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Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

  *x = 13;

  *y = 20;

  *x

}
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mutable thus disjoint
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Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

  *x = 13;

  *y = 20;

  *x

}

mutable thus disjoint

*x is unchanged

*x has known value

always returns 13
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Rust’s type system provides powerful optimizations

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

  *x = 13;

  *y = 20;

  *x

}

13 // formerly *x: one fewer load from memory
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Type-level guarantees for references

aliasing
&

mutability

&mut → mutation, no aliasing
& → aliasing, no mutation
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Escape hatch: unsafe
Can bypass typechecks to implement low-level manipulations

unsafe {
  // Code within this block has relaxed typechecking
  ...
}

Within unsafe it is the programmer’s responsibility to check
• that pointers are non-null
• that memory is initialized
• …
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What if unsafe code violates a necessary invariant ?

fn write_both(x: &mut i32, y: &mut i32) -> i32 {
  *x = 13;
  *y = 20;
  *x
}

fn main() {
  let mut root = 42;
  let ptr = &raw mut root;
  let x = unsafe { &mut *ptr };
  let y = unsafe { &mut *ptr };
  println!("{}", write_both(x, y));
}
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Not the compiler’s responsibility

Within unsafe it is the programmer’s responsibility to check
• that pointers are non-null
• that memory is initialized
• compliance with aliasing rules

NEW!

Tree Borrows (TB): defines those aliasing rules
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Not the compiler’s responsibility

Within unsafe it is the programmer’s responsibility to check
• that pointers are non-null
• that memory is initialized
• compliance with aliasing rules

NEW!

Tree Borrows (TB): defines those aliasing rules

Sounds familiar?
Stacked Borrows has the same purpose,
Tree Borrows is its successor.
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

root

• new stack at root
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

root

• ✓ root is at the top

Neven Villani Tree Borrows 6



Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

ptr
root

• ✓ root is at the top
• push ptr
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

x
ptr
root

• ✓ ptr is at the top
• push x
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

x
ptr
root

• pop until ptr is at the top
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

y
ptr
root

• pop until ptr is at the top
• push y
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;

Desired outcome: UB

y
ptr
root

• search for x
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Stacked Borrows (SB)

In safe Rust, the Borrow Checker makes borrows well-bracketed.
Stacked Borrows extends the well-bracketedness to unsafe.

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13; UB!
Desired outcome: UB

y
ptr
root

Can’t use x if it is not in the stack
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Stacked Borrows (SB)

SB was implemented in Miri (official interpreter and UB detector)
→ included in many projects’ CI
→ several bugs detected (e.g. in stdlib)
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Stacked Borrows (SB)

SB was implemented in Miri (official interpreter and UB detector)
→ included in many projects’ CI
→ several bugs detected (e.g. in stdlib)

However Stacked Borrows is too strict
• analysis of 30 000 libraries
• 6000+ tests that should work are declared UB
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Tree Borrows allows much more code Stacked Borrows (SB)

Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 50% fewer tests with aliasing UB when using Tree Borrows
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Tree Borrows allows much more code Stacked Borrows (SB)

Tree Borrows uses a tree instead of a stack to track borrows

Out of 30 000 most downloaded libraries,
> 50% fewer tests with aliasing UB when using Tree Borrows

fixes known technical limitations of TB, incl. handling of ranges
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From Stacks to Trees



From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

Neven Villani Tree Borrows 9



From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

0 1 2root
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From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);
// Scenario 2
let v1 = *x2.sub(1);

Desired outcome: not UB
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From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB
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From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
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From Stacks to Trees
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From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

? “Reserved”

0 1 2root

x0 x2

? ?

root

x0 x2
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From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);

Desired outcome: not UB

? “Reserved”
✓ “Unique”
✘ “Disabled”

0 1 2root

x0 x2

✓ ✘
root

x0 x2
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From Stacks to Trees

let mut root = vec![0, 1, 2];
let x0 = &raw mut root[0];
let x2 = &raw mut root[2];

// Scenario 1
let v1 = *x0.add(1);
// Scenario 2
let v1 = *x2.sub(1);

Desired outcome: not UB

? “Reserved”
✓ “Unique”
✘ “Disabled”

0 1 2root

x0 x2

✘ ✓
root

x0 x2
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A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB
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A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
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Desired outcome: UB

root

ptr
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A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20;

Desired outcome: UB
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x
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A second look at the motivating example From Stacks to Trees

let mut root = 42;
let ptr = &raw mut root;
let x = unsafe { &mut *ptr };
let y = unsafe { &mut *ptr };
*x = 13;
*y = 20; UB!
Desired outcome: UB

✓ ✘

root

ptr

x y
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A second look at the motivating example From Stacks to Trees

Forbids reordering reads

In SB:

let mut root = 0;
let x = &mut root;
let v1 = *x;
let v2 = root;

root, root, x, x, root is well-bracketed
root, root, x, root, x is not

In TB: a read never prevents another read.
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Evaluation



TB should enable desired optimizations Evaluation

i.e. have enough UB to rule out problematic patterns

• formalized in Rocq (+Simuliris)
• a selection of optimizations proven
✓ delete read through &mut or &
✓ insert read through & in function
✓ move read down for &mut or & in function

…

+ read-read reordering!
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It should be possible to write unsafe code free of UB Evaluation

i.e. UB should be predictable and not too common

• implemented in Miri
• tested against 30 000 most downloaded libraries on crates.io
‣ 400 000+ working tests
‣ measure how many have UB from Stacked / Tree Borrows
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It should be possible to write unsafe code free of UB Evaluation

i.e. UB should be predictable and not too common

• implemented in Miri
• tested against 30 000 most downloaded libraries on crates.io
‣ 400 000+ working tests
‣ measure how many have UB from Stacked / Tree Borrows

Tree Borrows reduces aliasing-related UB by over 50%

Only 31 (< 0.5%) tests are regressions, all easily fixable.
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Evaluation

Try it out:

Rust Playground supports TB
play.rust-lang.org Learn more:

plf.inf.ethz.ch/research/
pldi25-tree-borrows.html

• detailed state machine
• raw pointers
• interior mutability
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