branch

There is one copy of the structure shown in Figure 1 for each variable of the 3-SAT instance. These structures
are built in several steps detailed in Section I which guarantee that only the two configurations shown (and
small variations that do not change the relative positions of vertices) can exist. These two configurations are
arbitrarily interpreted as the variable being set to true or false.

As the links shown in Figure 1 are permanent (more accurately, from now on they appear at least once every
K timestamps), the configuration of each variable is fixed once and for all.
This is crucial for what follows, since it guarantees that the true/false value of a variable does not change
during the construction of the clauses.
A similar structure is built to represent bottom (⊥), and is designed to behave as a variable which is always
false. This structure can be seen on the bottom right of Figure 2.

3.4 Structure for a clause
A clause with 3 literals is assembled by connecting together the structures that represent each literal, in a
way that guarantees that each unsatisfied literal adds a pair of disks on the inside of the 12-cycle that con-
stitutes the clause. By packing arguments which are also widely used in [UDG_NPHard], the cycle in
question can contain at most two pairs of extra disks. Therefore there exists a realization for the clause iff at
least one structure has its pair of extra disks outside of the cycle, i.e. if and only if at least one literal is satisfied.

Clauses are handled successively, each over an interval of consecutive snapshots : during t ∈ [0, t0] the structures
are assembled, then there exists 0 < t0 < t1 < · · · < tn = τ such that the structure corresponding to clause Ci
is assembled during the period t ∈ [ti + 1, ti+1]. The number of vertices is linear w.r.t. the initial size of the
problem (since it is linear w.r.t. the number of variables), and so is the number of instants (since it is linear
w.r.t. the number of clauses).
The constraint that structures retain their configuration during the lifetime of the temporal graph ensures that
the corresponding variables do not change value, and hence there exists a realization iff the formula is satisfiable.

3.5 Adapting the proof to different constraints
This result can be extended to classes of temporal graphs that have very restricted snapshots: it still holds for
the graphs in which all snapshots have connected components of size at most 2 (which includes the class of
graphs for which all snapshots can be partitionned into caterpillars).

Indeed, instead of links alternating between on and off at each step as described in Section 3.2, they can be
desynchronized so that no two links adjacent to the same vertex are active at the same time (see Figure 3).
Since all structures constructed are of constant size, it is always possible to leave no link turned off for more
than a constant number of steps. Note however that proving this requires an unbounded number of links to be
active at the same time. The difficulty of the problem in the case of a very restricted footprint (the footprint
is the union of all snapshots, “very restricted” would mean at least a caterpillar), or when there are a bounded
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A⊖1

A′⊖1

B⊖1

O1

A′⊕1
A⊕1

B⊕1

X ′1

A′3

O3

A⊖2

A3

⊥′3

X ′2
A⊕2

A′⊕2A′⊖2
B⊖2

O2

B3

X1 ⊥3

B⊕2

X2

Figure 2: Three variables assembled to form a clause C = ¬x1 ∨ x2 ∨ ⊥
Represented with x1 and x2 both set to true.

In this particular instance C is satisfied thanks to x2, and the graph has a disk realization.
Dashed lines only for visual clarity to emphasize the boundaries between components.

number of interactions at each snapshot is still open. Both of these constraints can nevertheless be deemed too
restrictive for any applications, as they are uncommon in the field of temporal graphs : it is more common to
place lower bounds on the footprint (e.g. require that it be connected, but not that it be at most a tree) or
upper bounds on local properties of the snapshots (e.g. bound the maximum number of interactions a single
entity can have during one instant, but not require that each snapshot be connected or that there be a maximum
number of interactions globally).

Section II shows how to adapt the construction when coordinates of all disks are restricted to integers.

The difficulty still holds if all the initial positions of disks are known, or if part of the disks have their positions
known at all times. Although [Plausible] mentions that these two factors greatly improve the accuracy of
existing heuristics, this additional information cannot be said to make the problem significantly easier in the
case of a perfect contact trace.
Perhaps more accurate heuristics will emerge, but an efficient exact algorithm is unlikely for any meaningful
restriction of the problem.
This does not necessarily contradict the hopes formulated in [Plausible] that “perhaps the plausible mobility
obtained from the techniques in this paper could be used as a first-pass in a more complete algorithm that
actually solves the large constraint system”: it is possible that an algorithm with exponential runtime in the
general case would be efficient in practice on real-world traces.
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A B C

t0

t0 + 1

t0 + 3

t0 + 2

Figure 3: Blinking phenomenon, including desynchronization
All three contact traces A, B and C force the vertices to remain close to each other (at most 1 + ε apart).

B and C have the added property that they force the vertices to remain separated by at least a distance 1− ε.
C has the added property that its connected components are of size at most 2 for each snapshot.
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4 Tractability in one dimension
A new kind of restriction is now explored: reducing the dimension of the space in which entities can move.
This constraint is relevant from a theoretical point of view, since the 1-dimensional UDG are well-studied and
their recognition in the static case is easy. From a practical point of view, the argument can be made that
many mobile entities operate in contexts in which their movement is effectively one-dimensional, e.g. cars on a
highway, passengers in a train.

Vertices are thereby constrained to a single dimension and can take any position in R.
This is equivalently defined as the recognition problem for dynamic Unit Interval Graphs (also called Proper
Interval Graphs, or PIG, a subclass of Interval Graphs , or IG), which are known to be linear-time recogniz-
able in a static setting ([Consecutive_Ones], [Simple_PIG], [Linear_PIG] for PIG; [Ultimate_IG],
[Incremental_IG] for IG).
The trace is assumed to be perfect: events are distinguishable from one another, i.e. |Ei∆Ei+1| = 1, and a
continuous transition (defined formally in Definition 8) is expected from one embedding to the next in order
for it to be physically realizable. It is argued in Section VII.1 that these transformations are also physically
reasonable in that they naturally place an upper bound on the movement speed of vertices.
Section VII.2 discusses allowing several simultaneous events.

The properties in Section 4.1 and Section 4.2 are essential to the final result, because they enable abstracting
away the underlying physical model. They state that the set of all possible embeddings can be efficiently repre-
sented by a set of permutations (Theorem 1), and provide criteria to determine which manipulations to perform
on these sets of permutations to simulate movements compatible with the physical restrictions (Theorem 2).

In what follows, v, ι(v), and the data structure which represents v in the algorithm are all called “a vertex”. It
should be obvious from the context which of them the term refers to. e.g. “v and v′ are at distance at most 1”
instead of the more accurate “ |ι(v)− ι(v′)| ⩽ 1”

4.1 Neighborhood compatibility
G = (V,E) is a PIG.

Definition 4 (Neighborhood).
The neighborhood N [v] of v ∈ V is {v} ∪ {v′ | {v, v′} ∈ E}.

The class C[v] of v ∈ V is {v′ | N [v] = N [v′]}

Definition 5 (Realizable permutation).
A realizable permutation of G is an ordering σ ∈ S(V ) such that there exists an injective model ι with

∀v, v′, σ(v) < σ(v′) ⇐⇒ ι(v) < ι(v′)

Definition 6 (Permutation compatible with neighborhoods).
An ordering σ is said to be a permutation compatible with neighborhoods of G when

∀v0,∃v+, v− s.t. ∀v, σ(v−) ⩽ σ(v) ⩽ σ(v+) ⇐⇒ v ∈ N [v0]

That is, the neighborhood of each vertex is contiguous.
This can be equivalently defined as ∀ {v1, v2} ∈ E, ∀v, σ(v1) < σ(v) < σ(v2) =⇒ v ∈ N [v1] ∩ N [v2]: if two
vertices are neighbors then all vertices in between are also their neighbors.

Theorem 1 (Compatibility is realizability).
An ordering is a realizable permutation of G iff it is compatible with neighborhoods of G.

Proof: Section III
Idea: (=⇒) geometric arguments and triangular inequalities; (⇐=) explicitly construct a model.

9



4.2 Temporal compatibility
Let us now introduce a temporal aspect.
In this section, G = (Gi)0⩽i⩽τ is a sequence of UDG, with Gi = (V,Ei).
Ei and Ei+1 differ only by a single event Li+1.
The trace is assumed to be initially empty: E0 = ∅. See Section VII.3 for how to adapt the algorithm to a
specific initial configuration.

Neighborhoods will be indexed by either the snapshot NG or the instant Ni.

Definition 7 (Event).
An event is a pair Li = {vi, v′i} with vi ̸= v′i such that Ei−1 ∆ {Li} = Ei.

i.e. Li ∈ Ei ⇐⇒ Li ̸∈ Ei−1 and ∀L ̸= Li, L ∈ Ei ⇐⇒ L ∈ Ei−1: the connection between vi and v′i is
destroyed if it already existed and created otherwise, and all other connections remain unchanged.

Definition 8 (Continuous transition).

Given two models ι, ι′ of G and G′, a continuous transition from ι to ι′ with event {v1, v2}, written ι
{v1,v2}−−−−−→

ι′, is a continuous function φ : [0, 1]× V → R such that there exists 0 < t0 < 1:

1. φ(0, •) = ι

2. φ(1, •) = ι′

3. ∀ {v, v′} ≠ {v1, v2} ,∀t, |φ(t, v)− φ(t, v′)| ⩽ 1 ⇐⇒ Dι(v, v
′) ⩽ 1

4. ∀t < t0, |φ(t, v1)− φ(t, v2)| ⩽ 1 ⇐⇒ Dι(v1, v2) ⩽ 1

5. ∀t > t0, |φ(t, v1)− φ(t, v2)| ⩽ 1 ⇐⇒ Dι′(v1, v2) ⩽ 1

6. |φ(t0, v1)− φ(t0, v2)| = 1

If conditions 4, 5, 6 are removed and condition 3 is extended to also include {v1, v2}, the transition is said
to be without event and is written ι −→ ι′.

That is, no event other than {v1, v2} may happen during the continuous transformation of ι into ι′ (conditions
1, 2, 3), and {v1, v2} occurs exactly at time t0 (conditions 4, 5, 6).
This is meant to express the movements that are physically possible knowing the two instants t = 0 and t = 1
and assuming that all contacts are properly detected.

Definition 9 (Temporal compatibility).
Any padded model of G0 is temporally compatible with an empty sequence of events.
If ι is compatible with events L1, · · · , Li, ι′ is a padded model of Gi+1, and there exists a continuous

transition ι
Li+1−−−→ ι′ then ι′ is temporally compatible with events L1, · · · , Li+1.

A sequence ι0
L1−−→ ι1

L2−−→ · · · Li−→ ιi is called a temporal model of Gi.

Definition 10 (Discrete transition).
When σ is compatible with the neighborhoods of G, a discrete transition from σ compatible with G is a
permutation σ′ such that ∀v, v′, NG[v] ̸= NG[v

′] =⇒ (σ(v) < σ(v′) ⇐⇒ σ′(v) < σ(v′)).

It is written σ
G−→ σ′.

That is, σ′ may differ from σ only in the relative positions of vertices that have the same class in G.
The main result of this section establishes an equivalence between physically plausible movements and manip-
ulations on permutations:
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Theorem 2 (Discrete decomposition of a continuous transition).
Let σ, σ′ two permutations compatible with the neighborhoods of G and G′ respectively. Let ι, ι′ padded
models of G and G′ that have the orderings of σ and σ′.

There exists a continuous transition ι
{v1,v2}−−−−−→ ι′ iff there exists σ′′ such that σ G−→ σ′′ G′

−→ σ′.

Note that in particular σ′′ must be compatible with the neighborhoods of both G and G′.

Proof: Section IV
Idea: (=⇒) intermediate value theorem to isolate the event; (⇐=) naive interpolation.

4.3 Representation by a PQ-forest
The algorithm keeps track of the possible configurations using a PQ-forest.

Definition 11 (PQ-forest).
A PQ-forest is a tree with the following constraints:

• children of the root are labeled Q;

• each leaf corresponds to a vertex;

• direct parents of the leaves are labeled P .

Notation 1.
A P node is written P (v1, · · · , vn); A Q node is written Q[c1, · · · , cn]; a PQ-forest is written F {q1, · · · , qn}.
Where vi are vertices, ci are P - or Q-nodes, qi are Q-nodes.

When q is a Q-node in F a PQ-forest, Fq is the subtree rooted in q.

This is to be understood as a forest of PQ-trees as in [Consecutive_Ones], but with a few small differences:

• the PQ-trees are not necessarily normalized since they can have a subtree of the form Q[P (v)] which is
disallowed in standard PQ-trees

• they only have P -nodes as direct parents of leaves;

• they contain at least one Q-node.

Definition 12 (Associated permutations of a PQ-forest).
The set of associated permutations Σ(F ) of a PQ-forest F is defined recursively as:

• Σ(P (v1, · · · , vn)) = S(v1, · · · , vn)

• Σ(Q[c1, · · · , cn]) = {(Σ(c1) · · ·Σ(cn))} ∪ {(Σ(cn) · · ·Σ(c1))}

• Σ(F {q1, · · · , qn}) = S(Σ(q1), · · · ,Σ(qn))

Intuitively, P -nodes represent an arbitrary permutation that can change with time. Q nodes represent two sets
of permutation that have a 1-1 mirror correspondence in order to indicate knowledge of relative positions but
not orientation. A forest is an arbitrary fixed permutation of sets of permutations when there is no known
information on their relative position.

The main useful property of PQ-forests is that they are able to represent all possible sets of permutations that
vertices in a dynamic 1-dimensional UDG can take.
This allows the algorithm to manipulate a PQ-forest as an efficient discrete representation of all possible mod-
els. More precisely, it will at all times retain a PQ-forest of all the temporally compatible orderings of vertices
given past events, and at each new event it uses the criterion developed in Theorem 2 to calculate all the new
temporally compatible permutations.

See Section V for some properties of PQ-forests useful in the proof of the algorithm.
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4.4 Algorithm (summary)
The input given the algorithm consists of the number of vertices n and the sequence of events L = (Li)1⩽i⩽τ .
Procedures operate on a single PQ-forest F .
At the end of each loop iteration the following properties (some redundant) are ensured:

• vertices that share the same P -node are those in the same class;

• vertices that do not have the same direct Q parent cannot be linked;

• the neighborhood of each vertex is contiguous.

These are then used to prove that Σ(F ) is always exactly the set of valid permutations for the last step of a
temporal model of Gi.

See Section VI.1 for a list of the functions assumed to be implemented as part of the data structure, Section VI.2
and Section VI.3 for the auxiliairy functions used to handle LinkUp and LinkDown events, and Section VI.4
for the main loop.

A complexity analysis is provided in Section VII.5 and Section VII.6. The main result is that with an efficient
representation of children as a height-balanced binary tree, the algorithm can perform amortized O(lg n) op-
erations for each event, making the total runtime O(τ · lg n). Since this is also the expected size of the input,
the algorithm can be considered to run in linear-time (this is a bit of a simplification, since unique identifiers
are considered to be of size O(lg n) in the input, yet the algorithm assumes they can be read and compared in
O(1)).
It also happens to be an online algorithm: it is able to incrementally perform all computations in real time,
without access to future events. Section VII discusses some extensions of the algorithm and the physical model,
and Section IX is an overview of forbidden patterns.

12



5 Conclusion
Having so far only been studied by [Plausible], the problem of inferring plausible mobility from contacts is
still in its infancy. The negative results shown here in the two-dimensional setting are not incompatible with
the possibility of having an algorithm that performs well in practice on real-life traces, and the one-dimensional
tractability is encouraging, although applying it as is to messy real-world contact traces would require making
it somehow more fault-tolerant.

Approximate timeline
• Week 1: 50% 2D bibliography, 40% 2D unrestricted, 10% lab activities

• Week 2: 30% 1D bibliography, 30% 1D exploration, 20% 2D integer, 20% lab activities

• Week 3: 90% 1D exploration + algorithm + proof, 10% lab activities

• Week 4: 70% 1D proof, 20% beamer, 10% lab activities

• Week 5: 40% beamer, 30% lab activities, 15% 1D forbidden patterns, 15% 1D improvements

• Week 6: 50% forbidden patterns, 20% report, 20% AATG, 10% lab activities

Lab activities included a dozen conferences (20min to 1h), a thesis defense, a general lab assembly, and working
on a problem unrelated to my internship with my supervisor and two other researchers.

Future prospects
A question that remains open in the two-dimensional case is that of the tractability of the problem when the
footprint is a caterpillar. It is worth noting that the reductions proposed produce snapshots that are simpler
than in the static proof, but footprints that are more complex. Managing to prove hardness with a footprint
that is more restrictive than those that make the 2-dimensional problem tractable would show that the increase
in difficulty when temporality is introduced is much greater than shown here.

Developing an exact algorithm for the 2-dimensional problem also remains to be done, but a first step would
likely be to find an algorithm for the static case first. Perhaps the restriction to integer coordinates should be
attempted beforehand.

As for the one-dimensional case, a more in-depth study of forbidden patterns could lead to a characterization
as for PIG.

Finally, the static 1-dimensional recognition problem was also first solved using PQ-trees, and simpler algorithms
were then discovered. It is possible that simpler recognition procedures will emerge for the dynamic case, perhaps
also some that would tolerate simultaneous events.
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I Assembling variables
Section 3.3 skimmed over how to actually ensure that there can only be two possible realizations of each structure
for variables. This process is detailed in what follows.
A single first component shown in Figure 4 is constructed, which will determine the orientation of all other
components shown in Figure 1 and Figure 2.

O

B

A

Figure 4: Polarizer

In any realization there can be only one of two possible orientations of OAB, and the physical restrictions
prevent this orientation from changing during the lifetime of the graph.

“A⊕ branch” (resp. A⊖, B⊕, B⊖, X) refers to A⊕ and A′⊕ (resp. A⊖ and A′⊖, B⊕, B⊖, X and X ′).
The A (resp. B, ⊕, ⊖ branches are the A⊕ and A⊖ branches (resp. B⊕ and B⊖ A⊕ and B⊕, A⊖ and B⊖).
Variables as in Figure 1 are built in several steps. First the A and B branches are connected to O, then their
relative positioning is set once and for all by successively connecting nodes of the variable with nodes of the
polarizer:

1. A⊖ to A and B⊖ to B

2. A⊕ to A and B⊕ to B

3. A⊖ and A′⊖ to B⊕

4. A⊕ and A′⊕ to B⊖

Each of these (sometimes redundant) connections further restricts the relative positions that the branches can
take: 1. and 2. uniquely determine the orientation of OA′⊖A⊖B⊖ and OA′⊕A⊕B⊕, 3. and 4. make it so that
B and A branches must alternate.
Only two valid configurations are left, only one of which is compatible with each configuration of the polarizer.
Once this step is over all variables are identical and the X branches have not yet been placed.

They are added by connecting O with and only with X ′ all the while A′⊖ is connected to B⊕ and A′⊕ is
connected to B⊖. This forces the X branch to place itself in one of two possible positions: between the ⊕
branches or between the ⊖ branches. These two configurations are illustrated in Figure 1 for one of the two
orientations of the polarizer.
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II Discrete movements
Coordinates are now restricted to be integers. Since this invalidates the equivalence between containment and
intersection models, three different geometries shown below have been studied. All of them leave the problem
NP-hard.

Figure 5: Three different geometries for integer coordinates
In each, the neighborhood of the red point are the orange points.

Left: containment R = 2 (or equivalently, intersection R = 1).
Middle: usual definition of the neighborhood, can be seen as containment R =

√
2

Right: containment R = 1 (or equivalently, intersection R = 1
2 ).

The allowed movements are at least the four nearest neighbors, and at most the considered neighborhood for
the chosen geometry. This ensures that two points cannot exchange positions in one step without encountering
each other.
What follows considers the specific case of containment R = 2, but the proof can easily be adapted to any of
the other two geometries represented in Figure 5 with similar structures.

Once again, the proof relies on the existence of contact traces which can correspond to several configurations,
different enough from one another so that the configuration taken initially has to stay the same during the
whole lifetime of the graph.

A B

X

Figure 6: A variable
The bottom 9-disk structure is rigid and can be extended to form a structure

as large as required that has only one valid configuration excluding symmetries.
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A′

B

B′

A B′ A′

BA

Figure 7: The two possible states of a pair of literals
Left: x set to true. l = x top, l = ¬x bottom.

Right: x set to false. l = x bottom, l = ¬x top.
Once the initialization is done the dashed links are separated and the two clauses can be used independently.

A satisfied literal always has the extra disk on top.
A non-negated literal always has its A node (red) to the left.

Six more configurations can be obtained with a vertical symmetry and a 90-degree rotation,
but they will be rejected when the literal is connected to the rest of the structure.

A B

X

Figure 8: An unsatisfied literal
The X disk leaves no room for any more disks within the enclosed space.

(represented with a containment model)
For now the blue disks are assumed to be immovable, an outer structure will later be set up to make them so.
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A B

X

Figure 9: A satisfied literal
There are four available positions (green crosses) that an extra lone disk can occupy

Figure 10: A clause
Here C = x1 ∨ x2 ∨ ¬x3 ∨ x4, with x1, x4 set to false and x2, x3 set to true (xi from left to right).

Satisfied thanks to x2, the extra disk (green) occupies the free space below the corresponding structure. There
happens to be only one satisfied literal, otherwise it could be below any of them.

Variables have their A node colored red,
either to the left in the case of non-negated literals, or to the right otherwise.

The outer structure (black) has only one realization excluding symmetries and rotations, and guarantees that
there also is only one realization for blue disks.
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III Proof of Theorem 1

Definition 13 (Padded model).
A model is said to be padded if it is injective and no two vertices are at distance exactly 1.

Notation 2.
Dι(v1, v2) ≜ |ι(v1)− ι(v2)| the distance according to ι of two vertices.

ει(x) ≜ minDι(d,v′)>xDι(d, v
′)− x

In a padded model, min(ει(0), ει(1)) is intuitively the distance that vertices can move in both directions without
any event or permutation.
Notice that ει(x) > 0 for any x.

Two permutations or injective models f, g are said to have the same ordering when ∀v, v′, f(v) < f(v′) ⇐⇒
g(v) < g(v′). For two permutations this is equivalent to them being equal, but there may be several models
with the same ordering.
In particular it is unambiguous to refer to “the permutation with the same ordering as ι”, (when ι is an injective
model), but the other way around would be “an injective model with the same ordering as σ”

Lemma 1 (Padding models).
Any model ι can be transformed into a padded model ι′ in the following way:
if σ satisfies ι(v) < ι(v′) =⇒ σ(v) < σ(v′) then there exists ι′ such that ι′(v) < ι′(v′) ⇐⇒ σ(v) < σ(v′).

i.e. any strict ordering that does not contradict ι is realizable.

Proof.
Let σ : V ↪→ [1, n] a target ordering that satisfies ι(v1) < ι(v2) =⇒ σ(v1) < σ(v2).

If there exists v, v′ such that ι(v) + 1 = ι(v′), let ε = min(1, ει(0), ει(1)).
Notice that ε > 0 since there are finitely many pairs of vertices. Let ι0 defined as ι0(v′′) = ι(v′′) when
ι(v′′) < ι(v′) and ι0(v

′′) = ι(v′′) − ε/2 otherwise, i.e. move all vertices to the right of v′ towards the left by a
small amount.
If v1, v2 are both such that ι(v1), ι(v2) < ι(v′) then Dι0(v1, v2) = Dι(v1, v2).
If v1, v2 are both such that ι(v1), ι(v2) ⩾ ι(v′) then Dι0(v1, v2) = Dι(v1, v2).
If ι(v1) < ι(v′) ⩽ ι(v2) then Dι0(v1, v2) = |Dι(v1, v2)− ε/2|
If Dι(v1, v2) ⩽ 1 then Dι0(v1, v2) < 1. If Dι(v1, v2) > 1 then by definition of ε ⩽ ει(1), Dι0(v1, v2) > 1.
Therefore ι0 is a model of G.
Since ε ⩽ ει(0), it follows that ι(v1) < ι(v2) =⇒ ι0(v1) < ι0(v2), as well as ι(v1) = ι(v2) ⇐⇒ ι0(v1) = ι0(v2).
ι0 has at least one fewer pair of nodes satisfying Dι0(v, v

′) = 1, by iterating this process the rest of the proof
can assume that there exists no such pair.

If there exists v, v′ such that Dι(v, v
′) = 0, with v′ having the greatest image by σ of all pairs satisfying this

condition, then let ε = min(1, ει(0), ει(1)). By the previous process, ε > 0.
Let ι0 differing from ι only in that ι0(v′) = ι(v′) + ε/2.
All distances that do not involve v′ are unchanged, and all |Dι0(v

′, v′′) − Dι(v
′, v′′)| = ε/2 < ει(1) guarantee

that Dι(v
′, v′′) ⩽ 1 ⇐⇒ Dι(v

′, v′′) < 1 ⇐⇒ Dι0(v
′, v′′) < 1 ⇐⇒ Dι0(v

′, v′′) ⩽ 1.
In addition 0 < ε/2 < ει(0) implies that ι0(v′) ̸= ι0(v

′′) for all v′′.
By ε ⩽ ει(0), it must be that ι(v1) < ι(v2) =⇒ ι0(v1) < ι0(v2). It also happens that ι(v1) = ι(v′) =⇒ ι0(v1) <
ι0(v

′) coincides with σ(v1) < σ(v′).
ι0 has at least one fewer pair of nodes having ι(v) = ι(v′), iterating this process yields ι′ injective and that
satisfies ι′(v1) < ι′(v2) ⇐⇒ σ(v1) < σ(v2).

Theorem 1

Proof.
(=⇒) Let ι an injective model s.t. ∀v, v′, σ(v) < σ(v′) ⇐⇒ ι(v) < ι(v′).
Let v any vertex and v+ = argmax{σ(v′) | v′ ∈ N [v]} and v− = argmin{σ(v′) | v′ ∈ N [v]}.
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They must satisfy σ(v−) ⩽ σ(v) ⩽ σ(v+) since v ∈ N [v].
In addition ∀v′, σ(v−) ⩽ σ(v′) ⩽ σ(v+) ⇐⇒ ι(v−) ⩽ ι(v′) ⩽ ι(v+) ⇐⇒ v′ ∈ N [v].
Therefore σ is compatible with the neighborhood of v. As this is valid for any v, σ is compatible with neigh-
borhoods of G.

(⇐=) A connected component of size k must span a distance smaller than k in any model (apply triangular
inequality on any path), therefore each connected component can be handled separately by spacing them by
more than n units of distance. The rest of the proof assumes only one connected component. By Lemma 1, a
non-injective model can afterwards be transformed into an injective one, hence it can be assumed that no two
vertices belong to the same class: if they do then consider them to be only one vertex for the construction that
follows, then apply Lemma 1 to obtain the desired ordering.

Let σ any ordering that is compatible with neighborhoods of G.
Assume a numbering 1 ⩽ i ⩽ n, in which vi is such that σ(vi) = i.
A model can be constructed inductively by assuming that i < j ⇐⇒ ι(i) < ι(j) as well as ∀d, v′, Dι(d, v

′) ̸= 1
and δ ≜ maxd,v′∈N(vn)Dι(d, v

′) ⩽ 1− 2−n.

For n = 1 this is easy: ι(v1) ≜ 0 has only one vertex, and δ = 0 ⩽ 1− 2−1.

Inductive step: let i− = min{j | vj ∈ N(vn)} the smallest neighbor of vn. Let ε = min(2−n, ει(1), ει(0)).
Choose ι′(vn) = ι(vi−) + 1− ε/2 < 1.

The constraint ε < ει(0) guarantees that Dι(vi−−1, vn) ⩾ 1− ε/2 + ε > 1.
In addition δ ⩽ 1 − 2−n+1 and the fact that neighborhoods are contiguous provide that vi− ∈ N(vn−1) hence
ι(vn−1) ⩽ ι(vi−) + 1− 2−n+1 < ι′(vn).
The ordering is correct, and maxd,v′∈N(vn)Dι′(d, v

′) ⩽ 1− 2−n is preserved.
A model can be thus iteratively constructed until all vertices are accounted for.

The final ordering is ιf (vi) < ιf (vj) ⇐⇒ i < j.
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IV Proof of Theorem 2

Notation 3.
When Li ∈ Ei, Li is written LinkUp(vi, v′i).
When Li ̸∈ Ei, Li is written LinkDown(vi, v′i).

Gi is the restriction of G to the first i+ 1 instants: Gi = (G0, · · · , Gi).
In particular Gτ = G.

Dφ(t, v, v
′) ≜ |φ(t, v)− φ(t, v′)|

Lemma 2 (Interpolation of a discrete transition).
Let σ G−→ σ′ a discrete transition.
Let ι, ι′ padded models of G with the orderings of σ and σ′ respectively.
Then ψι,ι′ defined as ψι,ι′(t, v) = (1− t) · ι(v) + t · ι′(v) is a continuous transition from ι to ι′ without event.

Proof.
Continuity is obvious. (Definition 8.1) is a direct consequence of ψι,ι′(0, v) = ι(v), the same is true for (Defini-
tion 8.2) which comes from ψι,ι′(1, v) = ι′(v).

Since both ι and ι′ are padded models of G, Dι(v, v
′) ⩽ 1 ⇐⇒ Dι′(v, v

′) ⩽ 1. Since the derivative of ψι,ι′ for
a fixed v with respects to t is a constant, for all pair v, v′, the function f : t 7→ Dψι,ι′ (t, v, v

′) is monotonous,
hence f(0) ⩽ 1 ⇐⇒ f(1) ⩽ 1 yields ∀t, f(t) ⩽ 1 ⇐⇒ f(0) ⩽ 1. There occurs thus no event.

Lemma 3 (Snapshot switch).
Given G and G′ two snapshots differing only by the event {v1, v2}, σ′′ an ordering compatible with both, then
for any ι, ι′ padded models of G and G′ respectively and with the ordering of σ′′, the function ψι,ι′ defined in
the same way as before is a continuous transition from ι to ι′ with event {v1, v2}.

Proof.
Again, continuity is obvious, and the same argument of constant derivative applies to pairs that are not {v1, v2}.
For {v1, v2}, the intermediate value theorem applied to a strictly monotonous function yields conditions 4 to 6
from Definition 8.

Lemma 4 (Eventless transitions).
Given two padded models ι, ι′ of G, if the continuous transition from ι to ι′ is without events then ι and ι′
differ only in the order of vertices within the same class.

Proof.
By contrapositive, assume that ι(v) < ι(v′) and ι′(v) > ι′(v′) yet v′′ ∈ N [v] \ N [v′] (which without loss of
generality also covers the symetric case v′′ ∈ N [v′] \N [v]).
Let φ be a continuous transition. By continuity, since φ(0, v) < φ(0, v′) and φ(1, v) > φ(1, v′) there must be
some t′ for which φ(t′, v) = φ(t′, v′).
φ(t′, v′′) cannot satisfy both Dφ(t

′, v, v′′) ⩽ 1 and Dφ(t
′, v′, t′′) > 1 since Dφ(t

′, v, v′′) = Dφ(t
′, v′, v′′), hence

there must be at least one event that occurs within [0, t′].

Theorem 2

Proof.
(=⇒) Let φ a continuous transition from ι to ι′. Let σ, σ′ the orderings of each.
Consider t0 at which |φ(t0, v1)− φ(t0, v2)| = 1 occurs.
For any δ > 0, v 7→ φ(t0 − δ, v) is a model of G, and v 7→ φ(t0 + δ, v) is a model of G′.
Therefore by continuity, v 7→ φ(t0, v) must be compatible with the neighborhoods of both G and G′.
If v, v′ are such that Dφ(t0, v, v

′) = 0 then they must have the same neihborhood in both G and G′. If a pair
{v, v′} ≠ {v1, v2} is such that Dφ(t0, v, v

′) = 1 then since no event occurs other than {v1, v2}, they must satisfy
Dφ(t0 − δ, v, v′) ⩽ 1 ⇐⇒ Dφ(t0 + δ, v, v′) ⩽ 1.

20



Hence v 7→ φ(t0− δ, v) can be turned into a padded model ι−, and v 7→ φ(t0+ δ, v) can be turned into a padded
model ι+ with the same ordering as ι−.
Let σ′′ this ordering, then since φ(0, •) −→ ι−

{v1,v2}−−−−−→ ι+ −→ φ(1, •) it follows by Lemma 4 that σ G−→ σ′′ G′

−→ σ′.

(⇐=) Let ι0, ι′0 padded models of the snapshots G, G′ respectively, both with the ordering of σ′′.
Consider the function φ defined as ψι,ι0 on [0, 1/3], ψι0,ι′0 on [1/3, 2/3] and ψι′0,ι′ on [2/3, 1], rescaled to a third of
their original interval of definition.
By Lemma 2 and Lemma 3, φ is a continuous transition from ι to ι′ with event {v1, v2}.
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V Properties of PQ-forests
Related to Section 4.3 which defines PQ-forests.

Definition 14 (Equivalent PQ-forests).
Two PQ-forests F1, F2 are equivalent when Σ(F1) = Σ(F2).
(reminder: Definition 12)

Definition 15 (Current permutations).
The current permutations Π(F ) of a PQ-forest F are

• Π(P (v1, · · · , vn)) = S(v1, · · · , vn)

• Π(Q[c1, · · · , cn]) = {(Π(c1) · · ·Π(cn))}

• Π(F {q1, · · · , qn}) = S(Π(q1), · · · ,Π(qn))

Notice that the only difference with Definition 12 is that children of a Q-node cannot be flipped.

Lemma 5 (Transformations that preserve equivalence).
Two forests F1 and F2 that have the same P -nodes are equivalent iff a subset of the Q-nodes in F1 can have
their children flipped around to turn F1 into F ′

1 such that Π(F ′
1) = Π(F2).

Proof.
(=⇒) If neither F1 nor F2 haveQ-nodes with two or more children, then both are of the form F {Q[P (· · · )], · · · ,Q[P (· · · )]}.
Since they have the same P -nodes they must differ only by the order of the children of the root. Since
Π(F {q1, · · · , qn}) = S(Π(q1), · · · ,Π(qn)) then Π(F1) = Π(F2).
Assume without loss of generality that F1 has a Q-node q1 = Q[c1, · · · , cn] with n ⩾ 2. Let v1, vn be vertices
in c1 and cn respectively. If there exists v′ not a descendant of c1, · · · , cn then in all associated permutations
either σ(v1) < σ(vn) < σ(v′) or σ(vn) < σ(v1) < σ(v′) or σ(v′) < σ(v1) < σ(vn) or σ(v′) < σ(vn) < σ(v1).
Since this must be true of any v1, vn, v′ then it follows that F2 must have a Q-node whose leaves are the same
as those of q1.
By induction on the height of the tree this shows that both forests must have Q-nodes that contain the same
children. From there it can be shown that the corresponding Q-nodes must have children that are either in
the same order or reversed. In the first case there is nothing to do, in the second case these nodes can be reversed.

(⇐=) It suffices to prove that flipping the children of any Q-node preserves the associated permutations of the
whole forest. By Σ(Q[c1, · · · , cn]) = {(Σ(c1) · · ·Σ(cn))}∪{(Σ(cn) · · ·Σ(c1))} = Σ(Q[cn, · · · , c1]), the property is
obvious by induction on the structure of the forest.

Definition 16 (Adjacent nodes).
Two elements e1, e2 of F a PQ-forest (vertices, P -nodes, Q-nodes) are said to be “adjacent” in σ a permu-
tation if some vertex within e1 is adjacent in σ to some vertex within e2.
It is said that e1 and e2 are adjacent (resp. can be made adjacent) in Fq when there exists σ ∈ Π(Fq) (resp.
σ ∈ Σ(Fq)) such that e1 and e2 are adjacent in σ.

By Lemma 5, e1 and e2 can be made adjacent iff by flipping the children of some Q-nodes they become adjacent.

Definition 17 (Extremity).
c a node or vertex is said to be at the extremity (resp. Right, Left) of σ a permutation if one of its vertices
is the first or last (resp. last, first) element of σ.
For dir one of “extremity”, “Right”, Left”, c is at (resp. can be placed at) the dir of q a Q-node if there exists
σ ∈ Π(Fq) (resp. σ ∈ Σ(Fq)) such that c is at the dir of σ.

Again by Lemma 5, c can be placed at the extremity of q iff by flipping the children of some Q-nodes c can
become an extremity of q.
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Lemma 6 (Extremity of class).
Given σ, G, G′, where G and G′ differ only by the event {v1, v2}. Let σ′ such that σ G−→ σ′ and σ′ is
compatible with the neighborhoods of G′.
Then σ′ satisfies the additional constraint that both v1 and v2 are at an extremity of their class.

This will be particularly important to show that all permutations are represented at all times, since there will
be an intermediate step during which v1 and v2 are at an extremity of their class. By only merging together
adjacent P -nodes, which will correspond to a permutation within a class, all remaining configurations will be
obtained.

Proof.
Consider a permutation in which σ(v1) < σ(v2), the other case can be handled symetrically.
If the event is a LinkUp, v1 and v2 cannot have the same class in G, hence σ G−→ σ′ must not exchange v1 and
v2 in order to be compatible with neighborhoods of G. This shows σ(v1) < σ(v2).
All σ(v1) < σ(v′) < σ(v2) must both initially and finally be linked with v1 and v2, otherwise a different event
would occur.
In addition, vertices v′ that have the same class in G′ as v2 (resp. v1) must initially already be linked to v1
(resp. v2), and hence must satisfy σ(v1) < σ(v′) < σ(v2). Thus in σ′, v1 and v2 are at an extremity of their
class as defined in Definition 17.

When a LinkDown occurs, this time the classes in G′ must be different.
If σ(v1) < σ(v2), once again all σ(v1) < σ(v′) < σ(v2) must be neighbors of both v1 and v2. Let v′ that has the
same class in G as v1. Then in both G and G′, v′ is linked to v2. Hence σ′(v′) > σ′(v1) which yields that v1 is
indeed to the extremity of its class. The same applies to v2.
If σ(v1) > σ(v2) then v1 and v2 must belong to the same class in G since they are exchanged during σ G−→ σ′.
If the class contains a vertex other than v1 or v2, such vertex must in G′ be linked to both v1 and v2 and thus
be between them. Otherwise v1 and v2 being the only ones in their class are necessarily at extremities.
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VI Algorithm
All P -nodes, Q-nodes and vertices have references to their parents that are implicitly updated when the structure
of the tree is modified.
In all procedures that follow, the PQ-forest is understood to be implicitly passed as a global mutable variable,
and so is the adjacency matrix of the current snapshot.
The input to the algorithm is the number of vertices and the sequence of events L = (Lt)0⩽i⩽τ .

VI.1 Primitives list
It should be self-evident that even with a naive implementation all the following can run in polynomial time.
An additional complexity bound is estimated for an implementation where P -nodes are HashSets, the root is
an array, Q nodes are doubly-linked lists, and all nodes contain a pointer to their direct parent (n is the number
of vertices).

P is the set of P -nodes, Q is the set of Q-nodes. V is the set of vertices.

• Parent : (Q→ Q ∪ {Root}) ∪ (P → Q) O(1)

• IsRightMostChild : Q× (Q ∪ P )→ bool O(1)

• IsLeftMostChild : Q× (Q ∪ P )→ bool O(1)

• ReverseChildren : Q→ () O(1)
constant time since it suffices to toggle a boolean in the parent node (see Section VIII for details)

• RemoveChild : ({Root} ×Q) ∪ (Q× (Q ∪ P )) ∪ (P × V )→ () O(1)

• RemoveChildIfEmpty : Q× P → () O(1)

• ToggleLink : V × V → () O(1)
updates the global adjacency matrix, which starts off empty

• IsLink : V × V → bool O(1)
queries the adjacency matrix

• NewP : V set→ P O(1)

• NewQ : (P ∪Q) doubly-linked-list→ Q O(1)

• Reject : ()→ ∅
interrupts the execution

• Accept : ()→ ∅

• Unreachable : ()→ ∅
indicates that this specific configuration cannot happen

• InsertChild : Q× index× (Q ∪ P )→ () O(1)
constant time because the index contains a pointer to the location in the doubly linked list

• TransferChildren : Q× index× (Q ∪ P ) doubly-linked-list→ () O(1)

• IsNextChild : Q× (Q ∪ P )2 → bool O(1)

• IsToTheLeft : Q× P × P → bool O(n)

• Neighborhood : (P ∪ V )→ range O(n)
calculates the neighborhood before the link is toggled

range is a pair of pointers to the leftmost and rightmost elements

• LeftNeighborhood : (P ∪ V )→ range O(n)

• RightNeighborhood : (P ∪ V )→ range O(n)
does not include the P -node given as parameter

• LeftNeighbor : (P ∪ V )→ P option O(1)
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• RightNeighbor : (P ∪ V )→ P option O(1)

• DirectNeighbors : (P ∪ V )→ P set O(1)
simply returns the set {LeftNeighbor(c),RightNeighbor(c)}

• LeftOf : (Q ∪ P )→ index O(1)

• RightOf : (Q ∪ P )→ index O(1)

• MergeP : P × P → () O(n)
O(1) if one of the two is of size 1

• LeftMostPNeighbor : (P ∪ V )→ P O(n)

• RightMostPNeighbor : (P ∪ V )→ P O(n)

• LowestCommonAncestor : P × P → (Q ∪ {Root})× (Q ∪ P )× (Q ∪ P ) O(n) (O(1) amortized)
The extra return values are the first different ancestors: direct children of the lowest common ancestor
that are parents of the first and second P nodes respectively

VI.2 Handle LinkUp

1: procedure BringToExtremity(q: Q, c: Q ∪ P , dir: Right or Left)
2: if q = c then
3: return
4: else
5: a← Parent(c) ▷ a must be a Q node
6: if dir = Right and IsRightMostChild(a, c)
7: or dir = Left and IsLeftMostChild(a, c) then
8: skip ▷ already correctly positioned
9: else if dir = Left and IsRightMostChild(a, c)

10: or dir = Right and IsRightMostChild(a, c) then
11: ReverseChildren(a)
12: else
13: Reject() ▷ p is in the middle of a Q-node, it cannot be the right-most or left-most child
14: end if
15: BringToExtremity(q, a) ▷ recursively handle the parent
16: end if
17: end procedure ▷ total O(n) (O(1) amortized)

Lemma 7.
BringToExtremity takes q, c, dir and rejects if c cannot be placed at the extremity of q, otherwise it
transforms Fq without changing its associated permutations, so that c is to the dir of Fq.

Proof. By induction on the depth of the recursive calls.
The initialization is for q = c: Σ(T ) = Σ(q) = Σ(c) has c itself at the edge.
Assume that q = Parent(c′) and c′ is an ancestor of c, and that BringToExtremity(c′, c) was executed,
hence c is to the dir of c′.

q = [x1, · · · , xn, c′, y1, · · · , ym] with n,m > 0, then all elements of Σ(T ) have at least one element to the left of
elements of c′ and another one to the right.
There is no satisfactory permutation and the algorithm rejects.

Otherwise either q = [c′, x1, · · · , xn] or q = [xn, · · · , x1, c′], both of which have the same associated permutations.
Transforming one into the other therefore preserves the associated permutations but ensures c′ is to the dir of
q. Since c itself is to the dir of c′ then c is to the dir of q, which concludes.
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1: procedure MakeAdjacent(p1, p2: P) → (Q ∪ {Root})× (Q ∪ P )× P × (Q ∪ P )× P
2: lca, c1, c2 ← LowestCommonAncestor(p1, p2) ▷ O(n) (O(1) amortized)

▷ with c1 ̸= c2 the children of lca that are ancestors of p1 and p2 respectively
3: if lca ̸= Root then
4: if IsNextChild(lca, c1, c2) then
5: skip
6: else if IsNextChild(lca, c2, c1) then
7: p1, p2 ← p2, p1
8: c1, c2 ← c2, c1
9: else

10: Reject()
11: end if
12: end if

▷ now c1 is directly to the left of c2
13: BringToExtremity(c1, p1,Right) ▷ O(n) (O(1) amortized)
14: BringToExtremity(c2, p2, Left) ▷ O(n) (O(1) amortized)
15: return (lca, c1, p1, c2, p2)
16: end procedure ▷ total O(n) (O(1) amortized)

Lemma 8.
MakeAdjacent(p1, p2) rejects all cases where p1 cannot be made adjacent to p2 and that satisfy
Parent(p1) ̸= Parent(p2), otherwise it applies reversals of Q-nodes so that the associated permutations do
not change but p1 becomes adjacent to p2 in the new forest.

Proof.
Since the only operation that modifies the tree (BringToExtremity) has been proven not to change the
associated permutations, it follows that MakeAdjacent preserves the associated permutations.

Note that c1 and c2 are well defined because Parent(p1) ̸= Parent(p2) so there exists c1 ̸= c2 children of lca
that are ancestors of p1 and p2 respectively.

If lca is the root then there exists a permutation in which p1 is adjacent to p2 iff p1 and p2 can be made to be
on the edges of c1 and c2.

Otherwise the lca is someQ node [x1, · · · , xn, c1, y1, · · · , ym, c2, z1, · · · , zk] or [zk, · · · , z1, c2, ym, · · · , y1, c1, xn, · · · , x1].
If m > 0 then all associated permutations have at least one element that separates any element of c1 (including
p1) from any element of c2 (including p2). This proves that in no permutation can p1 be adjacent to p2.

If lca = [zk, · · · , z1, c2, c1, xn, · · · , x1] it suffices to exchange the names p1 and p2 so that lca is of the form
[x1, · · · , xn, c1, c2, z1, · · · , zk] as required.

1: procedure ContractQTower(c, q: Q)
2: if c = q then
3: return
4: else
5: a← Parent(q)
6: TransferChildren(a, at:RightOf(q), from:q)
7: RemoveChild(a, q)
8: ContractQTower(c, a) ▷ O(n) recursive calls (O(1) amortized)
9: end if

10: end procedure ▷ total O(n) (O(1) amortized)

Lemma 9 (Contraction preserves the current permutations).
If F is a forest, and c is an ancestor of q in F , then applying ContractQTower(c, q) yields F ′ that has
the same current permutations as F and in which children of q are now children of c.
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Proof.
By induction on the depth of recursive calls.
Initialization is for c = q which already satisfies the requirements.
It now suffices to show that the insertion and removal of children make it so that before the recursive call, the
current permutations have not changed and children of q have become children of a.

Let a = Q[x1, · · · , xn, q, y1, · · · , ym] with n,m ⩾ 0.
With q = Q[c1, · · · , ck], the call to TransferChildren turns a into Q[x1, · · · , xn, q = Q[], c1, · · · , ck, y1, · · · , ym]
then a′ = Q[x1, · · · , xn, c1, · · · , ck, y1, · · · , ym].
The set of current permutations of a is Π(a) = {(Π(x1) · · ·Π(xn)Π(q)Π(y1) · · ·Π(ym))} which by definition is
equal to (Π(x1) · · ·Π(xn)Π(c1) · · ·Π(ck)Π(y1) · · ·Π(ym)) which coincides with Π(a′).

This concludes the proof that ContractQTower does not change the current permutations of F and “trans-
fers” children to a parent Q-node.
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1: procedure ReorderLinkUp(v1, v2: V )
2: p1 ← Parent(v1)
3: p2 ← Parent(v2)
4: assert p1 ̸= p2 ▷ if they were in the same P -node they would have to be already connected
5: if Parent(p1) = Parent(p2) then

▷ they are within the same Q-node at the last level
6: a← Parent(p1)
7: i−1 ← LeftMostPNeighbor(p1) ▷ O(n)
8: i−2 ← LeftMostPNeighbor(p2) ▷ O(n)
9: i+1 ← RightMostPNeighbor(p1) ▷ O(n)

10: i+2 ← RightMostPNeighbor(p2) ▷ O(n)
11: if IsNextChild(a, p1, i−2 ) and IsNextChild(a, i+1 , p2) then ▷ case (1)
12: RemoveChild(p1, v1)
13: RemoveChild(p2, v2)
14: InsertChild(a, at:RightOf(p1),NewP((v1)))
15: InsertChild(a, at:LeftOf(p2),NewP((v2))
16: RemoveChildIfEmpty(a, p1)
17: RemoveChildIfEmpty(a, p2)
18: else if IsNextChild(a, i+2 , p1) and IsNextChild(a, p2, i−1 ) then ▷ case (1′)
19: RemoveChild(p1, v1)
20: RemoveChild(p2, v2)
21: InsertChild(a, at:LeftOf(p1),NewP((v1)))
22: InsertChild(a, at:RightOf(p2),NewP((v2))
23: RemoveChildIfEmpty(a, p1)
24: RemoveChildIfEmpty(a, p2)
25: else ▷ case (2)
26: Reject()
27: end if
28: else ▷ case (3)
29: lca, c1, p1, c2, p2 ←MakeAdjacent(p1, p2) ▷ O(n) (O(1) amortized)
30: if p1 ̸= Parent(v1) then
31: v1, v2 ← v2, v1
32: end if

▷ lca = Q[· · · , c1 = Q[Q[· · ·Q[· · · , p1]]], c2 = Q[Q[Q[p2, · · · ] · · · ]], · · · ]
33: ContractQTower(c1,Parent(p1)) ▷ O(n) (O(1) amortized)
34: ContractQTower(c2,Parent(p2)) ▷ O(n) (O(1) amortized)

▷ lca = Q[· · · , c1 = Q[· · · , p1], c2 = Q[p2, · · · ], · · · ]
35: RemoveChild(p1, v1)
36: RemoveChild(p2, v2)
37: RemoveChild(lca, c1)
38: InsertChild(c2, at:Left,NewP((v2)))
39: InsertChild(c2, at:Left,NewP((v1)))
40: TransferChildren(c2, at:Left, from:c1)

▷ lca = Q[· · · , c2 = Q[· · · , p1 \ v1, P (v1), P (v2), p2 \ v2, · · · ], · · · ]
41: end if
42: end procedure ▷ total O(n)

Lemma 10 (Link up).
ReorderLinkUp produces the set of permutations that are compatible with the neighborhoods of both G and
G′ if the event is a LinkUp.

Proof.
Case 1: Same Q parent, adjacent
In particular i1 = i−2 − 1 requires that p1 is to the left of p2.
The case (1′) is the symetrical configuration and can be handled in the same way.
a must be of the form Q[· · · , P (v1, v′1, · · · , v′m), c1, · · · , cn, P (v2, v′′1 , · · · , v′′k ), · · · ].
In addition since v2 has all of c1, · · · , cn as neighbors, they must be P -nodes.
Since v1 and v2 should be connected to each other but not v1 to the rest of p2 or v2 to the rest of p1, then
should a solution exist it must have v1 to the right of p1 \ v1 and v2 to the left of p2 \ v2.
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Hence this case transforms a into Q[· · · , P (v′1, · · · , v′m), P (v1), c1, · · · , cn, P (v2), P (v′′1 , · · · , v′′k ), · · · ], which repre-
sents exactly the permutations compatible with the neighborhoods of both G and G′ and in which v1 and v2 are
at an extremity of their class. By Lemma 6 this corresponds to all permutations compatible with both G and G′.

Case 2: Same Q parent, not adjacent
Since i−j and i+j are extremal, this case can only be reached by having either i1 outside of [i−2 − 1, i+2 + 1] or i2
outside of [i−1 − 1, i+1 + 1].
Assume without loss of generality that i1 < i−2 − 1 < i2.
In all associated permutations, i1 and i2 are separated by i−2 − 1.
Therefore it is impossible that all neighbors of p2 be contiguous without reordering the nodes.

Case 3: Different direct Q parents
If p1 and p2 cannot be made adjacent then it is impossible that both all neighbors of p1 be contiguous and no
neighborhood spans more than a single Q-node.
MakeAdjacent rejects in these cases.
If they can be made adjacent, then after the call to MakeAdjacent, lca is of the form Q[· · · , c1 = Q[Q[· · ·Q[· · · , p1]]], c2 =
Q[Q[Q[p2, · · · ] · · · ]], · · · ].
The associated permutations in which p1 is adjacent to p2 are exactly the current permutations and their re-
verse, hence the calls to ContractQTower which preserve the current permutation do not remove allowed
permutations from the set of associated permutations.
The insertions and removals of children at lines 40 to 45 make v1 adjacent to v2, and them being at extremities
of their nearest Q parent guarantees that their class contains no other vertex.
Hence the forest describes all permutations in which v1 and v2 are at extremities of their class.
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VI.3 Handle LinkDown

1: procedure ReorderLinkDown(v1, v2: V )
2: p1, p2 ← Parent(v1),Parent(v2)
3: assert Parent(p1) = Parent(p2) ▷ since to be linked they must belong to the same direct Q parent
4: q ← Parent(p1)
5: RemoveChild(p1, v1)
6: RemoveChild(p2, v2)
7: N−

1 , N
+
1 ← LeftNeighborhood(p1),RightNeighborhood(p1) ▷ O(n)

8: N−
2 , N

+
2 ← LeftNeighborhood(p2),RightNeighborhood(p2) ▷ O(n)

9: if N−
1 ∩N−

2 ̸= ∅ or N+
1 ∩N+

2 ̸= ∅ then ▷ O(1) intersection for ranges
10: Reject() ▷ claw-like structure, case (1)
11: else if N−

1 ∩N+
2 ̸= ∅ and N+

1 ∩N−
2 ̸= ∅ then

12: Unreachable() ▷ case (2)
13: else if (N+

1 = ∅ and N−
2 = ∅) or (N−

1 = ∅ and N+
2 = ∅) then

14: Unreachable() ▷ case (3)
15: else

▷ determine the order between v1 and v2
16: if i1 > i2
17: or IsToTheLeft(q, p2,RightNeighbor(p1))
18: or IsToTheLeft(q,LeftNeighbor(p2), p1) then

▷ note that the LeftNeighbor or RightNeighbor may not even exist,
▷ in which case the comparison is false

19: v1, v2 ← v2, v1
20: p1, p2 ← p2, p1
21: i1, i2 ← i2, i1
22: N−

1 , N
−
2 ← N−

2 , N
−
1

23: N+
1 , N

+
2 ← N+

2 , N
+
1

24: end if
▷ v1 can be placed to the left of v2

25: if N−
1 ∪N−

2 ∪N+
1 ∪N+

2 = ∅ then ▷ case (4)
26: assert p1 = p2
27: i← LeftOf(p1)
28: RemoveChild(q, p1)
29: q′ ← NewQ([NewP((v1)), p1,NewP((v2))]))
30: InsertChild(q, at:i, q′)
31: RemoveChildIfEmpty(q′, p1)
32: else ▷ case (5)
33: InsertChild(q, at:LeftOf(p1),NewP((v1)))
34: InsertChild(q, at:RightOf(p2),NewP((v2)))
35: RemoveChildIfEmpty(q, p1)
36: RemoveChildIfEmpty(q, p2)
37: end if
38: end if
39: end procedure

Lemma 11 (Link down).
ReorderLinkDown produces the set of permutations that are compatible with the neighborhoods of both G
and G′ if the event is a LinkDown

Proof.
Case 1: Claw
Assume without loss of generality that v′ ∈ N−

1 ∩N−
2 ̸= ∅, the other case can be handled by symmetry.

As v′ is not in the same class as v1 and v2, they may not switch positions during a discrete transition. Therefore
after the discrete transition, both v1 and v2 must be to the right of v′. This contradicts compatibility with
neighborhoods of either v1 or v2 since one of them separates the other from v′ and they are not connected.
Therefore there can be no discrete transition, which implies that there exists no temporal model and the algo-
rithm must reject.
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Case 2: Loop
Let v ∈ N−

1 ∩N+
2 , v′ ∈ N+

1 ∩N−
2 .

All associated permutations σ must satisfy σ(v) < σ(v1) < σ(v′) < σ(v2) < σ(v) which is impossible.
Thus this case in unreachable.

Case 3: Other incompatibilities
Since v1 and v2 are linked, compatibility of neighborhoods must imply that all v ∈ N+

1 ∪ N+
2 , v′ ∈ N−

1 ∪ N−
2

satisfy σ(v) < σ(v1), σ(v2) < σ(v′). If both N+
1 ̸= ∅ and N+

2 ̸= ∅ then v1 or v2 separates the other from its
neighborhood. The same can be said if N−

1 ̸= ∅ and N−
2 ̸= ∅.

If N−
1 ̸= ∅ and N+

1 ̸= ∅ then v2 separates v1 from its neighborhood. The reverse holds if N−
2 ̸= ∅ and N+

2 ̸= ∅.
Therefore all of these cases are unreachable.

Case 4: Empty left- and right-neighborhoods
If v1 and v2 are both in the same class as their whole neighborhood, is particular they must share the same
class hence p1 = p2.
Permutations in which v1 and v2 are at an extremity of their class are (v1, p1 \ {v1, v2} , v2) and (v2, p1 \
{v1, v2} , v1), hence the creation of a Q-node produces all possible permutations.

Case 5: Default
If v1 is to the right of v2 or v1 has a right neighbor that is to the right of v2 or v2 has a left neighbor that is to
the left of v1, then exchange v1 and v2.
Hence the following assumes that v1 is not initially to the right of v2, that any left neighbors of v1 are to the
left of v2, and that any right neighbors of v2 are to the right of v1.
By the previous case it also assumes that there exists at least one such neighbor.
Therefore the nearestQ-node is of the form either Q[x1, · · · , xn, P (v1, v′1, · · · , v′k), · · · , P (v2, v′′1 , · · · , v′′h), y1, · · · , ym]
or Q[x1, · · · , xn, P (v1, v2, v′1, · · · , v′k), y1, · · · , ym] and in both cases all associated permutations whose neighbor-
hood is compatible with the snapshots both before and after the event are reachable only by exchanging vertices
that are in the same class from associated permutations of
Q[x1, · · · , xn, P (v1), P (v′1, · · · , v′k), · · · , P (v′′1 , · · · , v′′h), P (v2), y1, · · · , ym] and
Q[x1, · · · , xn, P (v1), P (v′1, · · · , v′k), P (v2), y1, · · · , yn] respectively.

VI.4 Main loop

1: procedure MergeClass(v: V )
2: for n in DirectNeighbors(v) do ▷ O(1) iterations
3: if Neighborhood(v) = Neighborhood(n) then ▷ O(n)

▷ can only be true in at most one of the iterations of the loop
▷ since the left and right direct neighbors of v do not have the same neighborhood

4: MergeP(Parent(v), n) ▷ O(|Parent(v)|)
5: end if
6: end for
7: end procedure ▷ Total O(n)

Lemma 12 (Merge classes).
If v is to the edge of its class in G′ after a single event {v, v′}, then MergeClass(v) restores the property
that the P -node of v is exactly its class, with the possible exception of v′.

Proof.
If only the v − v′ link changes state, then only the vertices v and v′ can change neighborhoods. Since it is
assumed that before the modification, the forest satisfied the condition that two vertices share the same P -node
iff they belong to the same class, then it follows that by having their neighborhood change by at most one
vertex, v can now belong to the same class as at most one directly ajacent P -node on each side, excluding v′.
Hence after merging the P -node of v with both of its adjacent P -nodes if they share the same class, v is now in
the same P -node as all other elements of its class, except possibly v′.
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Lemma 13 (Double merge).
In the conditions of Lemma 12, consecutive calls to MergeClass(v) and MergeClass(v′) fully restore the
property that the P -nodes of v and v′ are exactly their class.

Proof.
Notice that if v and v′ do not share the same class then Lemma 12 is already sufficient.
If v and v′ do have the same final class, then either the class has another vertex v′′ and the above lemma
applied to v − v′′ and v′ − v′′ separately yields that v and v′ indeed share the same neighborhood after calls
to both MergeClass(v) and MergeClass(v′), or the class is otherwise empty, in which case they must be
adjacent, and will be merged as early as the first call to MergeClass(v) (MergeClass(v′) will afterwards be
a no-op).

1: procedure Main(n: int, L: event list)
2: global T ← {NewQ([NewP((1))]), · · · ,NewQ([NewP((n))])} ▷ O(n) (O(1) with lazy initialization)

▷ adjacency matrix also lazily initialized to empty in O(1)
3: for L in L do ▷ O(|E|) iterations
4: match L with
5: case LinkUp(v1, v2)
6: assert not IsLink(v1, v2)
7: ReorderLinkUp(v1, v2) ▷ O(n)

8: case LinkDown(v1, v2)
9: assert IsLink(v1, v2)

10: ReorderLinkDown(v1, v2) ▷ O(n)

11: end match
12: ToggleLink(v1, v2)

▷ v1 and v2 are alone in their P -node
13: MergeClass(v1) ▷ O(1)
14: MergeClass(v2) ▷ O(1)
15: end for
16: Accept()
17: end procedure ▷ total O(n · |E|)

Theorem 3 (Complete representation).
At each end of a loop, either there exists a temporal model compatible with events so far, in which case T
represents all possible permutations of the last embedding, or there exists no temporal model and the algorithm
has rejected.

Proof.
The first part inside the loop (lines 4 to 11) turns the initial PQ-forest into one that is compatible with both
the initial and final snapshots, only by permutations of vertices that share the same class. By the previous
theorems this corresponds to a discrete transition. The second part (lines 12 to 14) also corresponds to a discrete
transition since it only merges adjacent P -nodes and hence doesn’t change the ordering of vertices which do not
have the same class.
By Lemma 13 the property that P -nodes are exactly classes is restored at the end of the loop iteration.
Both of these together guarantee that at all times the associated permutations of the forest are valid permuta-
tions of the dynamic UDG.
The subcall to ReorderLinkUp and ReorderLinkDown hence rejects configurations where there exists no
temporal model.
Also notice that ReorderLinkUp has the effect of placing the two nodes in the same direct Q parent, which
preserves another of the announced invariants.

Since at the end of line 11 it provides all permutations compatible with both snapshots that have v1 and v2
as an extremity of their class, then by Lemma 6 it provides all permutations compatible with both snapshots.
Theorem 2 and Lemma 13 then prove that the state of the forest at the end of the loop iteration represents all
possible final orderings of a model.
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VII Extensions to the algorithm

VII.1 Constraints imply bounded speed

Consider a sequence σ0
G0−−→ σ1

G1−−→ · · · Gτ−−→ στ+1.
There exists a temporal model ι0

L1−−→ ι1
L2−−→ · · · Lτ−−→ ιτ such that the speed of all vertices is bounded:

∃K,∀i,∀v, |ιi(v)− ιi+1(v)| ⩽ K

Take in particular K = 1, and consider the event {v1, v2}, assuming without loss of generality that σi(v1) <
σi(v2).
During the construction of a model of σi in Theorem 1, positions of v′ such that σi(v′) < σi(v2) do not change.
σi(v2) itself either must be moved to the right by at most 1 if it has other neighbors. Moving all ιi+1(v) ≜ ιi(v)+1
for σi(v) ⩾ σi(v

′) displaces them by a bounded distance, and links can afterwards be restored only by moving
them to the left. Therefore a continuous transition with a single event can induce only a bounded displacement.

This provides that as long as the frequency of events is bounded, the temporal model constructed by the
algorithm can remain physically plausible.

VII.2 Handling (or not) of simultaneous events
An argument for disallowing simultaneous events is the following: O(k) events occurring simultaneously during
O(1) snapshots can produce temporal models in which at least one node must move by a distance Ω(k).

In other words, if an unbounded number of events can happen at the same time, there may be a vertex that is
forced to acquire an unbounded speed.

Let n > 2, V = {v1, · · · , vn}, and consider the three consecutive snapshots:

• G0 : {vi, vj} ∈ E0 ⇐⇒ |i− j| ⩽ 2

• G1 : {vi, vj} ∈ E1 ⇐⇒ |i− j| ⩽ 1

• G2 : E2 = ∅

There exists a model: ι0 : vi 7→ i
2 ; ι1 : vi 7→ i; ι2 : vi 7→ 2i.

Naive interpolation will indeed make events simultaneous.
Adding all inequalities of the form |ι0(vi)−ι0(vi+2)| ⩽ 1 will provide |ι0(v1)−ι0(vn)| ⩽ n/2, and the combination
of all |ι2(vi)− ι2(vi+1)| for i ̸= j as well as the ordering imposed to remain compatible with the neighborhoods
of G1 implies |ι2(v1)− ι2(vn)| > n.

Since in two snapshots v1 and vn travel Θ(n) relative to each other, at least one of them must travel Ω(n) in
absolute distance.
It leaves open the question of deciding algorithmically whether given events produce this phenomenon or not.
However, if simultaneous events occur only to vertices that share the same class, it is easy to adapt the algorithm
so that ReorderLinkUp and ReorderLinkDown can handle a pair of subsets of vertices contained in one
or two P -nodes, instead of just a single vertex. It suffices to treat all these vertices as a single one during the
relevant steps. This may however make some steps of the algorithm not run in O(1) anymore.

VII.3 Initializing the algorithm with existing links
The algorithm assumes that the initial configuration has no links. However, it would be useful to be able to
adapt the algorithm were that not the case.
An algorithm for creating a PQ-tree from an interval graph is already described in [Consecutive_Ones].
Although the definition therein is a bit different in that (among other things) it allows P -nodes to not be
leaves, their construction produces (in linear time) PQ-trees for unit interval graphs in which each connected
component has the form Q[P (· · · ), · · · , P (· · · )].

A PQ-forest can easily be created from these by only adding the root as a parent of the tree of each connected
component.
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VII.4 Computing compatible initial configurations
The previous algorithm is only concerned with deciding whether the given temporal graph is unit interval, and
it produces as a by-product a description of all possible orderings of the vertices in their final configuration.

However, in order to know the actual possible initial configurations, it is required to at least perform a second
pass in reverse order of events, starting from the PQ-forest obtained at the end of the first pass.
It happens that this second pass is indeed sufficient to know not only all initial configurations compatible with
the events that follow, but also all intermediate configurations.

Notice that if ι L−→ ι′ then ι′ L−→ ι. Indeed, conditions 1 to 6 are easily verifiable for (t, v) 7→ φ(1− t, v).
The same can be said of discrete transitions: σ G−→ σ′ implies σ′ G−→ σ.
In particular since the final permutations are στ+1 such that there exists σ0, · · · , στ for which σ0

G0−−→ σ1
G1−−→

· · · Gτ−−→ στ+1, this is equivalent to the fact that στ+1
Gτ−−→ · · · G1−−→ σ1

G0−−→ σ0.

Two passes of the algorithm can thus determine all such possible στ and σ0, as well as the intermediate steps.

Similarly, the algorithm can be adapted if the initial configuration is known: instead of initializing to
F {Q[P (v1)], · · · ,Q[P (vn)]}, start with F {Q[P (v1), · · · , P (vn)]}, which does not allow reorderings at the toplevel.

VII.5 Amortized complexity analysis
Notice that BringToExtremity and MakeAdjacent are always followed by calls to ContractQTower
which removes all but the last of the Q-nodes explored during calls to the former two functions. Hence a given
Q-node is only ever visited by BringToExtremity and MakeAdjacent once in its lifetime, which justifies
the O(1) amortized time.

LowestCommonAncestor also performs as many loop iterations as the distance to the common ancestor in
question, making it run in O(1) amortized as well.

1: procedure LowestCommonAncestor(p1, p2: P) → (Q ∪ {Root})× (Q ∪ P )× (Q ∪ P )
2: A1 ← HashMap[(Q ∪Root)→ (Q ∪ P )]
3: A2 ← HashMap[(Q ∪Root)→ (Q ∪ P )]
4: a1 ← p1
5: a2 ← p2
6: loop
7: if Parent(a1) ∈ A2 then return (Parent(a1), a1, A2[Parent(a1)])
8: else if Parent(a2) ∈ A1 then return (Parent(a2), A1[Parent(a2)], a2)
9: else

10: A1[Parent(a1)]← a1; a1 ← Parent(a1) ▷ stop at the root
11: A2[Parent(a2)]← a2; a2 ← Parent(a2)
12: end if
13: end loop ▷ O(n) iterations (O(1) amortized)
14: end procedure ▷ total O(n) (O(1) amortized)

VII.6 Efficient neighborhood query
Primitives which take O(n) time are only neighborhood queries (Neighborhood, LeftNeighborhood,
RightNeighborhood, LeftMostPNeighbor, RightMostPNeighbor) as well as IsToTheLeft.

The improvement proposed here makes all of these run in amortized time O(lg n) at the cost of increasing
the complexity of IsRightMostChild, IsLeftMostChild, RemoveChild, RemoveChildIfEmpty, In-
sertChild, TransferChildren to O(lg n) as well.

Organize the children of a Q-node as a self-balancing AVL tree ([AVL]) of P - and Q-nodes. Consecutive chil-
dren are in order, as nodes of the AVL tree. There are no real “keys” to order the nodes by, but insertions and
deletions are only ever done at extremities of the AVL tree or next to a preexisting entry to which a direct
pointer is available, so the keys are not required to know where to insert the element.
This change already makes most of the functions from the previous paragraph run in O(lg n) since they are only
deletions, insertions, and queries to the smallest and greatest elements.
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TransferChildren is a matter of inserting an AVL tree into another, which can be done in O(lg n) by first
splitting in two the outer tree in O(lg n) time, then joining the pieces also in O(lg n).

The functions IsNextChild, LeftNeighbor, RightNeighbor, DirectNeighbors still take amortized time
O(1) since such is the cost of accessing the next and previous elements in a balanced binary tree.
IsToTheLeft can be implemented by only exploring the two chains of parents until the nearest common an-
cestor, which is at a distance O(lg n) thanks to the AVL tree remaining balanced.
Neighborhood queries can all be implemented only in terms of RightMostPNeighbor and LeftMostP-
Neighbor:

Neighborhood(p) = [LeftMostPNeighbor(p),RightMostPNeighbor(p)]
LeftNeighborhood(p) = [LeftMostPNeighbor(p),LeftNeighbor(p)]
RightNeighborhood(p) = [RightNeighbor(p),RightMostPNeighbor(p)]

RightMostPNeighbor is of course the symetric of LeftMostPNeighbor, and thanks to the neighborhood
of each vertex being contiguous, one can perform a dichotomic search to find the extremity of the neighborhood.

1: procedure RightMostPNeighbor(p: P) → P
2: best← p
3: curr ← p
4: loc← []
5: while AvlParent(curr) ̸= null do ▷ until the root
6: if curr = AvlLeftChild(AvlParent(curr)) then
7: loc← Left :: loc
8: else
9: loc← Right :: loc

10: end if
11: curr ← AvlParent(curr)
12: end while ▷ O(lg n) iterations

▷ curr is now the root, and loc indicates where we are relative to p
13: while curr ̸= null do ▷ until the leaves
14: match IsLink(p, curr), loc with ▷ assume that IsLink returns false if curr is a Q-node
15: case false, Left :: rest ▷ too much to the right
16: curr ← AvlLeftChild(curr)
17: loc← rest
18: case false,Right :: rest ▷ too much to the left
19: curr ← AvlRightChild(curr)
20: loc← rest
21: case false, [] ▷ too much to the right, can’t be a Q-node
22: curr ← AvlLeftChild(curr)
23: case true, Left :: rest
24: best← curr ▷ currently to the right, new best
25: curr ← AvlRightChild(curr)
26: loc← [] ▷ loc is no longer relevant
27: case true,Right :: rest ▷ too much to the left, can’t be a Q-node
28: curr ← AvlRightChild(curr)
29: loc← rest
30: case true, []
31: best← curr
32: curr ← AvlRightChild(curr)
33: end match
34: end while ▷ O(lg n) iterations
35: return best
36: end procedure ▷ total O(lg n)

This procedure is essentially a dichotomy to find the edge of the neighborhood, with a small trick to handle
the fact that the property is not strictly monotonous but a specific case of bitonic: when looking at all nodes
in increasing order, the property is false then true then false again. Knowledge of a specific node for which the
property is true is required.
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The procedure is divided in 3 phases:

1. climb towards the root and record the path;

2. follow the path in the reverse direction until the first node belonging to the neighborhood;

3. from there do a dichotomy: go right if the current node is in the neighborhood, left otherwise.

Figure 11 shown a sample illustration of the path taken by the procedure, with the three phases distinguished.
p is the initial node, the neighborhood N [p] is in orange (nodes not part of the neighborhood in black), and
nodes circled red are successive values of best.

p

N [p]

1

2

3

Figure 11: Three-phase dichotomy in a binary search tree for a false-true-false property

This improvement makes every single primitive function run in time at most O(lg n) amortized. The algorithm
having no loops executed more than O(1) times at each event, it means that handling each event takes O(lg n)
amortized time.
The whole procedure therefore runs in time O(τ · lg n), which is also the expected size of the input, since each
event being represented by two identifiers makes it of size lg n.

With this improvement, the algorithm therefore runs in linear time, as is the case for many recognition proce-
dures for the static problem.
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VIII Orientation
The requirement to enable flipping children of Q-nodes is without consequence for time complexity, but it makes
implementations more difficult.

An implementation that would disregard efficiency could define • : Tree→ Tree as:

ε = ε




A

βα




=

A

αβ

Instead, a method will be used here to simulate this behavior without having to actually execute • (this would
take linear time, which is too much for our purposes).
Each node of the AVL trees involved should have an orientation field that can be either ← or →.
The semantics of the order in which the nodes are is written J•K : Tree→ S(Node) and defined as follows:

JεK = ε

u

wwwwwww
v

−→
A

βα

}

�������
~

= JαKA JβK

u

wwwwwww
v

←−
A

βα

}

�������
~

= JβKAJαK = JαKA JβK

Where • : S(Node)→ S(Node) sends a1a2 · · · an−1an to anan−1 · · · a2a1.
If α is a tree, ←−α is defined as α where the root has had its orientation flipped. Notice that J←−α K = JαK = JαK.
It must now be shown that all operations on AVL trees can be adapted to preserve semantics w.r.t. orderings
of nodes. The balance factor bf(←−α ) is naturally defined to be equal to bf(α) = −bf(α).

VIII.1 LeftChild, RightChild and derivatives
LeftChild(n) just needs to check v.orientation: if it is → return LeftChild(v.left), otherwise return
RightChild(v.right).
RightChild is symetric.

All other functions that only rely on LeftChild and RightChild need not be modified (e.g. LeftMostChild,
LeftMostNeighbor, IsNextChild, IsToTheLeft,...).

VIII.2 InsertChild and TransferChildren
In the case of InsertChild, the newly created node can be given orientation → by default.

TransferChildren(q, i, c) needs a bit more care. The actual orientation of c and i must be calculated relative
to the lowest common ancestor of q and c.
If the parity of the number of nodes having← is the same in the paths from i to lca or from the former parent of
c to lca nothing needs to be done. Otherwise the root of the AVL tree representing c should have its orientation
flipped.

VIII.3 Tree rotations
AVL trees need left and right rotations for balancing. They must be adapted to preserve ordering. Only the left
rotation will be studied here, the right rotation is symetrical. There are a priori 4 cases to consider depending
on the orientation of the root and the pivot.
Notice that all rotated trees have A and B oriented to the right, so what these modified rotations actually do
is amortize the cost of • by incrementally propagating ←−• to the leaves.
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J•K=(JαKAJβK)BJγK

Figure 12: Left rotation in a standard binary tree
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Figure 13: Left rotations adapted to oriented trees
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IX Study of forbidden patterns
It is known [PIG_Forbidden] that static proper interval graphs are exactly (sun, hole, net, claw)-free graphs,
i.e. graphs that contain neither of the patterns shon in Figure 14 as an induced subgraph. The purpose of this
section is to study how this result translates to dynamic PIG.

Figure 14: The forbidden static patterns
Top (left to right): claw, net, sun

Bottom: C4, C5, C6, etc. (collectively hole or Cn+4)

Conjecture 1.
All forbidden temporal patterns contain in their footprint a forbidden static pattern

An induced subgraph GV ′,[i−,i+] =
⋃
i−⩽i⩽i+ GV ′ is given by a subset V ′ ⊆ V and a timeframe [i−, i+] ⊆

[0, imax].
Since the focus is on temporal patterns, an additional constraint i+ − i− ⩾ 1 is added.

Section IX.1 argues that sun does not have to be counted among forbidden dynamic patterns and Section IX.2
corresponds to the four locations in the algorithm from Section VI where Reject is used. Section IX.3 is an
overview of which forbidden static patterns can be footprints.
In this way the algorithm provides insights about the patterns that must not appear, but there may be a more
direct characterization.

IX.1 sun is redundant
sun can never occur alone in an induced subgraph, in the sense that if a temporal graph has a sun induced
subgraph then it also has an induced subgraph with one of the other forbidden patterns.
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B C

E FD

A

Figure 15: sun

Since these links must be created one by one, there must be either a last link added, or an extra link deleted to
leave the 9 above links active.
More precisely, consider [t1, t2] the earliest (lexicographically) time interval for which sun appears in an induced
subgraph of the footprint.
Either t1 − 1 contains an additional link, or the footprint of [t1, t2 − 1] is missing one link for it to contain sun.

If BC (as labeled in fig. 15 is the last link added, there is already a 4-cycle ABEC and the graph has been
rejected.
The same holds for BE or EC.

If DB is the last link added, there is already a claw EDBF which has hence already been rejected.
The same holds for DE, BA, AC, FC, CE.

Otherwise all links are present and one extra link is active which must be removed.
If that link is AE then there is a claw EADF (also for DC and BF ).
If the extra link is AD then there is a 4-cycle ADEC (also for AF and DF ).

Since this covers all possible cases, there can never be an sun induced subgraph encountered without another
of the forbidden static patterns.

IX.2 Case analysis for rejections
This is a proof sketch of Conjecture 1.

Lemma 14 (Connectivity of Q-nodes).
If at instant i0, v, v′ are descendants of a common Q-node then they belong to the same connected component
in G[0,i0].

Proof.
By induction on the history of the Q-node: either it is created at the initialization in which case there is only
one disk and the property is obvious, or it is created in ReorderLinkDown case 4, in which case all of its
descendants come from a single P -node and are thus connected.
When disks that are outside of the Q-node in question are added, it is only in ReorderLinkUp case 3, which
merges two different Q-nodes. Since separately these Q-nodes are parts of connected components in G[0,i0], the
new link between one of each makes their fusion a connected component in G[0,i0+1].

Lemma 15 (Extraction of a path).
If there exists a path from v to v′ in G[i−,i+] then there exists a path from v to v′ in an induced subgraph of
G[i−,i+].

Proof.
Consider a shortest path from v to v′ in G[i−,i+]. This path cannot have an induced K3 otherwise removing one
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of the vertices would shorten it. Therefore the induced subgraph with the vertices from this shortest path is a
path graph.

BringToExtremity

In the situation of Line 13, configurations shown in Figure 16.

Assume by symmetry that v1 is not at an extremity of a Q-node of which v1 is a descendant but not v2.
There must exist at least one disk on each side, name them u and u′.
If u and u′ are not directly connected more recently than the paths from v1, then the new link from v1 to v2
would create a claw v1uu

′v2.

· · · · · ·
...

v1

v2

u u′

· · · · · ·...

v1

v2

u u′w w′

· · · · · ·...

v1

v2

u

u′′

u′

Figure 16: Case analysis for BringToExtremity Line 13

Otherwise if u and u′ are linked, there must be other connections more recent that the paths from v1 so that u
and u′ are not in the same class as v1. Either v1 is connected to some u′′ which forms a claw, or u and u′ each
are connected to different w and w′ as to not have the same class as each other and as v1. These two situations
form either a claw v1uu

′′v2 or a net v1v2uwu′w′.

MakeAdjacent

In the situation of Line 10, configurations shown in Figure 17.

Assume v1 and v2 are not in the middle of any Q-node between them and their nearest common ancestor but
there exists at least one disk between them.

...
...· · ·

v1 v2

u u′

...
...· · ·

v1 v2

u

u′

Figure 17: Case analysis for MakeAdjacent Line 10

Let u such a node in the middle. In particular neither v1 nor v2 are connected to u, but there exists paths from
v2 to u and from v1 to u.
Assume without loss of generality that u was separated from v2 earlier than from v1.
For u not to become within the same neighborhood as v1, there has to be either a disk connected to u but not
v1, or the opposite.
In the first case, such a disk u′ must have at some point had a path to v2, hence there exists a hole v1uu′v2.
In the second case, v1uv2 forms a claw.

ReorderLinkUp case 2

In the situation of Line 26, configurations shown in Figure 18.
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v2···v1

u u′

v2···v1

uu′

Figure 18: Case analysis for ReorderLinkUp Line 26

There exists some u between v1 and v2. If there exists a second vertex u′ in between, then paths v2u′, u′u, uv1
would form a hole with the newly added link v1v2.
Otherwise, in order for u to not have the same neighborhood as v1 without there being an additional Q-node,
u and v1 must never have had the same neighborhood. Hence there must be u′ neighbor of either u but not v1,
or v1 but not u. In the first case this forms a hole, in the second case a claw.

ReorderLinkDown case 1

In the situation of Line 10, configurations shown in Figure 19.

u

u′

v1

v2

N−
1 N+

1

N−
2 N+

2

Figure 19: Case analysis for ReorderLinkDown Line 10

Calls to Reject during ReorderLinkUp are based on the structure of the tree, the single call in Reorder-
LinkDown however is based on the neighborhoods of the two vertices being separated. The structure of the
tree is always almost the same anyway, since the two vertices belong to the same Q-node.

Assume by symmetry that N−
1 ∩N−

2 ̸= ∅: it contains some u.
Since u does not have the same neighborhood as v1, there must be some u′ in N [u] \N [v1].
For the neighborhood of v1 to be contiguous, it must be that u′ is itself to the left of u.
Removing the link v1v2 hence produces a claw uu′v1v2.

IX.3 Possible patterns as footprints
The previous section explains why forbidden temporal patterns seem to correspond to forbidden static patterns,
but says nothing of which patterns are actually allowed.
The following is an attempt to fill some gaps by studying which forbidden patterns may or may not appear in
the footprint of the whole graph.

claw is realizable

The temporal graph shown in Figure 20 has a claw footprint.
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1, 2, 3

1
3

Figure 20: Labeled edges for a footprint with a claw
Numbers next to edges represent times at which they are active.

A temporal model is easy to construct, with the three extremal vertices immobile, and the middle one travelling
from one side to the other.

More generally, all complete bipartite graphs Km,n can be footprints of dynamic PIG: two groups of m and n
vertices crossing each other. claw = K1,3 is a special case of this.

· · ·m · · · · · ·n · · ·

t

· · ·m · · · · · ·n · · ·

· · ·n · · · · · ·m · · ·

· · ·m · · ·· · ·n · · ·

Figure 21: A sequence of movements that produces the footprint Km,n

net is not realizable

A

B

CA′

B′

C ′

Figure 22: Only possible configuration to produce a net

Assume without loss of generality that initially ι(A) < ι(B) < ι(C).
Since A,B,C are never in contact, they can never have the same neighborhood, and the above inequality must
hold for all instants.

By contiguity of the neighborhoods of A, B, and C, it must be that ι(A′) < ι(B) < ι(C ′), and since A′ and C ′

are never in contact with B it must remain so.
Moreover this implies ι(A′) + 1 < ι(B) < ι(C ′)− 1, which in particular makes |ι(A′)− ι(C ′)| ⩽ 1 impossible.
Hence a net cannot be an induced subgraph of the footprint.
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sun is not realizable

A

B

C

A′

B′

C ′

Figure 23: Only possible configuration to produce a sun

Once again assume ι(A) < ι(B) < ι(C).
Connections with C ′ and A′ imply ι(A) < ι(C ′) < ι(B) < ι(A′) < ι(C ′).
This leaves no room for B′ to be connected to both C ′ and A′ but not B.

C4 is realizable

C4 = K2,2 has already been shown in Figure 21 to be a possible footprint.

Cn+5 is not realizable

A B C

Figure 24: Only possible configuration to produce a Cn+5

Consider the leftmost and rightmost vertex A and C. Since the cycle is of length at least 5, there exists B that is
in contact with neither A nor C, but there exists paths from A to B and B to C, hence ι(A)+1 < ι(B) < ι(C)−1
at all times. This prevents the existence of a path between A and C that does not pass through B without any
of the vertices between A and C touching B.

IX.4 Conclusion
This is far from establishing an equivalence between dynamic PIG and graphs that do not contain certain
patterns, but at least it suggests that if there exists such a characterization of dynamic UDG, then it needs
not use patterns that are not forbidden in the static case. It also shows that there is no obvious equivalence
between forbidden static patterns and forbidden temporal patterns.
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