
Tree Borrows
Neven Villani,¹ Johannes Hostert,² Derek Dreyer,³ Ralf Jung²

PLDI’25

2025-06-19

¹Univ. Grenoble Alpes, Verimag
²ETH Zurich
³MPI-SWS

Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

 *x = 13;

 *y = 20;

 *x

}

Neven Villani Tree Borrows 1

Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

 *x = 13;

 *y = 20;

 *x

}

mutable thus disjoint

*x is unchanged

Neven Villani Tree Borrows 1

Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

 *x = 13;

 *y = 20;

 *x

}

mutable thus disjoint

*x is unchanged

*x has known value

always returns 13

Neven Villani Tree Borrows 1

Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

 *x = 13;

 *y = 20;

 *x

}

13 // formerly *x: one fewer load from memory

Neven Villani Tree Borrows 1

Type-level guarantees for references

aliasing
&

mutability

&mut → mutation, no aliasing
& → aliasing, no mutation

Neven Villani Tree Borrows 2

Escape hatch: unsafe
Can bypass typechecks to implement low-level manipulations

unsafe {
 // Code within this block has relaxed typechecking
 ...
}

Within unsafe it is the programmer’s responsibility to check
• that pointers are non-null
• that memory is initialized
• …

Neven Villani Tree Borrows 3

What if unsafe code violates a necessary invariant ?

fn write_both(x: &mut i32, y: &mut i32) -> i32 {
 *x = 13;
 *y = 20;
 *x
}

fn main() {
 let mut root = 42;
 let ptr = &raw mut root;
 let x = unsafe { &mut *ptr };
 let y = unsafe { &mut *ptr };
 println!("{}", write_both(x, y));
}

Neven Villani Tree Borrows 4

What if unsafe code violates a necessary invariant ?

fn write_both(x: &mut i32, y: &mut i32) -> i32 {
 *x = 13;
 *y = 20;
 *x
}

fn main() {
 let mut root = 42;
 let ptr = &raw mut root;
 let x = unsafe { &mut *ptr };
 let y = unsafe { &mut *ptr };
 println!("{}", write_both(x, y));
}

Neven Villani Tree Borrows 4

What if unsafe code violates a necessary invariant ?

fn write_both(x: &mut i32, y: &mut i32) -> i32 {
 *x = 13;
 *y = 20;
 *x
}

fn main() {
 let mut root = 42;
 let ptr = &raw mut root;
 let x = unsafe { &mut *ptr };
 let y = unsafe { &mut *ptr };
 println!("{}", write_both(x, y));
}

Neven Villani Tree Borrows 4

Not the compiler’s responsibility

Within unsafe it is the programmer’s responsibility to check
• that pointers are non-null
• that memory is initialized
• compliance with aliasing rules

NEW!

Tree Borrows (TB): defines those aliasing rules

Neven Villani Tree Borrows 5

Not the compiler’s responsibility

Within unsafe it is the programmer’s responsibility to check
• that pointers are non-null
• that memory is initialized
• compliance with aliasing rules

NEW!

Tree Borrows (TB): defines those aliasing rules

Sounds familiar?
Stacked Borrows has the same purpose,
Tree Borrows is its successor.

Neven Villani Tree Borrows 5

Stacked Borrows (SB)

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

root

• new stack at root

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

root

• ✓ root is at the top

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

ptr
root

• ✓ root is at the top
• push ptr

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

x
ptr
root

• ✓ ptr is at the top
• push x

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

x
ptr
root

• pop until ptr is at the top

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

ptr
root

• pop until ptr is at the top

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

y
ptr
root

• pop until ptr is at the top
• push y

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

y
ptr
root

• search for x

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13; UB!
Desired outcome: UB

y
ptr
root

Can’t use x if it is not in the stack

Neven Villani Tree Borrows 6

Stacked Borrows (SB)

SB was implemented in Miri (official interpreter and UB detector)
→ included in many projects’ CI
→ several bugs detected (e.g. in stdlib)

Neven Villani Tree Borrows 7

Stacked Borrows (SB)

SB was implemented in Miri (official interpreter and UB detector)
→ included in many projects’ CI
→ several bugs detected (e.g. in stdlib)

However Stacked Borrows is too strict
• analysis of 30 000 libraries
• 6000+ tests that should work are declared UB

Neven Villani Tree Borrows 7

Tree Borrows allows much more code Stacked Borrows (SB)

Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 50% fewer tests with aliasing UB when using Tree Borrows

Neven Villani Tree Borrows 8

Tree Borrows allows much more code Stacked Borrows (SB)

Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 50% fewer tests with aliasing UB when using Tree Borrows

fixes known technical limitations of TB, incl. handling of ranges

Neven Villani Tree Borrows 8

From Stacks to Trees

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

x0

x0
root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

x0

x0
root

x2

x2
root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

x0 x2

root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

x0 x2

x0
root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);
// Scenario 2
let v1 = *x2.sub(1);

Desired outcome: not UB

0 1 2root

x0 x2

root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);
// Scenario 2
let v1 = *x2.sub(1);

Desired outcome: not UB

0 1 2root

x0 x2

x2
root

Neven Villani Tree Borrows 9

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

Neven Villani Tree Borrows 10

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

root

Neven Villani Tree Borrows 10

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

x0

root

x0

Neven Villani Tree Borrows 10

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root

x0 x2

root

x0 x2

Neven Villani Tree Borrows 10

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

? “Reserved”

0 1 2root

x0 x2

? ?

root

x0 x2

Neven Villani Tree Borrows 10

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

? “Reserved”
✓ “Unique”
✘ “Disabled”

0 1 2root

x0 x2

✓ ✘
root

x0 x2

Neven Villani Tree Borrows 10

From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);
// Scenario 2
let v1 = *x2.sub(1);

Desired outcome: not UB

? “Reserved”
✓ “Unique”
✘ “Disabled”

0 1 2root

x0 x2

✘ ✓
root

x0 x2

Neven Villani Tree Borrows 10

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB

root

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB

root

ptr

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB

root

ptr

x

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB

? ?

root

ptr

x y

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB

✓ ✘

root

ptr

x y

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20; UB!
Desired outcome: UB

✓ ✘

root

ptr

x y

Neven Villani Tree Borrows 11

A second look at the motivating example From Stacks to Trees

Forbids reordering reads

In SB:

let mut root = 0;
let x = &mut root;
let v1 = *x;
let v2 = root;

root, root, x, x, root is well-bracketed
root, root, x, root, x is not

In TB: a read never prevents another read.

Neven Villani Tree Borrows 12

Evaluation

TB should enable desired optimizations Evaluation

i.e. have enough UB to rule out problematic patterns

• formalized in Rocq (+Simuliris)
• a selection of optimizations proven
✓ delete read through &mut or &
✓ insert read through & in function
✓ move read down for &mut or & in function

…

+ read-read reordering!

Neven Villani Tree Borrows 13

It should be possible to write unsafe code free of UB Evaluation

i.e. UB should be predictable and not too common

• implemented in Miri
• tested against 30 000 most downloaded libraries on crates.io
‣ 400 000+ working tests
‣ measure how many have UB from Stacked / Tree Borrows

Neven Villani Tree Borrows 14

It should be possible to write unsafe code free of UB Evaluation

i.e. UB should be predictable and not too common

• implemented in Miri
• tested against 30 000 most downloaded libraries on crates.io
‣ 400 000+ working tests
‣ measure how many have UB from Stacked / Tree Borrows

Tree Borrows reduces aliasing-related UB by over 50%

Only 31 (< 0.5%) tests are regressions, all easily fixable.

Neven Villani Tree Borrows 14

Conclusion

Evaluation

Try it out:

Rust Playground supports TB
play.rust-lang.org Learn more:

plf.inf.ethz.ch/research/
pldi25-tree-borrows.html

• detailed state machine
• raw pointers
• interior mutability

Neven Villani Tree Borrows 15

	Rust's type system provides powerful optimizations
	Type-level guarantees for references
	Escape hatch: unsafe
	What if unsafe code violates a necessary invariant ?
	Not the compiler's responsibility
	Sounds familiar?
	Sounds familiar?

	Stacked Borrows (SB)
	Tree Borrows allows much more code

	From Stacks to Trees
	A second look at the motivating example

	Evaluation
	TB should enable desired optimizations
	It should be possible to write unsafe code free of UB
	

