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Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*x = 13;
*y = 20;
*X
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fn write both(x: &mut 132, y: &mut i32) -> 132 {

X =13 mutable thus disjoint
*y = 20;
X *x is unchanged
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Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

% — . L.

x = 13; mutable thus disjoint
ty = 20; *x has known value
X *x is unchanged

SN

always returns 13
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Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*X 13;

*y = 20;

13 // formerly *x: one fewer load from memory
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Type-level guarantees for references

&mut — mutation, no aliasing
& — aliasing, no mutation

Tree Borrows



Escape hatch: unsafe
Can bypass typechecks to implement low-level manipulations

unsafe {
// Code within this block has relaxed typechecking

Within unsafe it is the programmer’s responsibility to check
- that pointers are non-null
- that memory is initialized
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What if unsafe code violates a necessary invariant ?

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*x = 13;
*y = 20;
*X

}

fn main() {
let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
println! ("{}", write both(x, y));
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What if unsafe code violates a necessary invariant ?

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*x = 13;
*y = 20;
*X

}

fn main() {
let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr },;
let y = unsafe { &mut *ptr };
println! ("{}", write both(x, y));

Neven Villani Tree Borrows




Not the compiler's responsibility

Within unsafe it is the programmer’s responsibility to check

- compliance with aliasing rules’

Tree Borrows (TB): defines those aliasing rules
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Not the compiler's responsibility

Sounds familiar?

Stacked Borrows has the same purpose,
Tree Borrows Is Its successor.




Stacked Borrows (SB)



In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;

Desired outcome: UB
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };

let y = unsafe { &mut *ptr },;

*x = 13;

- new stack at root
Desired outcome: UB
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };

let y = unsafe { &mut *ptr },;

*x = 13;

- v/ root is at the top
Desired outcome: UB
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;

let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr },; root
*x = 13;

- v root is at the top
Desired outcome: UB - push ptr
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; X
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- v/ ptrisatthetop
Desired outcome: UB - push x
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; X
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- pop until ptris at the top
Desired outcome: UB
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;

let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr },; root
*x = 13;

- pop until ptris at the top
Desired outcome: UB
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; y
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- pop until ptris at the top
Desired outcome: UB . pushy
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In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; y
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- search for x
Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; y
let x = ungaf *ptr }; ptr
let y = uny B:tt *ptr }; root
*x = 13; N

Can‘tuse x if itis not in the stack
Desired outcome: UB
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SB was implemented in Miri (official interpreter and UB detector)
— included in many projects’ C
— several bugs detected (e.g. in stdlib)
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SB was implemented in Miri (official interpreter and UB detector)
— included in many projects’ C

— several bugs detected (e.g. in stdlib)

However Stacked Borrows is too strict
- analysis of 30 000 libraries
- 6000+ tests that should work are declared UB




Tree Borrows allows much more code
Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 509% fewer tests with aliasing UB when using Tree Borrows
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Tree Borrows allows much more code
Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 509% fewer tests with aliasing UB when using Tree Borrows

fixes known technical limitations of TB, incl. handling of ranges
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From Stacks to Trees



let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0Q, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z

let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z
let x2 = &raw mut root[2];

// Scenario 1 V W

let vl = *x0.add(1);

Desired outcome: not UB
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let mut root = vec![0, 1, 2]
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let vl = *x0.add(1);

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z
let x2 = &raw mut root[2];

// Scenario 2 I \\\\\\J

let vl = *x2.sub(1);

Desired outcome: not UB
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let mut root = vec![0, 1, 2]
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 2
let vl = *x2.sub(1);

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0Q, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z

let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

? "Reserved”
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let vl = *x0.add(1);

Desired outcome: not UB

? "Reserved”
v “Unique”
x “Disabled”
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let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 2
let vl = *x2.sub(1);

Desired outcome: not UB

? "Reserved”
v “Unique”
x “Disabled”
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A second look at the motivating example

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;

*y = 20;

Desired outcome: UB
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A second look at the motivating example

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

*y = 20;

Desired outcome: UB
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A second look at the motivating example

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

let mut root = 42; @
let ptr = &raw mut root;

v/
ONO

Desired outcome: UB
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A second look at the motivating example

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };

let mut root = 42; @
let ptr = &raw mut root;

*x = 13;
i lLd' IE!’l
' OO

Desired outcome: UB
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A second look at the motivating example
Forbids reordering reads

In SB:

Vs

let mut root = g; 00t root,x,x, root s well-bracketed
let x = &mut root; root,root,x, root,x Isnot

let vl = *x; )
let v2 root;

In TB: a read never prevents another read.
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Evaluation



TB should enable desired optimizations
.e. have enough UB to rule out problematic patterns

- formalized in Rocq (+Simuliris)
- a selection of optimizations proven
v/ delete read through &mut or &
v’ insert read through & in function
v" move read down for &mut or & in function

+ read-read reordering!

Neven Villani
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It should be possible to write unsafe code free of UB
l.e. UB should be predictable and not too common

- implemented in Miri

- tested against 30 000 most downloaded libraries on crates.io
» 400 000+ working tests
» measure how many have UB from Stacked / Tree Borrows




It should be possible to write unsafe code free of UB
l.e. UB should be predictable and not too common

- implemented in Miri
- tested against 30 000 most downloaded libraries on crates.io

» 400 000+ working tests
» measure how many have UB from Stacked / Tree Borrows

Tree Borrows reduces aliasing-related UB by over 50%

Only 31 (< 0.5%) tests are regressions, all easily fixable.




Conclusion



Try it out:

Rust Playground supports TB
play.rust-lang.org

Learn more:
plf.inf.ethz.ch/research/
e — pldi25-tree-borrows.html
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