
Introduction Tree Structure Deriving rules Optimizations Evaluation

Tree Borrows
An aliasing model for Rust

Neven Villani, Ralf Jung, Derek Dreyer

ENS Paris-Saclay and MPI-SWS Saarbrücken

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 1 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

A motivating example

See code example: examples/rw-elim

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 2 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

A motivating example

See code example: examples/rw-elim

optimizations rely on type information
+ unsafe can bypass the type system
= many optimizations are unsound in the presence of unsafe

Do we have to give up on all these optimizations ?

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 2 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Is my optimization unsound ?
No, it’s the client that is UB.

UB: “Undefined Behavior”
semantics of a program that contains UB: any behavior
equivalently: the compiler can assume that UB does not occur

The compiler is allowed to “miscompile” programs that contain UB.

In this case: pointer aliasing UB.
(Other kinds: uninitialized memory, data races, dangling pointers,
invalid values, ...)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 3 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

The role of pointer aliasing UB
(Tree|Stacked) Borrows

define an operational semantics with UB of reborrows and
memory accesses
detect violations of the aliasing discipline it dictates

in order to
enable compiler optimizations by ruling out aliasing
patterns

remove redundant loads and stores
permute noninterfering operations

justify LLVM attributes on pointers that rustc emits
noalias: added by rustc on references, means that the data is
not being mutated through several different pointers
dereferenceable: added by rustc on references, means that
the pointer is not null or dangling or otherwise invalid to
dereference

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 4 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Motivating example: with Miri

Miri (github:rust-lang/miri) is
a Rust interpreter
that detects UB

Back to examples/rw-elim: run with Miri

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 5 / 35

https://github.com/rust-lang/miri

Introduction Tree Structure Deriving rules Optimizations Evaluation

Basics of Stacked Borrows (SB)

Starting observation
Proper usage of mutable references follows a stack discipline.

Key ideas
per-location tracking of pointers
use a stack to store pointer identifiers
on each reborrow a new identifier is pushed to the stack
a pointer can be used if its identifier is in the stack
using of a pointer pops everything above it (more recent)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 6 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

An example SB execution

let x = &mut 0; // [x]
let y = &mut *x; // [x, y] (reborrow of x into y)
let z = &mut *x; // [x, z] (usage of x pops y)

// (reborrow of x into z)
*y = 42; // y is not in the stack, UB !
*z = 57;

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 7 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

SB too strict ?

Many optimizations are possible again, but...
UB in tokio, pyo3, rkyv, eyre, ndarray, arrayvec, slotmap,
nalgebra, json, ...

Enforcing SB would break too much backwards compatibility, so
right now the compiler cannot apply any SB-enabled optimizations.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 8 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

SB too strict ?

Many optimizations are possible again, but...
UB in tokio, pyo3, rkyv, eyre, ndarray, arrayvec, slotmap,
nalgebra, json, ...

Enforcing SB would break too much backwards compatibility, so
right now the compiler cannot apply any SB-enabled optimizations.

Essential tradeoff
More UB is...

more optimizations (stronger assumptions)
less safety (especially if rules are vague)

UB is the responsibility of the user, so
too much UB makes users unhappy.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 8 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Information loss in the stack

[..., a, b, c, d]

let a = &...;
let b = &*a;
let c = &*b;
let d = &*a;

...

a

b

c

d

let a = &...;
let b = &*a;
let c = &*a;
let d = &*a;

...

a

b

c

d

let a = &...;
let b = &*a;
let c = &*b;
let d = &*c;

...

a

b

c

d

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 9 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

�����Stacked Tree Borrows (TB)

Starting observation
Proper usage of mutable references follows a stack discipline.

Key ideas
per-location tracking of pointers
use a stack to store pointer identifiers
on each reborrow a new identifier is pushed to the top of the
stack
a pointer can be used if its identifier is in the stack
using of a pointer pops everything above it (more recent)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 10 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

�����Stacked Tree Borrows (TB)

Starting observation
Proper usage of all pointers follows a tree discipline.

Key ideas
per-location tracking of pointers
use a tree to store pointer identifiers
on each reborrow a new identifier is added as a leaf of the tree
each pointer has permissions
a pointer can be used if its permission allows it (to be defined)
using a pointer makes incompatible (to be defined) pointers
lose permissions

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 10 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

When are pointers different ?

LLVM and Rust specifications: “other references/pointers”
Suggests that two pointers to the same data are “different”.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 11 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

When are pointers different ?

LLVM and Rust specifications: “other references/pointers”
Suggests that two pointers to the same data are “different”.

A pointer in our semantics is:

struct Pointer {
address: usize,
size: usize,
tag: usize, // <- added specifically for TB/SB

}

Two pointers to the same data are not equal for TB/SB if they
have different tags.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 11 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

A Tree of pointers

x

y1

y2

z1, z2

w1

w2

w3

let x = &mut 0u64;

let y1 = &mut *x;
let y2 = &*y1;

let z1 = &*x;
let z2 = z1 as *const u64;

foo(x);
fn foo(w2: &mut u64) {

let w3 = &*w2;
}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 12 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

What’s in the tree ?

Each pointer is given a tag

(Tree|Stacked) Borrows track:
permission: per tag, per location;
hierarchy between tags;
accesses are done through a tag:

require permissions of the tag
(UB if the permissions are insufficient)
update permissions of other tags
(UB if the modification is forbidden)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 13 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

One pointer, 2× 2 kinds of accesses

?
?

x
?
?

?
?
?

?

child accesses for x

foreign accesses for x

foreign accesses for x

each read or write.

“pointers based on...”
LLVM specification: “pointer y is based on pointer x”
≃ TB: “y is a child of x”.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 14 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Kinds of accesses: examples

let x = &mut ...;
let y = &mut *x;

*x = 1; // Write access; foreign for y; child for x.
let _ = *y; // Read access; child for y; child for x.

...
x

y

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 15 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Summary

pointers identified by a tag;
tags are stored in a tree structure;

reborrows create fresh tags,
new tag is a child of the reborrowed tag

each tag has per-location permissions;
permissions allow or reject child accesses
(done through child tags)
permissions evolve in response to foreign accesses
(done through non-child tags).

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 16 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

How many permissions ?

In short: one permission per “kind of pointer”
(interior) mutability,
lifetime information,
creation context,
...

Guarantees required of pointers determine behavior of permissions:
pointer allows mutation
⇒ permission allows child writes

pointer guarantees uniqueness
⇒ permission prevents foreign accesses

...

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 17 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Active, Frozen, Disabled

Core triplet of permissions to represent
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Child read: must allow reading
Active → Active

Frozen → Frozen

Disabled → UB

Child write: must allow writing
Active → Active

Frozen → UB
Disabled → UB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 18 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Active, Frozen, Disabled

Core triplet of permissions to represent
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Foreign read: no longer unique
Active → Frozen

Frozen → Frozen

Disabled → Disabled

Foreign write: no longer immutable
Active → Disabled

Frozen → Disabled

Disabled → Disabled

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 18 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Parallel to the borrow checker
Similarities

✓ Active (&mut) readable and writeable
✓ Frozen (&) and all their children are only readable
✓ data behind Active (&mut) is owned exclusively
✓ data behind Frozen (&) is immutable

Differences (OK to be more permissive than the borrow checker)
✗ Active (&mut) demoted to Frozen (&)
✗ several Active (&mut) can coexist if never written to

Unsoundness (two following subsections fix them)
✗ two-phase borrows not handled yet
✗ too permissive for noalias and dereferenceable

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 19 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Not all mutable references can be Active

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet: unsound

fn main() {

>

let mut v =

>

vec![1usize];

>

v.push(

>

v.len()

>

);
}

v:
vpush:
vlen:

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 20 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Not all mutable references can be Active

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet: unsound

fn main() {
> let mut v =
> vec![1usize];

>

v.push(

>

v.len()

>

);
}

v:
vpush:
vlen:

Active

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 20 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Not all mutable references can be Active

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet: unsound

fn main() {

>

let mut v =

>

vec![1usize];
> v.push(

>

v.len()

>

);
}

v:
vpush:
vlen:

Active
Active

← reborrow

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 20 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Not all mutable references can be Active

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet: unsound

fn main() {

>

let mut v =

>

vec![1usize];

>

v.push(
> v.len()

>

);
}

v:
vpush:
vlen:

Active
Frozen
Frozen

← reborrow

← read

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 20 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Not all mutable references can be Active

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet: unsound

fn main() {

>

let mut v =

>

vec![1usize];
> v.push(
> v.len()
>);
}

v:
vpush:
vlen:

Active
Frozen
Frozen

← write (UB)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 20 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

New permission: Reserved

Intuition
An &mut not yet written to is not different from a &.

A mutable reference not yet written to
Reserved +child read → Reserved

Reserved +foreign read → Reserved

Reserved +foreign write → Disabled

Reserved +child write → Active

⇒ behaves as a Frozen until the first child write
⇒ can coexist with each other and with Frozen

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 21 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Reserved in action

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet + Reserved: fixed

fn main() {

>

let mut v =

>

vec![1usize];

>

v.push(

>

v.len()

>

);
}

v:
vpush:
vlen:

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 22 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Reserved in action

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet + Reserved: fixed

fn main() {
> let mut v =
> vec![1usize];

>

v.push(

>

v.len()

>

);
}

v:
vpush:
vlen:

Active

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 22 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Reserved in action

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet + Reserved: fixed

fn main() {

>

let mut v =

>

vec![1usize];
> v.push(

>

v.len()

>

);
}

v:
vpush:
vlen:

Active
Reserved

← reborrow

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 22 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Reserved in action

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet + Reserved: fixed

fn main() {

>

let mut v =

>

vec![1usize];

>

v.push(
> v.len()

>

);
}

v:
vpush:
vlen:

Active
Reserved
Frozen

← reborrow

← read

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 22 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°1: two-phase borrows

Reserved in action

Two-phase borrows
Mutable reborrows in function arguments tolerate shared reborrows
until function entry.

Core triplet + Reserved: fixed

fn main() {

>

let mut v =

>

vec![1usize];
> v.push(
> v.len()
>);
}

v:
vpush:
vlen:

Active
Active
Disabled

← write

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 22 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°2: justifying noalias

Protectors lock permissions until the end of the function

LLVM noalias (in TB terms)
No foreign access during the same function call as a child write.

Core triplet + Reserved: unsound

fn write(x: &mut u64) {
*x = 42; // x: Active
opaque(/* foreign read for x */);
// x: Frozen
// ‘x‘ does not satisfy the requirements of ‘noalias‘

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 23 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°2: justifying noalias

Protectors lock permissions until the end of the function

Intuition
noalias requires exclusive access during the entire function call, so
we remember the set of all functions that have not yet returned
and enforce exclusivity for their arguments.

Concept adapted from Stacked Borrows: protectors.
references get a protector on function entry
protector lasts until the end of the call

While protected, behavior changes
Reserved +foreign read→(((((Reserved Frozen

Reserved/Active/Frozen +foreign write→(((((Disabled UB
Active +foreign read→((((Frozen UB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 23 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Fix unsoundness n°2: justifying noalias

Protectors lock permissions until the end of the function

LLVM noalias (in TB terms)
No foreign access during the same function call as a child write.

Core triplet + Reserved + protectors: fixed

fn write(x: &mut u64) {
*x = 42; // x: [P] Active
opaque(/* foreign read for x */);
// x: [P] Frozen
// UB: while x is protected,
// Active -> Frozen is forbidden

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 23 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Summary

Reserved, Active, Frozen, Disabled represent different
possible states of pointers.
Interactions with child and foreign accesses enforce
uniqueness/immutability guarantees.
Protectors are added on function entry to strengthen these
guarantees up to the requirements of noalias.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 24 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Some standard optimizations

Possible in... SB TB
Insert speculative read ✓ ✓

Insert speculative write ✓ ✗

←

Remove redundant read ✓ ✓

Remove redundant write ✓ ✓

Reorder read-write ✓ ✗

←

Reorder read-write (fn args) ✓ ✓

Reorder read-read ✗ ✓

←

Reorder read-read (fn args) ✓ ✓

Reorder write-write ✓ ✓

Reorder write-write (fn args) ✓ ✓

Reorder write-read ✓ ✓

Reorder write-read (fn args) ✓ ✓

Reorder reborrow-reborrow ✗ ✓

←

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 25 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Some standard optimizations

Possible in... SB TB
Insert speculative read ✓ ✓

Insert speculative write ✓ ✗ ←
Remove redundant read ✓ ✓

Remove redundant write ✓ ✓

Reorder read-write ✓ ✗ ←
Reorder read-write (fn args) ✓ ✓

Reorder read-read ✗ ✓

←

Reorder read-read (fn args) ✓ ✓

Reorder write-write ✓ ✓

Reorder write-write (fn args) ✓ ✓

Reorder write-read ✓ ✓

Reorder write-read (fn args) ✓ ✓

Reorder reborrow-reborrow ✗ ✓

←

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 25 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Some standard optimizations

Possible in... SB TB
Insert speculative read ✓ ✓

Insert speculative write ✓ ✗

←

Remove redundant read ✓ ✓

Remove redundant write ✓ ✓

Reorder read-write ✓ ✗

←

Reorder read-write (fn args) ✓ ✓

Reorder read-read ✗ ✓ ←
Reorder read-read (fn args) ✓ ✓

Reorder write-write ✓ ✓

Reorder write-write (fn args) ✓ ✓

Reorder write-read ✓ ✓

Reorder write-read (fn args) ✓ ✓

Reorder reborrow-reborrow ✗ ✓ ←

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 25 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Possible optimizations

✓ Reorder write-any (fn args)

fn write(x: &mut u64) {
// x: [P] Reserved
*x = 42; // (optimization: move down ?)
// x: [P] Active
opaque(/* maybe foreign read/write */);
// x: [P] Active (Frozen|Disabled -> UB)

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 26 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Possible optimizations

✓ Reorder write-any (fn args)

fn write(x: &mut u64) {
// x: [P] Reserved

opaque(/* assume no foreign read/write */);
// x: [P] Reserved
*x = 42;
// x: [P] Active

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 26 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Possible optimizations

✓ Insert speculative read

fn read(x: &u64) -> u64 {
// x: [P] Frozen

opaque(/* maybe foreign write */);
// x: [P] Frozen (Disabled -> UB)
*x // (optimization: move up ?)

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 27 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Possible optimizations

✓ Insert speculative read

fn read(x: &u64) -> u64 {
// x: [P] Frozen
let val = *x;
opaque(/* assume no foreign write */);
// x: [P] Frozen
val

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 27 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Insert speculative write

Possible strengthening
Write to mutable references on function entry.

✗ Base model

fn foo(x: &mut u64) {
// x: [P] Reserved

opaque(/* maybe foreign read/write */);
// x: [P] Reserved|Frozen (Disabled -> UB)
*x = 42; // (optimization: move up ?)

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 28 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Insert speculative write

Possible strengthening
Write to mutable references on function entry.

✓ Strengthened model

fn foo(x: &mut u64) {
// x: [P] Active

opaque(/* maybe foreign read/write */);
// x: [P] Active (Frozen|Disabled -> UB)
*x = 42;

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 28 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Insert speculative write

Possible strengthening
Write to mutable references on function entry.

✓ Strengthened model

fn foo(x: &mut u64) {
// x: [P] Active
*x = 42;
opaque(/* assume no foreign read/write */);
// x: [P] Active (Frozen|Disabled -> UB)

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 28 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Insert speculative write

Possible strengthening
Write to mutable references on function entry.

✓ “as_mut_ptr” pattern

// as_mut_ptr: &mut [T] -> *mut T (does not actually write)
let raw = buffer.as_mut_ptr(); // creates raw: Reserved
let shr = buffer.as_ptr().add(1); // creates shr: Frozen

// raw stays Reserved (foreign read)
copy_nonoverlapping(shr, raw, 1); // raw gets activated

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 28 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Insert speculative write

Possible strengthening
Write to mutable references on function entry.

✗ “as_mut_ptr” pattern: strengthened model

// as_mut_ptr: &mut [T] -> *mut T (may speculatively write)
let raw = buffer.as_mut_ptr(); // creates raw: Active
let shr = buffer.as_ptr().add(1); // creates shr: Frozen

// raw becomes Frozen (foreign read)
copy_nonoverlapping(shr, raw, 1); // write through Frozen: UB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 28 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✗ Base model

let x = &mut *y;
// x: Reserved
*x = 42; // (optimization: move down ?)
// x: Active
opaque(/* maybe foreign read/write */);
// x: Active|Frozen|Disabled

let _ = *x;
// x: Active|Frozen (Disabled -> UB)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✓ Strengthened model

let x = &mut *y;
// x: Reserved
*x = 42; // (optimization: move down ?)
// x: Active
opaque(/* maybe foreign read/write */);
// x: Active|Disabled

let _ = *x;
// x: Active (Disabled -> UB)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✓ Strengthened model

let x = &mut *y;
// x: Reserved

opaque(/* assume no foreign read/write */);
// x: Reserved
*x = 42;
// x: Active
let _ = *x;
// x: Active

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✓ Reorder read-read

let x = &mut *z; // x: Reserved
*x = 42; // x: Active
let _ = *x; // x: Active (optimization: move down ?)
let _ = *z; // x: Frozen (foreign read)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✓ Reorder read-read

let x = &mut *z; // x: Reserved
*x = 42; // x: Active

let _ = *z; // x: Frozen (foreign read)
let _ = *x; // x: Frozen

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✗ Reorder read-read: strengthened model

let x = &mut *z; // x: Reserved
*x = 42; // x: Active
let _ = *x; // x: Active (optimization: move down ?)
let _ = *z; // x: Disabled (foreign read)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Reorder write-read

Possible strengthening
Foreign read makes Active become Disabled (rather than
Frozen)

✗ Reorder read-read: strengthened model

let x = &mut *z; // x: Reserved
*x = 42; // x: Active

let _ = *z; // x: Disabled (foreign read)
let _ = *x; // Access through Disabled: UB!

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 29 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Summary

TB allows read reorderings (SB does not)
TB allows speculative reads (SB as well)
TB forbids speculative writes (SB allows them)

the model can be strengthened to justify these optimizations...
...at the cost of common patterns.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 30 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Counting crates with UB (1/2)
Data obtained using github:saethlin/miri-tools

Number of crates on crates.io with at least one test that contains UB, for
each kind of UB detected by Miri.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 31 / 35

https://github.com/saethlin/miri-tools

Introduction Tree Structure Deriving rules Optimizations Evaluation

Counting crates with UB (2/2)

Kind SB TB Notes
Protector invalidations 70 58 (1)

Protector deallocations 12 12
Accesses without permissions 998 545 (2)

Accesses outside range 903 0 (3)

Wildcard pointers 213 — (4)

Number of crates that contain UB, for subclasses of UB defined by
SB and TB. From 97 851 crates, of which 3 808 contain UB of any
kind

(1) now allowed: Reserved -> Frozen
(2) see: as_mut_ptr
(3) not included: accesses in wrong allocation
(4) not handled by TB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 32 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Notable examples

Accesses outside range
UB in tokio, pyo3, rkyv, eyre, ndarray, ...
according to SB but not TB

Invalidations by mutable reborrows (“as_mut_ptr” pattern)
UB in arrayvec, slotmap, nalgebra, json, ...
according to SB but not TB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 33 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Summary

Tree Borrows UB is much less common on crates.io than
Stacked Borrows UB
⇒ fulfills goal of being more permissive

elimination of out-of-bounds UB
⇒ blocker in SB for many popular crates

patterns allowed by Stacked Borrows but forbidden by Tree
Borrows are rare

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 34 / 35

Introduction Tree Structure Deriving rules Optimizations Evaluation

Questions ?

TB also has...
tweaked rules for interactions between interior mutability and
protectors/Reserved
performance improvements compared to the naive
implementation

many tricks to trim tree traversals
lazy initialization for out-of-range accesses

ongoing attempt at formalization in Coq

Don’t hesitate to test your code with Miri and send us your
interesting/unexpected cases of UB!
Slides and examples on github:Vanille-N/tree-beamer
Complementary material: perso.crans.org/vanille/treebor

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 35 / 35

https://github.com/Vanille-N/tree-beamer
https://perso.crans.org/vanille/treebor

	Introduction
	Tree Structure
	Deriving rules
	Fix unsoundness n°1: two-phase borrows
	Fix unsoundness n°2: justifying noalias
	

	Optimizations
	Possible optimizations
	Impossible optimizations

	Evaluation

