Tree Borrows

Neven Villani,' Johannes Hostert,? Derek Dreyer,’ Ralf Jung®

PLDI'25
2025-06-19

'Univ. Grenoble Alpes, Verimag
*ETH Zurich
*MPI-SWS



Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*x = 13;
*y = 20;
*X

Neven Villani Tree Borrows




Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

X =13 mutable thus disjoint
*y = 20;
X *x is unchanged

Neven Villani Tree Borrows




Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

% — . L.

x = 13; mutable thus disjoint
ty = 20; *x has known value
X *x is unchanged

SN

always returns 13

Neven Villani Tree Borrows




Rust's type system provides powerful optimizations

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*X 13;

*y = 20;

13 // formerly *x: one fewer load from memory

Neven Villani Tree Borrows




Type-level guarantees for references

&mut — mutation, no aliasing
& — aliasing, no mutation

Tree Borrows



Escape hatch: unsafe
Can bypass typechecks to implement low-level manipulations

unsafe {
// Code within this block has relaxed typechecking

Within unsafe it is the programmer’s responsibility to check
- that pointers are non-null
- that memory is initialized

Neven Villani Tree Borrows




What if unsafe code violates a necessary invariant ?

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*x = 13;
*y = 20;
*X

}

fn main() {
let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
println! ("{}", write both(x, y));

Neven Villani Tree Borrows




What if unsafe code violates a necessary invariant ?

fn write both(x: &mut 132, y: &mut 132) -> 132 {

*x = 13;
*y = 20;
*X

}

fn main() {
let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
println! ("{}", write both(x, y));

Neven Villani Tree Borrows




What if unsafe code violates a necessary invariant ?

fn write both(x: &mut 132, y: &mut i32) -> 132 {

*x = 13;
*y = 20;
*X

}

fn main() {
let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr },;
let y = unsafe { &mut *ptr };
println! ("{}", write both(x, y));

Neven Villani Tree Borrows




Not the compiler's responsibility

Within unsafe it is the programmer’s responsibility to check

- compliance with aliasing rules’

Tree Borrows (TB): defines those aliasing rules

Neven Villani Tree Borrows




Not the compiler's responsibility

Sounds familiar?

Stacked Borrows has the same purpose,
Tree Borrows Is Its successor.




Stacked Borrows (SB)



In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;

Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };

let y = unsafe { &mut *ptr },;

*x = 13;

- new stack at root
Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };

let y = unsafe { &mut *ptr },;

*x = 13;

- v/ root is at the top
Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;

let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr },; root
*x = 13;

- v root is at the top
Desired outcome: UB - push ptr

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; X
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- v/ ptrisatthetop
Desired outcome: UB - push x

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; X
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- pop until ptris at the top
Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;

let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr },; root
*x = 13;

- pop until ptris at the top
Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; y
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- pop until ptris at the top
Desired outcome: UB . pushy

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; y
let x = unsafe { &mut *ptr }; ptr
let y = unsafe { &mut *ptr }; root
*x = 13;

- search for x
Desired outcome: UB

Neven Villani Tree Borrows




In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;

let ptr = &raw mut root; y
let x = ungaf *ptr }; ptr
let y = uny B:tt *ptr }; root
*x = 13; N

Can‘tuse x if itis not in the stack
Desired outcome: UB

Neven Villani Tree Borrows




SB was implemented in Miri (official interpreter and UB detector)
— included in many projects’ C
— several bugs detected (e.g. in stdlib)

Tree Borrows



SB was implemented in Miri (official interpreter and UB detector)
— included in many projects’ C

— several bugs detected (e.g. in stdlib)

However Stacked Borrows is too strict
- analysis of 30 000 libraries
- 6000+ tests that should work are declared UB




Tree Borrows allows much more code
Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 509% fewer tests with aliasing UB when using Tree Borrows

Neven Villani Tree Borrows




Tree Borrows allows much more code
Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 509% fewer tests with aliasing UB when using Tree Borrows

fixes known technical limitations of TB, incl. handling of ranges

Neven Villani Tree Borrows




From Stacks to Trees



let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani Tree Borrows




let mut root = vec![0Q, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z

let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani Tree Borrows




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani

Tree Borrows

root—

X0

X0

root




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani

Tree Borrows

root— () :2
X0 X2
X0 X2
root root




let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z
let x2 = &raw mut root[2];

// Scenario 1 V W

let vl = *x0.add(1);

Desired outcome: not UB

Neven Villani Tree Borrows




let mut root = vec![0, 1, 2]
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let vl = *x0.add(1);

Desired outcome: not UB

Neven Villani

’

Tree Borrows

root—

X0

X0

root

X2




let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z
let x2 = &raw mut root[2];

// Scenario 2 I \\\\\\J

let vl = *x2.sub(1);

Desired outcome: not UB

Neven Villani Tree Borrows




let mut root = vec![0, 1, 2]
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 2
let vl = *x2.sub(1);

Desired outcome: not UB

Neven Villani

’

Tree Borrows

root—

X0

X2

root

X2




let mut root = vec![0O, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani Tree Borrows




let mut root = vec![0Q, 1, 2];
let x0 = &raw mut root[0]; root— () ]. :Z

let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani Tree Borrows




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani

Tree Borrows

root—

X0




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

Neven Villani

Tree Borrows

root—

X0

X2




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

Desired outcome: not UB

? "Reserved”

Neven Villani

Tree Borrows

root—




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let vl = *x0.add(1);

Desired outcome: not UB

? "Reserved”
v “Unique”
x “Disabled”

Neven Villani

Tree Borrows

root—




let mut root = vec![0O, 1, 2];

let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 2
let vl = *x2.sub(1);

Desired outcome: not UB

? "Reserved”
v “Unique”
x “Disabled”

Neven Villani

Tree Borrows

root—

©

1| 2

_

N




A second look at the motivating example

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;

*y = 20;

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example

let mut root = 42;
let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;
*y = 20;

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;
*y = 20;

let mut root = 42; @
let ptr = &raw mut root;

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*X = 13;

*y = 20;

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example

let mut root = 42;

let ptr = &raw mut root;

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

*y = 20;

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

let mut root = 42; @
let ptr = &raw mut root;

v/
ONO

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example

let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };

let mut root = 42; @
let ptr = &raw mut root;

*x = 13;
i lLd' IE!’l
' OO

Desired outcome: UB

Neven Villani Tree Borrows




A second look at the motivating example
Forbids reordering reads

In SB:

Vs

let mut root = g; 00t root,x,x, root s well-bracketed
let x = &mut root; root,root,x, root,x Isnot

let vl = *x; )
let v2 root;

In TB: a read never prevents another read.

Neven Villani Tree Borrows




Evaluation



TB should enable desired optimizations
.e. have enough UB to rule out problematic patterns

- formalized in Rocq (+Simuliris)
- a selection of optimizations proven
v/ delete read through &mut or &
v’ insert read through & in function
v" move read down for &mut or & in function

+ read-read reordering!

Neven Villani

Tree Borrows




It should be possible to write unsafe code free of UB
l.e. UB should be predictable and not too common

- implemented in Miri

- tested against 30 000 most downloaded libraries on crates.io
» 400 000+ working tests
» measure how many have UB from Stacked / Tree Borrows




It should be possible to write unsafe code free of UB
l.e. UB should be predictable and not too common

- implemented in Miri
- tested against 30 000 most downloaded libraries on crates.io

» 400 000+ working tests
» measure how many have UB from Stacked / Tree Borrows

Tree Borrows reduces aliasing-related UB by over 50%

Only 31 (< 0.5%) tests are regressions, all easily fixable.




Conclusion



Try it out:

Rust Playground supports TB
play.rust-lang.org

Learn more:
plf.inf.ethz.ch/research/
e — pldi25-tree-borrows.html

td:igp 00
fn write_t [024 ] Rusth
o= 1 o I o
*y H
*x Clip
} :BI(C
P i Aliasing model b - L]
e, - detailed state machine
11.:: 51= u fe { & .
} e e, raw pol nters

interior mutability

Neven Villani Tree Borrows



	Rust's type system provides powerful optimizations
	Type-level guarantees for references
	Escape hatch: unsafe
	What if unsafe code violates a necessary invariant ?
	Not the compiler's responsibility
	Sounds familiar?
	Sounds familiar?

	Stacked Borrows (SB)
	Tree Borrows allows much more code

	From Stacks to Trees
	A second look at the motivating example

	Evaluation
	TB should enable desired optimizations
	It should be possible to write unsafe code free of UB
	


