




Introduction Tree Structure Deriving rules Optimizations Evaluation

Tree Borrows
An aliasing model for Rust

Neven Villani, Ralf Jung, Derek Dreyer

ENS Paris-Saclay and MPI-SWS Saarbrücken

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 3 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Rust
Features

Rich type system
→ Safety & Speed

Low-level primitives
→ Control

unsafe

Purposes

Applications

Libraries

Systems

v1.0 2018
General-purpose
Safety- and performance-oriented

Not standardized, ongoing efforts

Tools
Compilers

Libraries Rustc Miri

Async, Algebra, UI,
Cryptography, Datetime
Data Structures, Parsing,
Filesystem, Web, ...

Repo: crates.io

Official Sanitizer

Fast, optimizing

compiler.

Specifies and detects UBIgnores UB

c
a
r
g
o

P
a
ck
a
g
e
m
a
n
a
g
er

Uninitialized memory

Data races Out of bounds

Invalid layout

Aliasing conflicts: SB or TB
new!

ML-like

C-like

Must avoid UB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 4 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

What is UB?

Undefined Behavior (UB) arises
in languages that have both high- and low-level components
(C, C++, OCaml, Java, Rust: yes)
(Assembly, Python: no)
as a necessity from the existence of

functions that bypass type systems
(Obj.magic, std::mem::transmute, void*)
unpredictable interaction between language primitives
(multithreading, pointer arithmetic)
interaction with other languages
(FFI, inline assembly)

Fundamental tradeoff:
more UB = more optimizations = less predictability
Why not Stacked Borrows? Too much UB.
For Tree Borrows: try less UB (at the cost of some optimizations)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 5 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Rust’s type system

let t: T = v;
// ^ value
// ^ type
// ^ variable
// ^^^^^^^^ variable binding

fn pow2(n: u8) -> u128 {
2.ipow(n)

}

fn main() {
let n: u8 = 42;
let m: u128 = pow2(n);
println!("2^{n} = {m}");

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 6 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Rust’s type system
// Primitives
f32, f64, u8, i8, u16, i16, u32, i32,
u64, i64, u128, i128, usize, isize, bool
// Products
struct Point {

x: f64,
y: f64,

type Triplet<T> = (T, T, T);
type Array3<T> = [T; 3];
// Sums
enum Shape<T> {

Circle(Point, f64),
Square(Point, f64),
Triangle(Array3<Point>),
Other(T),

}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 6 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Rust’s type system

// Raw pointers (unsafe)
*const T
*mut T
// (*const T ⊏ *mut T)

// References (safe)
&’a T // shared and immutable
&’a mut T // unique and mutable
// (&’a T ⊏ &’a mut T)
// (’a ⊂ ’b ⇒ &’a T ⊏ &’b T)
// (’a ⊂ ’b ⇒ &’a mut T ⊏ &’b mut T)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 6 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Rust’s type system

Just like

// x: &mut bool
*x = 4;

is a type error (mismatched types bool and u8),

// x: &u8
*x = 4;

is also a type error (&_ does not support assignment), and so is

// n: u8
let p = (&mut n, &mut n);

(impossible to satisfy lifetime constraints).
Mutability and uniqueness are part of the type!
Can we exploit that?

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 6 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

A motivating example for Aliasing UB

fn foo(x: &mut u64) {
let val = *x;
opaque();
*x = val;

}

optimized into

fn foo(x: &mut u64) {
opaque();

}

Well-typedness of any program that calls foo implies uniqueness of
x during the execution of foo: opaque cannot mutate x!

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 7 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

A motivating example for Aliasing UB

fn foo(x: &mut u64) {
let val = *x;
opaque();
*x = val;

}

optimized into

fn foo(x: &mut u64) {
opaque();

}

Well-typedness of any program that calls foo implies uniqueness of
x during the execution of foo: opaque cannot mutate x!
...except if the user uses unsafe to violate uniqueness

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 7 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

A motivating example for Aliasing UB

fn foo(x: &mut u64) {
let val = *x;
opaque();
*x = val;

}

optimized into

fn foo(x: &mut u64) {
opaque();

}

Well-typedness of any program that calls foo implies uniqueness of
x during the execution of foo: opaque cannot mutate x!
...except if the user uses unsafe to violate uniqueness
...which we are going to assume does not happen: violating
uniqueness is UB!

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 7 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Tree Borrows: specification and detection of pointer
aliasing UB

Starting observation
Proper usage of pointers (lifetime inclusion and inheritance of
mutability) follows a tree discipline.

when pointer dies, so do its children
when pointer requires uniqueness, remove branches

Key ideas
per-location tracking of pointers
each pointer has permissions
on each reborrow a new identifier is added as a leaf of the tree
a pointer can be used if its permission allows it (to be defined)
using a pointer kills incompatible (to be defined) pointers

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 8 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

A Tree of pointers

x

y1

y2

z1, z2

w1

w2

w3

let x = &mut 0u64; // initial borrow

let y1 = &mut *x; // mutable reborrow
let y2 = &*y1; // shared reborrow

let z1 = &*x;
let z2 = z1 as *const u64; // cast

foo(x); // implicit mutable reborrow
fn foo(w2: &mut u64) {

let w3 = &*w2;
}

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 9 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

What’s in the tree ?

Each pointer is given a tag

Tree Borrows tracks:
permission: per tag, per location;
hierarchy between tags;
accesses are done through a tag:

require permissions of the tag
(UB if the permissions are insufficient)
update permissions of other tags
(UB if the modification is forbidden)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 10 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

One pointer, 2× 2 kinds of accesses

?
?

x
?
?

?
?
?

?

child accesses for x

foreign accesses for x

foreign accesses for x

each read or write.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 11 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Tracking permissions
State machine on Σ = {Foreign,Child} × {Rd,Wr}+ {Ret} and
Q = {Res, ResIM, Act, Frz, Dis, Als} × {Lazy, Init} × {Prot,Unprot}

Write permissions

Read permissions

≤
UB

y

n

n

y

↓R

↓W

↑R

↑W

↑W
↑W

↑W

↑R

↑R

↑R

↓W

↓W

↓W

↓R

↓R

↓R

↓W

↓R

↑R

↑W

Child Write

Child Read

Foreign Write

Foreign Read

ty is freeze: bool

Reserved

Active

Disabled

Frozen

Entry point
for mutable
references

Entry point
for shared
references

ty is freeze
or protected?

Read + Future Write !Read + !Write

Read + !WriteRead + Write

protected?

!Read permissions

!
W
r
i
t
e
p
e
rm

issio
n
s

Future Write permissions

protected? n

y

UB if protected not lazy

↓W ↓R

Aliased
Read + Write

↑R↑W

Entry point
for raw
pointers

Independent execution
on every
(pointer id, byte),

Entry point depends on
the pointer kind and
the creation context,

Infinite stream of
accesses, rejects any
finite prefix that
contains UB.

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 12 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Active, Frozen, Disabled (simplified)

Core triplet of permissions to represent
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Child read : must allow reading
Active → Active

Frozen → Frozen

Disabled → UB

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 13 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Active, Frozen, Disabled (simplified)

Core triplet of permissions to represent
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Child write: must allow writing
Active → Active

Frozen → UB
Disabled → UB

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 13 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Active, Frozen, Disabled (simplified)

Core triplet of permissions to represent
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Foreign read : no longer unique
Active → Frozen

Frozen → Frozen

Disabled → Disabled

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 13 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Active, Frozen, Disabled (simplified)

Core triplet of permissions to represent
unique mutable references: Active,
shared immutable references: Frozen,
lifetime ended: Disabled.

Foreign write: no longer immutable
Active → Disabled

Frozen → Disabled

Disabled → Disabled

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 13 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

This simplified model already enforces

✓ Active (&mut) readable and writeable
✓ Frozen (&) and all their children are only readable
✓ data behind Active (&mut) is owned exclusively
✓ data behind Frozen (&) is immutable

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 14 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Swap write-write

✓ Base model

let x = &mut ...;
let y = &mut ...;
*x = 42; // (optimization: move down ?)
*y = 19; // is this a foreign write ?

if notif yes

*x = 57;

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 15 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Swap write-write

✓ Base model

let x = &mut ...;
let y = &mut ...;
*x = 42; // (optimization: move down ?)
*y = 19; // is this a foreign write ? if not

if yes

*x = 57;

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 15 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Swap write-write

✓ Base model

let x = &mut ...;
let y = &mut ...;
*x = 42; // (optimization: move down ?)
*y = 19; // is this a foreign write ?

if not

if yes

*x = 57;

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 15 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Swap write-write

✓ Base model

let x = &mut ...;
let y = &mut ...;

*y = 19; // assumed not to be a foreign write
*x = 42;
*x = 57;

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 15 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Some standard optimizations

Possible in... SB TB
Swap call-read → read-call (speculative) ✓ ✓

Swap read-call → call-read ✓* ✓*

▷ Swap read-read’ → read’-read ✓* ✓

Swap call-write → write-call (speculative) ✓* ✗

▷ Swap write-call-write → write-write-call ✓* ✓*

Swap write-call → call-write ✓* ✓*

▷ Swap write-read’-read → read’-write-read ✓ ✓*

*: only for function arguments (stronger semantics not presented here)

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 16 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Counting crates with UB

Aliasing Uninit Dangle Align Race Layout Invalid
0

500

1,000

1,234

830
754

155
63 43 27

514

870 847

168
73 50 34

N
um

be
r

of
cr

at
es

w
ith

U
B

Miri+SB
Miri+TB

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 17 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Summary

Tree Borrows UB is much less common on crates.io than
Stacked Borrows UB

⇒ fulfills goal of being more permissive

Notable examples
tokio, pyo3, rkyv, eyre, ndarray, ...
arrayvec, slotmap, nalgebra, json, ...

patterns allowed by Stacked Borrows but forbidden by Tree
Borrows are theoretically possible but rare

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 18 / 19



Introduction Tree Structure Deriving rules Optimizations Evaluation

Questions ?

TB also has...
implementation in Miri (github:rust-lang/miri)
performance improvements compared to the naive
implementation

many tricks to trim tree traversals
lazy initialization for out-of-range accesses

formalization in Coq, with many optimizations proven

Slides: github:Vanille-N/tree-beamer/tree/ens
Complementary material: perso.crans.org/vanille/treebor

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 19 / 19

https://github.com/rust-lang/miri
https://github.com/Vanille-N/tree-beamer/tree/ens
https://perso.crans.org/vanille/treebor


Model versions Intuition

Core

Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 1 / 6



Model versions Intuition

Base

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write
&mut &

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 2 / 6



Model versions Intuition

Base + protected

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

function exit

UB

UB

&mut

&mut

&

&

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 3 / 6



Model versions Intuition

Base + cell

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

function exit

UB

UB

&mut Cell

Aliased

&Cell

*mut

*const

&mut Cell

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 4 / 6



Model versions Intuition

Intuition: all accesses are idempotent

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

function exit

UB

UB

≤

&mut

&mut

&

&

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 5 / 6



Model versions Intuition

Intuition: reordering of reads

Res Act Frz Dis

UB

UB

foreign write

foreign read

child read

child write

[P]Res [P]Act [P]Frz

UB

foreign write

foreign read

child read

child write

function exit

UB

UB

&mut

&mut

&

&

Neven Villani, Ralf Jung, Derek Dreyer Tree Borrows 6 / 6


	Introduction
	Tree Structure
	Deriving rules
	Optimizations
	Evaluation
	Appendix
	Model versions
	Intuition


