Motivation 0000 2-dimensiona 0000 1-dimensional 000000000 Conclusion 0

Dynamic Unit Disk Graph Recognition

Neven VILLANI

ENS Paris-Saclay and LaBRI, France

joint work with Arnaud CASTEIGTS Algorithmic Aspects of Temporal Graphs IV – Jul. 2021 Internship Defence – Sep. 2021

Outline		

Motivation		
•000		

Static Unit Disk Graphs

Definition (Unit Disk Graph)

G = (V, E) an undirected graph is a Unit Disk Graph (UDG) in dimension *n* when there exists an embedding $\iota : V \to \mathbb{R}^n$ such that $\forall v, v' \in V, \{v, v'\} \in E \iff ||\iota(v) - \iota(v')|| \leq 1$

Motivation		
•000		

Static Unit Disk Graphs

Definition (Unit Disk Graph)

G = (V, E) an undirected graph is a Unit Disk Graph (UDG) in dimension *n* when there exists an embedding $\iota : V \to \mathbb{R}^n$ such that $\forall v, v' \in V, \{v, v'\} \in E \iff ||\iota(v) - \iota(v')|| \leq 1$

Motivation		
•000		

Static Unit Disk Graphs

Definition (Unit Disk Graph)

G = (V, E) an undirected graph is a Unit Disk Graph (UDG) in dimension *n* when there exists an embedding $\iota : V \to \mathbb{R}^n$ such that $\forall v, v' \in V, \{v, v'\} \in E \iff ||\iota(v) - \iota(v')|| \leq 1$

Motivation 0000		

Dynamic UDG

Definition

A dynamic UDG is $\mathcal{G} = (V, E_0, \cdots, E_{\tau})$ such that all $G_i = (V, E_i)$ are UDG and successive embeddings change in limited ways.

 $G_i:$ "snapshots" $(V, \bigcup_{0\leqslant i\leqslant \tau} E_i):$ "footprint"

- To what extent can dynamic UDG be recognized ?
- How to define "limited ways" ?

Motivation		
0000		

Plausible Mobility

Figure: Inferring of positions from contact trace

Screenshots from simulations of reconstructed movements

Tolerates missing or extra links.

Reasonable assumption in the case of a low quality trace, but can we do better ?

Whitbeck & Amorim & Conan, Plausible Mobility, https://plausible.lip6.fr (2011)

Motivation 0000		

setting	static	dynamic (new)
unrestricted $(2D)$	$NP-hard^{(1)}$	
tree $(2D)$	$NP-hard^{(2)}$	
caterpillar (2D)	$Linear^{(2)}$	
1D	$Linear^{(3)}$	

⁽¹⁾ Breu & Kirkpatrick, Unit disk graph recognition is NP-hard (1998)

Results

⁽²⁾ Bhore & Nickel & Nöllenburg, Recognition of Unit Disk Graphs for Caterpillars, Embedded Trees, and Outerplanar Graphs (2021)

 $^{(3)}$ Booth & Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms (1976) (And at least 3 other papers)

Motivation 000●		

Results

setting	static	dynamic (new)
unrestricted $(2D)$	$NP-hard^{(1)}$	NP-hard
tree $(2D)$	$NP-hard^{(2)}$	NP-hard
caterpillar $(2D)$	$Linear^{(2)}$	$NP-hard^{(*)}$
1D	$Linear^{(3)}$	Linear

(*) all snapshots are caterpillars

⁽¹⁾ Breu & Kirkpatrick, Unit disk graph recognition is NP-hard (1998)

(2) Bhore & Nickel & Nöllenburg, Recognition of Unit Disk Graphs for Caterpillars, Embedded Trees, and Outerplanar Graphs (2021)

 $^{(3)}$ Booth & Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms (1976) (And at least 3 other papers)

2-dimensional ●000	

Overview and intuition

- reduction from 3-SAT: $F = C_1 \wedge \cdots \wedge C_k$; $C_i = l_i \vee l'_i \vee l''_i$
- one group of disks for each variable
- each variable can take two states, interpreted as true or false
- clauses are handled sequentially over a sequence of consecutive snapshots

2-dimensional ●000	

Overview and intuition

- reduction from 3-SAT: $F = C_1 \wedge \cdots \wedge C_k$; $C_i = l_i \vee l'_i \vee l''_i$
- one group of disks for each variable
- each variable can take two states, interpreted as true or false
- clauses are handled sequentially over a sequence of consecutive snapshots

Initialization
$$C_1$$
 C_2 C_3 \cdots C_{k-1} C_k

Hypothesis: "slow enough". Speed is bounded by a constant fraction of the radius.

This makes variables unable to change state in the middle of the process.

Motivation	2-dimensional	
	0000	

Two configurations of variables

Left: **true**, Right: **false**

2-dimensional oo●o	

Clause assembling

The clause $C = \neg x_1 \lor x_2 \lor \bot$. With $x_1 = x_2 =$ **true**. Satisfied thanks to x_2 .

The central 12-cycle can fit 4 disks but not 6.

	2-dimensional 000●	
Extension	of the result	

This shows NP-hardness in the general case.

Simpler proof than in the static case

- + linear number of disks instead of quadratic
- + fewer restrictions on initial 3-SAT instance

	2-dimensional 000●	
Extension	of the result	

This shows NP-hardness in the general case.

Simpler proof than in the static case

- + linear number of disks instead of quadratic
- + fewer restrictions on initial 3-SAT instance

Still NP-hard under the modified constraints (separately):

- integer coordinates
- footprint is a tree
- snapshots are caterpillars
- snapshots have CCs of size at most 2
- one event at a time

(caterpillar: tree with all vertices within distance 1 of a central path)

	2-dimensional 000●	
Extension	of the result	

This shows NP-hardness in the general case.

Simpler proof than in the static case

- + linear number of disks instead of quadratic
- + fewer restrictions on initial 3-SAT instance

Still NP-hard under the modified constraints (separately):

- integer coordinates (static: unknown)
- footprint is a tree (static: NP-hard)
- snapshots are caterpillars (static: linear)
- snapshots have CCs of size at most 2 (static: O(1))
- one event at a time (static: irrelevant)

(caterpillar: tree with all vertices within distance 1 of a central path)

1-dimensional ●00000000

Takeaway and 1D restriction

Main source of problems: structures can be forced to "choose" one of several embeddings, which they are then unable to escape from.

In one dimension, an efficient representation of all possible configurations

 \longrightarrow extension of *PQ*-trees

	1-dimensional o●ooooooo	

Physical 1D model

- one event at a time LINKUP or LINKDOWN $(|E_i \Delta E_{i+1}| = 1)$ \longrightarrow perfect trace
- continuous transition from one embedding to the next

	1-dimensional	
	0000000	

Equivalent permutations

Theorem

For $\pi \in \mathfrak{S}(V)$, there exists an injective embedding ι of G with the same ordering of vertices iff all neighborhoods N[v] are contiguous subsequences of π

 \longrightarrow The set of all valid embeddings can be represented by a set of permutations.

$$\pi(v_5) < \pi(v_2) < \cdots < \pi(v_6) < \pi(v_7)$$

0000 0000000000000000000000000000000000	

Equivalent transitions

Theorem

There exists a continuous transition without event from ι to ι' iff ι and ι' differ only in the order of vertices that have the same neighborhood

 \longrightarrow From now on, only manipulations on sets of permutations

	1-dimensional 0000●0000	

PQ-tree

	1-dimensional ooooo●ooo	
PQ-forest		

- $\bullet\,$ set of $PQ\mbox{-trees}$
- *P*-nodes as leaves contain disks with the same neighborhood
- toplevel trees can be arbitrarily permuted

	1-dimensional oooooo●oo	
T TT /		

LINKUP(v, v')

Initial

	1-dimensional oooooo●oo	
LINKUP(v, v')		

Initial

Rotate

		1-dimensional 000000●00	
LINKUP (v, v'))		

Rotate

Initial

Motivation 0000	2-dimensional 0000	I-dimensional 0000000000	Conclusion O
LINKUP(v, v)	′)		
	nitial	···	
E	Extract	Flatten	
			17/2

	1-dimensional ooooooooo	

LINKDOWN(v, v')

	1-dimensional ooooooo●o	

LINKDOWN(v, v')

	1-dimensional ooooooo●o	

LINKDOWN(v, v')

	1-dimensional oooooooo●	
Final result		

- each new event requires amortized O(log n)
 (n: number of vertices)
- linear overall: $O(\tau \cdot \log n)$ (τ : number of events)
- \bullet online algorithm: updates the $PQ\mbox{-}{\rm forest}$ in real time

	Conclusion
	•

Open questions & future works

- characterization of forbidden 1D patterns
- exact algorithm for 2D (even if exponential) ?
- 2D when the *footprint* is a caterpillar (despite it being too restrictive for practical purposes)
- 1D algorithm implementation