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Rust

Features
Rich type system
→ Safety & Speed

Low-level primitives
→ Control

unsafe

Purposes
Applications

Libraries

Systems

v1.0 2018
General-purpose
Safety- and performance-oriented

Not standardized, ongoing efforts

Tools
Compilers

Libraries Rustc Miri

Async, Algebra, UI,
Cryptography, Datetime
Data Structures, Parsing,
Filesystem, Web, ...

Repo: crates.io

Official Sanitizer

Fast, optimizing

compiler.

Specifies and detects UBIgnores UB
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Uninitialized memory

Data races Out of bounds

Invalid layout

Aliasing conflicts: SB or TB
new!

ML-like

C-like

Must avoid UB
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What is Undefined Behavior ?

Common pattern:
for expressivity and performance the language introduces low
level primitives
(std::mem::transmute, pointer arithmetic, Obj.magic, ...),
misuse of these primitives can interfere with compiler invariants
(garbage collection, well-formedness of typed values,
uniqueness, ...),
guaranteeing deterministic behavior is

too expensive (runtime bounds checks, type markers, ...)
not feasible (undecidable at compile time)
or otherwise undesirable (wasted optimization potential)
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What is Undefined Behavior ?

Solution
Make it UB to misuse these constructs.
If a compiler invariant is violated by a language primitive, the
compiler can do literally anything.

UB as a contract
Deal between the programmer and the compiler: these primitives
are dangerous, only use them if you really know what you are doing.

unsafe
Already a selling point of Rust: unsafe is explicit.
UB can only occur as a result of well-delimited blocks.
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Common examples

Unchecked out-of-bounds accesses

Rust

let v = { let x = [0]; unsafe { x.get_unchecked(1) } };

C

int* x = malloc(sizeof(int)); int v = x[1];
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Common examples

Dereferencing null

Rust

let v = unsafe { *(0 as *const u8) }

C

int v = *(int*)0
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Common examples

Constructing an invalid value

Rust

let x: bool = unsafe { std::mem::transmute(2) };

C

bool x = ((union { int i; bool b }){ .i = 2 }).b;
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Pointer types in Rust

// Raw pointers (unsafe)
*const T
*mut T
// (*const T ⊏ *mut T)

// References (safe)
&’a T // shared and immutable
&’a mut T // unique and mutable
// (&’a T ⊏ &’a mut T)
// (’a ⊂ ’b ⇒ &’a T ⊏ &’b T)
// (’a ⊂ ’b ⇒ &’a mut T ⊏ &’b mut T)

// Wrappers
UnsafeCell, Box, Unique, ...

Neven Villani, R. Jung, J. Hostert, D. Dreyer Tree Borrows 5 / 32



Introduction Tree Structure Deriving rules Optimizations Evaluation

Pointer types in Rust

Just like

// x: &mut bool
*x = 4;

is a type error (mismatched types bool and u8),

// x: &u8
*x = 4;

is also a type error (&_ does not support assignment), and so is

// n: u8
let p = (&mut n, &mut n);

(impossible to satisfy lifetime constraints).
Mutability and uniqueness are part of the type!
Can we exploit that?
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Is &mut really unique ?

let data: u64 = 0;
let r0: &mut u64 = &mut x;

let x: &mut u64 = unsafe { &mut *(r0 as *mut u64) };
let y: &mut u64 = unsafe { &mut *(r0 as *mut u64) };
*x += 1;
*y += 1;

Clearly x and y alias, even though they are both unrelated &mut.
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Is &mut really unique ?

let data: u64 = 0;
let r0: &mut u64 = &mut x;

let x: &mut u64 = unsafe { &mut *(r0 as *mut u64) };
let y: &mut u64 = unsafe { &mut *(r0 as *mut u64) };
*x += 1;
*y += 1;

Clearly x and y alias, even though they are both unrelated &mut.

unsafe can violate compiler invariants
unsafe code can violate uniqueness (and well-formedness)
guarantees, so the compiler cannot rely on them for optimizations.
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A motivating example for Aliasing UB

fn foo(x: &mut u64) {
let val = *x;
*x = 42;
opaque();
*x = val;

}

optimized into

fn foo(x: &mut u64) {
opaque();

}

Well-typedness of any program that calls foo implies uniqueness of
x during the execution of foo: opaque cannot mutate x!
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A motivating example for Aliasing UB

fn foo(x: &mut u64) {
let val = *x;
*x = 42;
opaque();
*x = val;

}

optimized into
fn foo(x: &mut u64) {

opaque();
}

Well-typedness of any program that calls foo implies uniqueness of
x during the execution of foo: opaque cannot mutate x!
...except if the user uses unsafe to violate uniqueness
...which we are going to assume does not happen: violating
uniqueness is UB!
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How much UB is enough ? Too much ?
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Tree Borrows: specification and detection of pointer
aliasing UB

Starting observation
Proper usage of pointers (lifetime inclusion and inheritance of
mutability) follows a tree discipline.

when pointer dies, so do its children
when pointer requires uniqueness, remove other branches

Key ideas
per-location tracking of pointers
each pointer has permissions
on each reborrow a new identifier is added as a leaf of the tree
a pointer can be used if its permission allows it (to be defined)
using a pointer kills incompatible (to be defined) pointers
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When are pointers different ?

A pointer in our semantics is:

struct Pointer {
address: usize,
size: usize,
tag: usize, // <- added specifically for TB/SB

}

Two pointers to the same data are not equal for TB/SB if they
have different tags.
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A Tree of pointers

let x = &mut 0u64;

let y1 = &mut *x;
let y2 = &*y1;

let z1 = &*x;
let z2 = z1 as *const u64;

foo(x);
fn foo(w2: &mut u64) {

let w3 = &*w2;
}

x

y1

y2

z1, z2

w1

w2

w3
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What’s in the tree ?

Each pointer is given a tag

Tree Borrows tracks:
permission: per tag, per location;
hierarchy between tags;
accesses are done through a tag:

require permissions of the tag
(UB if the permissions are insufficient)
update permissions of other tags
(UB if the modification is forbidden)

Neven Villani, R. Jung, J. Hostert, D. Dreyer Tree Borrows 12 / 32



Introduction Tree Structure Deriving rules Optimizations Evaluation

One pointer, 2× 2 kinds of accesses

?
?

x
?
?

?
?
?

?

child accesses for x

foreign accesses for x

foreign accesses for x

each read or write.
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Kinds of accesses: examples

let x = &mut ...;
let y = &*x;
let z = &*x;

let _ = *y; // Read access; foreign for z; child for y, x.
*x = 1; // Write access; foreign for y, z; child for x.

...
x

y
z
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Summary

pointers identified by a tag;
tags are stored in a tree structure;

reborrows create fresh tags,
new tag is a child of the reborrowed tag

each tag has per-location permissions;
permissions allow or reject child accesses
(done through child tags)
permissions evolve in response to foreign accesses
(done through non-child tags).
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How many permissions ?

In short: one permission per “kind of pointer”
(interior) mutability,
lifetime information,
creation context,
...

Guarantees required of pointers determine behavior of permissions:
pointer allows mutation
⇒ permission allows child writes

pointer guarantees uniqueness
⇒ permission is invalidated by foreign accesses

...
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Reserved, Active, Frozen, Disabled

Basic permissions to represent
two phase borrowed (mutable in the future): Reserved,
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.
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Reserved, Active, Frozen, Disabled

Basic permissions to represent
two phase borrowed (mutable in the future): Reserved,
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Child read : must allow reading

Res Act Frz Dis

UBchild read
&mut &
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Reserved, Active, Frozen, Disabled

Basic permissions to represent
two phase borrowed (mutable in the future): Reserved,
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Child write: must allow writing

Res Act Frz Dis

UB

UB

child read

child write
&mut &
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Reserved, Active, Frozen, Disabled

Basic permissions to represent
two phase borrowed (mutable in the future): Reserved,
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Foreign read : no longer unique

Res Act Frz Dis

UB

UB

foreign read

child read

child write
&mut &
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Reserved, Active, Frozen, Disabled

Basic permissions to represent
two phase borrowed (mutable in the future): Reserved,
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Foreign write: no longer immutable

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &
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Justifying noalias

Loss of permissions too early

LLVM noalias (in TB terms)
No foreign access during the same function call as a child access if
at least one is a write.

1 \ 2 ↑R ↑W ↓R ↓W
↑R ×
↑W × ×
↓R ×
↓W × ×
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Justifying noalias

Loss of permissions too early

LLVM noalias (in TB terms)
No foreign access during the same function call as a child access if
at least one is a write.

Previous model: unsound

fn write(x: &mut u64) {
*x = 42; // activation
opaque(/* foreign read for x: noalias violation */);

}

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &
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Justifying noalias

Protectors lock permissions

1 \ 2 ↑R ↑W ↓R ↓W
↑R ×
↑W ≈ ≈
↓R ×
↓W × ×

×: should be UB
≈: should be UB earlier

Intuition
noalias requires exclusive access during the entire function call, so
we remember the set of all functions that have not yet returned
and enforce exclusivity for their arguments.

Concept adapted from Stacked Borrows: protectors.
references get a protector on function entry
protector lasts until the end of the call
protectors strengthen the guarantees
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Justifying noalias

Protectors lock permissions

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

function exit

UB

UB

&mut &
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Justifying noalias

Protectors lock permissions

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

foreign write

foreign read

child read

child write

function exit

[P]Res [P]Act [P]Frz [P]Dis

UB

UB
&mut

&mut

&

&
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Justifying noalias

Protectors lock permissions

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

foreign write

foreign read

child read

child write

function exit

[P]Res [P]Act [P]Frz

UB

UB

&mut

&mut

&

&
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Justifying noalias

Protectors lock permissions

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

function exit

UB

UB

&mut

&mut

&

&

(1) set conflicted
(2) check !conflicted

(1)

(2)
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Justifying noalias

Protectors lock permissions

LLVM noalias (in TB terms)
No foreign access during the same function call as a child write.

With protectors: fixed

fn write(x: &mut u64) { // with protector
*x = 42; // activation
opaque(/* foreign read for x: noalias violation */);

}

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

UB

UB

&mut &

(1) set conflicted
(2) check !conflicted

(1)

(2)
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Summary

Reserved, Active, Frozen, Disabled represent different
possible states of pointers.
Interactions with child and foreign accesses enforce
uniqueness/immutability guarantees.
Protectors are added on function entry to strengthen these
guarantees up to the requirements of noalias.
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Some standard optimizations

Possible in... SB TB
Swap call-read → read-call (speculative) ✓ ✓

Swap read-call → call-read ✓* ✓*

▷ Swap read-read’ → read’-read ✓* ✓

← TB only

Swap call-write → write-call (speculative) ✓* ✗

← SB only

▷ Swap write-call-write → write-write-call ✓* ✓*

Swap write-call → call-write ✓* ✓*

▷ Swap write-write’-read → write’-write-read ✓ ✓*

← SB only

*: only for protected references
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Possible optimizations: intuition

Swap write-write

✓ Base model

let x = &mut ...;
let y = &mut ...;
*x = 42; // (optimization: move down ?)
*y = 19; // is this a foreign write ?

if yesif not

*x = 57;

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
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✓ Base model

let x = &mut ...;
let y = &mut ...;
*x = 42; // (optimization: move down ?)
*y = 19; // is this a foreign write ? if yes

if not

*x = 57;

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &
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Possible optimizations: intuition

Swap write-write

✓ Base model

let x = &mut ...;
let y = &mut ...;

*y = 19; // assumed not to be a foreign write
*x = 42;
*x = 57;

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &
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Possible optimizations: intuition

Insert speculative read

✓ Base model

fn read(x: &u64) -> u64 {

opaque(/* contains foreign access ?

if noneif readif write

*/);
*x // (optimization: move up ?)

}

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
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Possible optimizations: intuition

Insert speculative read

✓ Base model

fn read(x: &u64) -> u64 {

opaque(/* contains foreign access ? if none

if readif write

*/);
*x // (optimization: move up ?)

}

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

UB

UB

&mut &

(1) set conflicted
(2) check !conflicted

(1)

(2)
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Possible optimizations: intuition

Insert speculative read

✓ Base model

fn read(x: &u64) -> u64 {

opaque(/* contains foreign access ?

if noneif read

if write */);
*x // (optimization: move up ?)

}

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

UB

UB

&mut &

(1) set conflicted
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(1)

(2)
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Possible optimizations: intuition

Insert speculative read

✓ Base model

fn read(x: &u64) -> u64 {
let val = *x;
opaque(/* assume no foreign write */);
val

}

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

UB

UB

&mut &

(1) set conflicted
(2) check !conflicted

(1)

(2)
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Impossible optimizations

Insert speculative write

✗ Base model

fn foo(x: &mut u64) {

opaque(/* contains foreign access ?

if writeif readif read+loop

*/);
*x = 42; // (optimization: move up ?)

}

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
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UB
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child read

child write

UB

UB

&mut &

(1) set conflicted
(2) check !conflicted

(1)

(2)

Neven Villani, R. Jung, J. Hostert, D. Dreyer Tree Borrows 25 / 32



Introduction Tree Structure Deriving rules Optimizations Evaluation
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Insert speculative write
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fn foo(x: &mut u64) {

opaque(/* contains foreign access ?
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if read

if read+loop

*/);
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}

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

UB

UB

&mut &

(1) set conflicted
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(1)

(2) UB
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Impossible optimizations

Insert speculative write: blocker

as_mut_ptr: base model

strengthened with speculative writes

&mut [T] -> *mut T

returns a Reserved

an Active

child of the input

✓

✗

Common pattern

let raw = buf.as_mut_ptr();
let shr = buf.as_ptr().add(1);
copy_nonoverlapping(shr, raw, 1);

buf: Active
...

raw: Reserved
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Impossible optimizations

Insert speculative write: blocker

as_mut_ptr: base model

strengthened with speculative writes

&mut [T] -> *mut T

returns a Reserved

an Active

child of the input

✓

✗

Common pattern

let raw = buf.as_mut_ptr();
let shr = buf.as_ptr().add(1);
copy_nonoverlapping(shr, raw, 1);

buf: Active
...

raw: Reserved
...

shr: Frozen
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Impossible optimizations

Insert speculative write: blocker

as_mut_ptr: base model

strengthened with speculative writes

&mut [T] -> *mut T

returns a Reserved

an Active

child of the input

✓

✗

Common pattern

let raw = buf.as_mut_ptr();
let shr = buf.as_ptr().add(1);
copy_nonoverlapping(shr, raw, 1);

buf: Active
...

raw: Active
...

shr: Disabled
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Impossible optimizations

Insert speculative write: blocker

as_mut_ptr:

base model

strengthened with speculative writes
&mut [T] -> *mut T

returns

a Reserved

an Active child of the input

✓

✗ Common pattern

let raw = buf.as_mut_ptr();
let shr = buf.as_ptr().add(1);
copy_nonoverlapping(shr, raw, 1);

buf: Active
...

raw: Active

Neven Villani, R. Jung, J. Hostert, D. Dreyer Tree Borrows 26 / 32



Introduction Tree Structure Deriving rules Optimizations Evaluation

Impossible optimizations

Insert speculative write: blocker

as_mut_ptr:

base model

strengthened with speculative writes
&mut [T] -> *mut T

returns

a Reserved

an Active child of the input

✓

✗ Common pattern

let raw = buf.as_mut_ptr();
let shr = buf.as_ptr().add(1);
copy_nonoverlapping(shr, raw, 1);

buf: Active
...

raw: Frozen
...

shr: Frozen
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Impossible optimizations

A more formal approach

One big invariant:
preserved by any step of the program that does not cause UB
provides sufficient hypotheses for the optimizations we want
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Impossible optimizations

A more formal approach

An excerpt from the invariant for protected activated mutable
references:

∀t ∈ T, l ∈ L.∃p, c.(p, t, c) ∈ σt.TREES(l).

p ̸= Disabled⇒
σs.MEM(l) ∼ σt.MEM(l)

∧ p = Active
∧ ∀t′ ∈ Childrenσt(t) . t

′.PERM[l] = Disabled
∧ ∀t′ ∈ Parentsσt(t) . t

′.PERM[l] = Active
∧ ∀t′ ∈ Unclesσt(t) . t

′.PERM[l] ∈ {Disabled, Res InMut}

What happens to this property when we do ...
...a foreign read ? a foreign write ? a reborrow ?

What does this allow ? → arbitrary child accesses
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Summary

TB allows read reorderings (SB does not)
TB allows speculative reads (SB as well)
TB forbids speculative writes (SB allows them)

the model can be strengthened to justify these optimizations...
...at the cost of common patterns.
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Counting crates with UB on crates.io (May 2023)
Data obtained with the help of Ben Kimock

(github:saethlin/miri-tools)

Aliasing Uninit Dangle Align Race Layout Invalid
0

500
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Summary

Tree Borrows UB is much less common on crates.io than
Stacked Borrows UB
⇒ fulfills goal of being more permissive

Notable examples
tokio, pyo3, rkyv, eyre, ndarray, arrayvec, slotmap,
nalgebra, json.

patterns allowed by Stacked Borrows but forbidden by Tree
Borrows are theoretically possible but have not been found in
actual code
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Reception

TB has existed for one year
⊕ consensus that TB is simpler and more predictable than SB,
⊕ cases where TB is more permissive than SB are welcome

(e.g. &Header pattern),
⊕ cases where TB is less permissive are rare

(no complaints yet),
⊖ fewer optimizations (expected),
⊖ controversial granularity of interior mutability,
⊖ slight performance regression in Miri.
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Questions ?
TB also has...

interactions between interior mutability and
protectors/Reserved
performance improvements

tricks to trim tree traversals
lazy initialization for out-of-range accesses

formalization in Coq in progress

Don’t hesitate to test your code with Miri and send us your
interesting/unexpected cases of UB! (github:rust-lang/miri)
MIRIFLAGS=-Zmiri-tree-borrows cargo +miri miri test

Slides: github:Vanille-N/tree-beamer/tree/lmf
Complementary material: perso.crans.org/vanille/treebor
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