
Verifying Parameterized Networks Specified by
Vertex-Replacement Graph Grammars

Radu Iosif1 , Arnaud Sangnier2 , and Neven Villani1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France
{firstname}.{lastname}@univ-grenoble-alpes.fr

2 DIBRIS, Univ. of Genova, Italy
{firstname}.{lastname}@unige.it

Abstract. We consider the parametric reachability problem (PRP) for families
of networks described by vertex-replacement (VR) graph grammars, where net-
work nodes run replicas of finite-state processes that communicate via binary
handshaking. We show that the PRP problem for VR grammars can be effec-
tively reduced to the PRP problem for hyperedge-replacement (HR) grammars,
at the cost of introducing extra edges for routing messages. This transformation is
motivated by the existence of several parametric verification techniques for fami-
lies of networks specified by HR grammars, or similar inductive formalisms. Our
reduction enables applying the verification techniques for HR systems to systems
with dense architectures, such as user-specified cliques and multi-partite graphs.

1 Introduction

As pointed out in recent literature, “network verification is a necessary part of deploy-
ing modern hyperscale datacenters” [19]. In this context, verification considers global
properties of routing control, such as access between point A and point B. Very often,
the intended functionality of a network can be derived from its architecture, typically
known at early stages of network design.

The huge scale of present-day datacenters, of ∼104 routers for a regional hub and
continuously growing, requires parametric verification techniques, that work no matter
how many servers in a rack, switches in a cluster, clusters in a layer, etc. Despite decades
of theoretical research and an impressive body of results (see [7] for a nice survey), these
techniques consider mostly hard-coded architectures, either dense (e.g., cliques [16]) or
sparse (e.g., rings [11]) families of graphs with a common topological pattern.

The problem of verifying networks with user-specified architecture has gained re-
cent momentum, with the development of parametric verification techniques for sys-
tems described using logic [5] or graph grammars [20]. In principle, logic-based graph
specification languages are good at describing global properties, such as planarity, k-
colorability or reachability, which make them more suitable for the specification of
correctness properties, than network design.

On the other hand, graph grammars are appealing for their constructive aspect,
i.e., defining how large graphs are built from smaller subgraphs. Moreover, this re-
cursive way of describing sets of graphs is common among programmers and software
engineers, who are familiar with inductively defined datastructures (lists, trees, etc.)

https://orcid.org/0000-0003-3204-3294
https://orcid.org/0000-0002-6731-0340
https://orcid.org/0000-0003-2726-5036

T2-4-m

T3-1 T3-2 T3-3 T3-p...Regional Spine

ToR

Servers

T0-2 T0-k

... ...Leaf

T0-1

Servers

T0-1 T0-2 T0-k

Servers

T0-1 T0-2 T0-k

...T1-1 T1-2 T1-3 T1-m T1-1 T1-2 T1-3 T1-m T1-1 T1-2 T1-3 T1-m

...

... ...Spine ...T2-1-1T2-1-2T2-1-3 T2-1-n T2-4-1 T2-4-2T2-4-3

Fig. 1. Azure Datacenter Switching Topology

used in both imperative and functional programming. Graph grammars are at the core
of the theory of formal languages (see [13] for a comprehensive survey). Based on
the underlying set of operations (i.e., graph algebra), we distinguish between vertex-
replacement (VR) and hyperedge-replacement (HR) grammars. In principle, HR graph
grammars can specify families of graphs having bounded tree-width, such as chains,
rings, stars, trees (of unbounded rank) and beyond, e.g., overlaid structures such as
trees or stars with certain nodes linked in a list. Since cliques and grids are families
of unbounded tree-width, neither can be specified using HR graph grammars. On the
other hand, vertex-replacement (VR) grammars are strictly more expressive [12]. For
instance, VR grammars can describe the sets {Kn}n≥1 of cliques and {Kn,m}n,m≥1 of
complete bipartite graphs, among others.

A concrete motivation for using VR grammars to design datacenter networks can be
found in the informal description of the Azure datacenter architecture [17,19], deployed
in the Microsoft hyperscale cloud network (Figure 1). The top-of-rack (ToR) switches
connect servers hosted in a rack. Several ToR switches are connected together by a
number of leaf switches. Leaf switches are in turn connected together by a set of spine
switches, that connect the datacenter to the Azure regional network. These networks
cannot be described as cliques, because of their layered structure. However, the links
between each layer (i.e., ToR, leaf, spine, regional spine) and its adjacent layers form a
complete bipartite graph, thus lying outside the scope of HR grammars, which cannot
define complete bipartite graphs of unbounded sizes3.

The precise relation between the expressivity of VR and HR grammars has been
elegantly coined in a result by Courcelle, stating that a set defined by a VR grammar
can also be defined by an HR grammar if and only if it is sparse [12]. Moreover, each
VR grammar can be transformed into an HR grammar producing a set of graphs with ε-
edges, such that the elimination of these edges from the HR language yields the original
VR language. For instance, the elimination of ε-edges from the graph from Figure 2 (b)
yields the complete bipartite graph K4,3 from Figure 2 (a).

Contribution We leverage the idea of transforming VR grammars into HR grammars
modulo elimination of ε-edges to define a reduction from the parametric reachability

3 Each set {Kn,m}n∈N,m∈M for N,M infinite subsets of N, has unbounded tree-width, whereas
HR-grammars define bounded tree-width sets.

2

u1

u2

u3

u4

v1

v2

v3
a

(a)

uε vε

a

u1

ε
u2

ε

u3 ε

u4 ε

v1

ε

v2
ε

v3ε

(b)

Fig. 2. The complete bipartite graph
−→
K 4,3 (a) and one possible encoding using ε-edges (b).

problem (PRP) for systems described by VR grammars and finite-state local behaviors,
with correctness properties given by unrestricted arithmetic formulæ over a set of vari-
ables, tracking how many processes are in a given local state, to the PRP problem for
systems described by HR grammars, having the same correctness property. This is moti-
vated by several recent developments in the verification of parametric systems with HR-
style architecture descriptions. In particular, [10] reports on an inference of structural
invariants (i.e., over-approximations of the reachable set, that can be derived from the
structure of the network) for architectures described using a variant of Separation Logic
with inductive definitions (same expressivity as HR grammars) Moreover, [9] gives an
abstraction technique that folds similar network nodes into a finite Petri net, whose
coverability problem over-approximates the original parametric coverability problem.
In this paper, we give a more general reduction method, that preserves all safety prop-
erties specified by arithmetic assertions, rather than the particular case of coverability.

Related Work The literature on parametric verification is too large to be recalled
here. We point to [7] for a survey on the (un)decidability results, typically concerning
clique or ring architectures. The specification of network architectures using inductive
definitions can be traced back to the work on network grammars [22,20,18], that use in-
ductive rules to describe systems with linear (pipeline, token-ring) architectures. These
initial works target mainly safety properties, by inferring network invariants [23,21].
Pipeline and clique architectures are also considered by methods based on the theory of
well-structured transition systems [1], such as monotonic abstraction [2,3].

A prominent exception, that considers the verification of clique-width bounded ar-
chitectures specified using Monadic Second Order Logic (MSO) against CTL∗ \⃝
properties is [5]. Their result uses a reduction from the parametric model checking
problem (PMCP) to the decidability of MSO over graphs of bounded clique-width [13].
Our result is orthogonal, because we consider VR grammars that strictly subsume the
MSO-definable sets of bounded clique-width. It is, however, an interesting question if
our reduction can be used to establish a more general decidability result. A promising
lead would be to use the decidability of PMCP for HR systems with local behaviors
that mimick the passing of a pebble from one node to another [9].

Notation We denote by Z (N) the set of (positive) integers. For i, j ∈ N, we denote
by [i, j] the set {i, . . . , j}, considered empty if i > j. The cardinality of a finite set A is
written ||A||. A singleton {a} is simply denoted a. The union of two disjoint sets A and
B is denoted as A⊎B. The Cartesian product of two sets A and B is denoted A×B. As
usual, we define A∗ the set of (possibly empty) finite sequences of elements from A, and
A∞ the set of finite or infinite sequences over A. Finally P (A) is the powerset of A.

3

2 Graphs

For simplicity reasons, in this paper we consider only networks whose topologies are
described by oriented binary graphs, where vertices model processes and edges model
a symmetric rendezvous between two processes, i.e., we do not distinguish the process
initiating the communication and consider that both participants have equal roles.

Let Λ and ∆ be finite disjoint alphabets of vertex and edge labels, respectively. A
graph is a tuple G= (VG,EG,λG), where VG is a finite set of vertices, EG ⊆VG×∆×VG

is a set of edges, such that (v,δ,v′) ∈ EG implies v ̸= v′ (i.e., graphs have no self-loops)
and λG : VG→ P (Λ) assigns a set of labels to each vertex. We do not distinguish graphs
that are isomorphic. We denote by G(Λ,∆) the set of graphs with vertex and edge labels
from Λ and ∆, or simply G , if ∆ and Λ are understood.

We shall consider parameterized networks described as infinite sets of graphs. Al-
beit infinite, these sets have a finite description, given by finitely many inductive rules
stating how the graphs in the set are built from smaller graphs. This constructive4 ap-
proach to the specification of infinite sets of graphs relies on graph algebras, being at
the core of an impressive body of theoretical work (see [13] for a survey).

2.1 Algebras

We present two classical graph algebras, namely vertex-replacement (VR) and hyperedge-
replacement (HR). Let Λ and ∆ be fixed in the following. We consider a set Π ⊆ Λ of
distinguished vertex labels, called ports, such that ||λG(v)∩Π|| ≤ 1, for each graph
G ∈ G(Λ,∆) and each vertex v ∈ VG. In other words, a vertex is labeled with at most
one port. We say that a vertex v ∈ VG is a π-port of G whenever π ∈ λG(v). The sort of
a graph is the set of ports that occur in the labels of the vertices from the graph.

The labels from Λ\Π will be needed later to associate vertices with local behaviors,
referred to as process types. For the time being, we assume the set of process types
to be Λ \Π = {λ1, . . . ,λn} and that the set of port labels is partitioned accordingly,
i.e., Π = Πλ1 ⊎ . . .⊎Πλn . We say that the process type of a port π ∈ Π is λ ∈ Λ \Π,

denoted ptype(π) = λ
def⇐⇒ π ∈ Πλ. A partial function α : Π ⇀ Π is type-preserving

iff α(π), if defined, has the same process type as π, for each π ∈Π.
The domain of the VR-algebra is the set G of graphs. The operations of VR are the

following, see Figure 3 (a) for an illustration:
- Disjoint union: G1⊕p1 ,p2 G2

def
= H iff the sorts of G1 and G2 are p1 and p2, respectively,

VH = VG1 ⊎VG2 , EH = EG1 ⊎EG2 and λH = λG1 ⊎ λG2 where, if VG1 ∩VG2 ̸= /0 or
EG1 ∩EG2 ̸= /0, we replace G2 by an isomorphic copy disjoint from G1. We write ⊕
instead of ⊕p1 ,p2 when the argument sorts are understood.

- Edge creation: for an edge label δ∈ ∆ and port labels π1 ̸= π2 ∈Π, addδ,π1,π2(G)
def
= H

iff VH =VG, EH = EG∪{(v1,δ,v2) | v1,v2 ∈ VG, πi ∈ λG(vi), i = 1,2} and λH = λG;
in other words, addδ,π1,π2 adds a directed δ-edge from each π1-port to each π2-port of
its argument. No edge is added if such an edge already exists. Moreover, because π1

4 As opposed to the descriptive method of defining sets of graphs by their common properties,
using e.g., monadic second-order logic.

4

(a)

−→
relab[1 7→1,2 7→2]
−−−−−−−−−−−−−→

relab[1 7→2,2 7→1]
−−−−−−−−−−−−−→

1

a

b

c
c

a

2

a

2

a

b

c
c

a

1

a

∥

1

b

1

4

a

b

c2

c

3

a a
2

1

4

a

b

c
c

3

a

2

a

(b)

−→⊕

1

b

2

a

b

c2

c

1

a a
1

1

b

2

a

b

c2

c

1

a a
1

add
δ,1,2−−−−−−−→

1 2

2

c

1

a
1

δ

a

b

2 2 2

c

b

a

Fig. 3. VR operations (a) HR operations (b). Ports are depicted as shallow circles; port labels are
natural numbers.

and π2 are different labels and each vertex has at most one port label, no self-loops
are introduced by this operation.

- Port redefinition: for a type-preserving partial function α : Π ⇀ Π, relabα(G)
def
= H

iff VH = VG, EH = EG and λH(v) = {α(π) | π ∈ λG(v)∩Π}∪ (λG(v) \Π), for each
v∈VH , i.e., the port labels are redefined according to α (if α(π) is undefined, the port
label is erased) and the other labels are unchanged.

- Single-vertex graphs: for a port label π ∈Π, •π def
= H iff VH = {u} for some vertex u,

EH = /0 and λH(u) = {π,ptype(π)}.
For simplicity, we use the same notation for a VR operation above and its corresponding
function symbol. Since ∆ and Π are finite sets, the above set of function symbols is
finite. A VR-term θ[x1, . . . ,xn] consists of function symbols (i.e., the binary⊕ and unary
addδ,π1,π2 and relabα) and the variables x1, . . . ,xn of arity zero. A term is ground if it has
no occurrences of variables. We write valVR(θ) for the graph obtained by interpreting
the function symbols in the ground term θ as the corresponding VR-operations.

Example 1. The VR-term θ
def
= relab /0(adda,π,π′((

⊕
i∈1,...,4 •π)⊕ (

⊕
j∈1,...,3 •π′))) evaluates

to the complete bipartite graph valVR(θ) =
−→
K 4,3 with directed edges a, see Figure 2

(a). Edge labels are ∆ = {a}, port labels are Π = {π,π′}, and vertex labels are Λ =
Π∪ {ptype(π),ptype(π′)}. The π-ports are u1, ...,u4 and the π′-ports are v1, ...,v3 in
Figure 2 (a). We write /0 for the empty partial function, that removes all port labels.

The domain of the HR-algebra is the set GHR(Λ,∆)⊆ G(Λ,Λ) of graphs G, written
GHR when Λ and ∆ are understood, where λG(v1)∩λG(v2)∩Π ̸= /0 implies v1 = v2, for
any two vertices v1,v2 ∈ VG. In other words, a port labels at most one vertex. In the
usual terminology, ports are called sources, when the HR-algebra is understood from
the context. The operations of HR are the following, see Figure 3 (b) for an illustration:
- Composition: G1 ∥p1 ,p2 G2

def
= H iff H is obtained from the disjoint union of G1,G2 ∈

GHR of sorts p1 and p2, respectively (taking an isomorphic copy of G2 disjoint from
G1, if necessary) by joining all pairs of vertices vi ∈ VGi , for i = 1,2 such that
λG1(v1)∩λG2(v2)∩Π ̸= /0. The label of a vertex v obtained by joining v1 ∈ VG1 with
v2 ∈ VG2 is λG1(v1)∪λG2(v2). Since the label of a vertex in a graph from GHR con-
tains at most one source, the composition of any two graphs from GHR is contained in
GHR. We write ∥ instead of ∥p1 ,p2 when the argument sorts are understood.

5

- Source redefinition: relabα is defined in the same way as for VR, with the further
restriction that α is an injective partial function. This restriction is necessary to ensure
that relabα(G) ∈ GHR if G ∈ GHR.

- Single-vertex graphs: are defined in the same way as for VR.
- Single-edge graphs: for an edge label δ∈∆ and two port labels π1 ̸= π2 ∈Π,

−→
δ π1,π2

def
=

H iff VH = {v1,v2}, EH = {(v1,δ,v2)}, λH(vi) = {πi,ptype(πi)}, for i = 1,2.
HR-terms are defined just as VR-terms and valHR(θ) denotes the graph obtained by inter-
preting the function symbols in the ground term θ as the corresponding HR-operations.

Example 2. We write (π) for the partial function that acts as the identity on {π}, erasing
all source labels except π. The HR-term θ′

def
= relab /0(

−→a πε,π
′
ε
) ∥ (

f
i∈1,...,4 relab(πε)(

−→
ε π,πε

)) ∥
(
f

j∈1,...,3 relab(π′ε)(
−→
ε π′,π′ε)) evaluates to the graph shown in Figure 2 (b). The edge la-

bels are ∆ = {a,ε}, the port labels are Π = {π,π′,πε,π
′
ε}, the vertex labels are Λ =

Π∪{ptype(π),ptype(π′),ptype(πε),ptype(π′ε)}. The π, π′, πε and π′ε-ports in Figure 2
are respectively u1,...,4, v1,...,3, uε, vε.

2.2 Grammars

Graph grammars are a standard way to represent sets of graphs. Let Ω be an algebra,
either VR or HR. A Ω-grammar is a pair Γ = (Ξ,Π) consisting of a finite set Ξ of
nonterminals and a finite set Π of rules of the form, either (1) X → t[X1, . . . ,Xn], where
X ,X1, . . . ,Xn ∈Ξ are nonterminals and t is a Ω-term whose only variables are X1, . . . ,Xn,
or (2)→ X , where X ∈ Ξ; the rules of this form are called axioms. Given Ω-terms θ and
η, a step θ⇒Γ η obtains η from θ by replacing an occurrence of a nonterminal X with
the term t, for some rule X → t[X1, . . . ,Xn] of Γ. A X-derivation is a sequence of steps
starting with a nonterminal X . The derivation is complete if it ends with a ground term.
Let LX (Γ)

def
= {valΩ(θ) | X ⇒∗

Γ
θ is a complete derivation} and L(Γ)

def
=

⋃
→X∈Π LX (Γ)

be the language of Γ, the algebra Ω being understood from the rules of Γ. A set of
graphs is VR (resp. HR) iff it is the language of a VR (resp. HR) grammar.

Example 3. The VR-grammar Γ below produces the term θ from Example 1. The lan-
guage of this grammar contains Figure 2 (a). The HR-grammar Γ′ produces the term θ′

from Example 2. The language of this grammar contains Figure 2 (b).

Γ :


→ S

S→ relab /0(adda,π,π′(K))
K→ •π
K→ •π′
K→ K⊕K

Γ′ :


→ S

S→ relab /0(
−→a πε,π

′
ε
∥ K)

K→ relab(πε)(
−→
ε π,πε

)

K→ relab(π′ε)(
−→
ε π′,π′ε)

K→ K ∥ K

It is known that the expressivity of VR-grammars strictly subsumes that of HR-
grammars [15]. The relation between VR and HR is made precise by the following:

Definition 1. Let E be a set of edge labels disjoint from ∆. An E-graph is a graph
G ∈ G(Λ,∆∪E ∪

←−
E) such that

-
←−
E def

= {←−e | e ∈ E}, and for every edge (u,e,v), e ∈ E , there exists an edge (v,←−e ,u).

6

- the subgraph of G consisting of E-labeled edges and the vertices that have incoming
E-labeled edges is a forest, i.e., every non-root vertex points to a single parent.

The expansion of an E-graph G ∈ G(Λ,∆∪E ∪
←−
E) is exp(G) ∈ G(Λ,∆), where:

- Vexp(G) is the set of vertices of G that are not the target of an E-labeled edge,
- Eexp(G) is the set of edges (v1,δ,v2) for which there exist E-labeled paths from vi to

some vertices v′i ∈ G, for i = 1,2, such that (v′1,δ,v
′
2) ∈ EG, for some δ ∈ ∆,

- λexp(G)(v)
def
= λG(v).

Proposition 1 (Proposition 2.4 in [12]). For each VR-grammar Γ, one can build a
HR-grammar Γ′ such that L(Γ) = exp(L(Γ′)).

Example 4. The HR-grammar Γ′ from Example 3 is obtained by transformation of the
VR-grammar Γ from the same example, such that L(Γ) = exp(L(Γ′)), where E = {ε}.
We omit

←−
E -edges from this figure: their placement is simply the inverse of E-edges.

3 Parameterized Systems

We aim at describing a family of networks by a VR-grammar. To model the behavior
of a network, we associate to each vertex in the graph a process type, which is a finite-
state machine represented as a Petri net of a particular form. We denote by P the fixed
and finite set of process types. In the rest of this paper, the alphabet of vertex labels is
assumed to be Λ

def
= P⊎Π, where Π =

⊎
p∈P Πp is a set of port labels partitioned accord-

ing to the process types, i.e., Πp is the set of ports corresponding to the process type
p. The intuition is that different vertices labeled with a process type run copies of that
process type, called processes. Neighbouring processes communicate by joining their
transitions in a symmetric synchronous rendezvous, represented by a pair of transitions,
that labels the edge between their host vertices. Hence, the alphabet ∆ of edge labels is
considered to be the set of pairs of transitions from the process types P.

3.1 Petri Nets

We make the definition of process types precise by recalling Petri nets. A net is a tuple
N = (QN,TN,WN), where QN is a finite set of places, TN is a finite set of transitions,
disjoint from QN, and WN : (QN×TN)∪ (TN×QN)→ N is a weighted incidence re-
lation between places and transitions. For all x,y ∈ QN ∪TN such that WN(x,y) > 0,
we say that there is an edge of weight WN(x,y) between x and y. For an element x ∈
QN∪TN, we define the set of predecessors •x def

= {y ∈ QN∪TN |WN(y,x)> 0}, succes-
sors x• def

= {y ∈ QN∪TN |WN(x,y)> 0} and predecessor-successor pair •x• def
= (•x,x•).

If not obvious from the context, we will specify the net in which the predecessor and
successor and considered: (•x)N, (x•)N, (•x•)N.

A marking of N is a function m :QN→N. A transition t is enabled in the marking m
if m(q)≥WN(q, t), for each place q ∈Q. For all markings m, m′ and transitions t ∈ T,
we write m t

⇝m′ whenever t is enabled in m and m′(q) =m(q)−WN(q, t)+WN(t,q),
for all q ∈QN. Given a marking m, a sequence of transitions ρ = (t1, t2, ...) ∈ (TN)∞ is

7

on

off

send

Process type Once

free

busy

recv handle

Process type Loop

(a)

on off on off on off on off

free busy free busy free busy

(b)
Fig. 4. Examples of process types (a). The behavior of a

−→
K 4,3(send, recv) system (b)

a firing sequence iff either (i) ρ is empty, or (ii) there exist markings m1,m2, . . . such
that m

t1⇝m1
t2⇝m2

t3⇝ · · · . When ρ has finite length n, we can write m
ρ

⇝mn, and we
say that ρ is a firing sequence from m to mn.

A Petri net (PN) is a pair N =(N,m0), where N is a net and m0 is the initial marking
of N. For simplicity, we write QN

def
= QN, TN

def
= TN, WN

def
=WN and initN

def
=m0 for the

elements of N . A marking m is reachable in N iff there exists a finite firing sequence ρ

such that m0
ρ

⇝m. We denote by Paths(N) the set of finite or infinite firing sequences
of N starting from initN .

3.2 Behaviors

We formalize the behavior of a system (i.e., a graph whose vertices are labeled by
process types) using PNs. To do so, we associate to each process type a PN having a
special form:

Definition 2. A process type p is a PN having weights at most 1 and exactly one marked
place initially, whose transitions are partitioned into observable Tobs

p and internal Tint
p ,

i.e., Tp = Tobs
p ⊎Tint

p , such that each transition has exactly one predecessor and one
successor. Let P = {p1, . . . ,pk} be a finite fixed set of process types such that Qpi ̸= /0,
for all i ∈ [1,k] and Qpi ∩Qp j = /0, for all 1≤ i < j ≤ k.

Because a process type has exactly one initial token and all transitions have one pre-
decessor and one successor, every reachable marking of a process type has exactly one
token. We denote by QP

def
=

⊎
p∈PQp and Tobs

P
def
=

⊎
p∈PT

obs
p the sets of places and ob-

servable transitions from some p ∈ P, respectively.

Example 5. Figure 4 (a) shows two examples of process types, Once and Loop. Ob-
servable transitions are shown in black, and internal transitions in yellow. They have
QOnce = {on,off}, Tobs

Once = TOnce = {send}, QLoop = {free,busy}, Tobs
Loop = {recv} and

Tint
Loop = {handle}.

Definition 3. A system S= (VS,ES,λS)∈G(P⊎Π,Tobs
P ×Tobs

P) is a graph whose ver-
tices v ∈ VS are labeled with exactly one process type procS(v) = p

def⇐⇒ λS(v)∩P =

{p} and at most one port portS(v) = π
def⇐⇒ λS(v)∩Π = {π}. Edges v1

(t1 ,t2)−−−→ v2 ∈ ES

are labeled with pairs of observable transitions, such that ti ∈ Tobs
procS(vi)

, for i = 1,2. We

denote by S(P) def
= G(P,Tobs

P ×Tobs
P) the set of systems of empty sort, i.e., without ports.

8

The communication (i.e., synchronization between processes) in a system is for-
mally captured by the following notion of behavior:

Definition 4. A behavior is a PN N such that 1 ≤ ||•t|| = ||t•|| ≤ 2, for each t ∈ TN .

The behavior of a system S is β(S)
def
= (N,m0), where:

– QN
def
= {(q,v) | q ∈ QprocS(v), v ∈ VS}, a place (q,v) corresponds to the place q of

the process type that labels the vertex v,
– TN

def
= E∪{(t,v) | t ∈ Tint

procS(v)
, v ∈ VS}, the transitions are either edges of the sys-

tem (i.e., modeling the synchronizations of two processes) or pairs (t,v) corre-
sponding to an internal transition t of the process type that labels the vertex v,

– the weight function WN is such that internal transitions are preserved, and ob-
servable transitions are merged according to edge labels. That is, for every v such
that (•t•)procS(v) = ({q},{q′}) we have (•(t,v)•)N = ({(q,v)},{(q′,v′)}), and for

every edge e = (v
(t,t′)−−→ v′) with (•t•)procS(v) = ({q1},{q2}) and (•t ′•)procS(v′) =

({q′1},{q′2}) we have (•e•)N = ({(q1,v),(q′1,v
′)},{(q2,v),(q′2,v

′)}).
– m0(q,v)

def
= initprocS(v)(q), for all v ∈ VS and q ∈ QprocS(v).

Example 6. Figure 4 (b) shows the behavior of
−→
K 4,3(send, recv), having the architec-

ture shown in Figure 2 (a), with the red vertices u1...4 labeled with the process type Once
and blue vertices v1...3 labeled with the process type Loop, from Figure 4. The edges are
labeled by the pair (send, recv) of observable transitions from Once and Loop.

3.3 The Parametric Reachability Problem

A parametric VR (resp. HR) system is described by a VR (resp. HR) grammar Γ. We
define our decision problem as a parametric reachability problem asking if there exists
an instance of a parametric system, described by a grammar, whose behavior reaches
an error configuration from a given set. If the answer is negative, we have a proof that
the parametric system is correct.

Let X be a fixed countably infinite set of variables, interpreted over natural numbers.
An arithmetic formula α is a (possibly quantified) first-order formula using variables in
X, constants denoting natural numbers, the binary operations of addition and multipli-
cation and the (in)equality relation. We denote by A the set of such formulæ. Let N be
a PN and ℓ : QN ⇀ X be a partial function that labels certain places of N with vari-
ables. The boolean value [[α]]ℓm ∈ {true, false} of an arithmetic formula α in a marking
m : QN →N is obtained by replacing each variable x that occurs free in α by the integer
value ∑q∈ℓ−1(x)m(q), i.e., the total number of tokens from the places associated with x

in m. We further define Atomsℓ(m)
def
= {α ∈ A | [[α]]ℓm = true}, i.e., the set of arithmetic

formulæ satisfied by a given marking and a variable labeling. A PN N satisfies a reach-
ability specification α for a place labeling ℓ, written (N , ℓ) |= α, iff there exists a finite
firing sequence ρ leading to a reachable marking initN

ρ

⇝m′ such that α∈ Atomsℓ(m′).
We specialize the satisfiability of a reachability specification by an arbitrary PN to

the satisfiability by the behavior of a system S ∈ S(P) and a labeling L : QP ⇀ X of the

9

places from the process types P with variables:

(S,L) |= α
def⇐⇒ (β(S),L◦ ⇃1) |= α

where ⇃1 is the projection of a pair on its first component, i.e., L ◦ ⇃1 labels each pair
(q,v)∈Qβ(S) by the variable L(q), if the latter is defined. Intuitively, we require of ℓ that
it assigns the same variable to all “copies” of the same place {(q,v) | v ∈ VS}. Hence,
the boolean value [[α]]L◦⇃1

m of an atomic proposition in a marking m of β(S) is obtained
by mapping each free variable x from α to the total number of tokens from a place
(q,v) ∈ Qβ(S) such that L(q) = x. This paper is concerned with the following problem:

Definition 5. Let P be a set of process types. The Parametric Reachability Problem
PRPP(Γ,α,L) takes as input a grammar Γ such that L(Γ) ⊆ S(P), a reachability for-
mula α and a place labeling L : QP ⇀ X, and asks if there exists some system S ∈ L(Γ)
for which (S,L) |= α holds.

Example 7. Choosing Γ the VR-grammar (Example 3), the set of variables X
def
= {x,y},

the place labeling L = [on 7→ x,off 7→ y] defined on the process types from Figure 4
(a), and the formula α

def
= y ≥ x+ 2, we find that PRPP(Γ,α,L) has a positive answer,

because the behavior Figure 4 (b) which belongs to β(L(Γ)) admits a reachable marking
m with 3 tokens on off and 1 token on on, satisfying [[α]]L◦⇃1

m = [[3≥ 1+2]] = true.

In the light of inherent theoretical boundaries, related to the undecidability of the
above parametric verification problem [14], several semi-algorithmic methods have
been proposed, for parametric HR systems [9] and parametric systems described using
similar formalisms, such as a dialect of separation logic with inductive definitions [10]
and a recursive term algebra [8]. In particular, the architecture description languages
used in [10,8] have similar graph composition and relabeling as the more standard
HR grammars. For these methods, the verification of certain coverability properties
(e.g., absence of deadlocks and critical section violations) relies on the generation of
structural invariants for the parametric family of behaviors, directly from the speci-
fication of the architectures and the process types. Examples include trap invariants,
i.e., sets of places that, once marked, remain forever marked, and mutex invariants,
i.e., sets of places of which at most one is marked. The generation of structural invari-
ants can be redefined for HR grammars at little cost.

In contrast, there is virtually no verification method for parametric VR systems.
Many decidability results in the literature consider parametric systems with clique ar-
chitectures [16], that can be described by simple VR-grammars. A prominent result is
the decidability of the more general parametric model checking problem (PMCP) for
token-passing systems (where communication is restricted to the passing of a token be-
tween processes) with MSO-definable bounded clique-width architectures [4, Theorem
26]. It is known that each MSO-definable set of bounded clique-width is definable by a
VR grammar, but not viceversa. Moreover, an orthogonal5 decidability result for para-
metric HR token-passing systems is given in [9, Theorem 4]. It is an interesting open
problem whether this decidability result for HR systems carries over to VR systems, but
this exceeds the scope of the current paper, and will be considered in future work.

5 This result applies to all HR sets of architectures, not just the MSO-definable ones.

10

lo

hi

updn

(a)
lo

hi

up1/2dn1/2

tryup

commituptrydn

commitdn

(b)
idle

wait

activereply

recv

sendack

reset

t

(c)
Fig. 5. A process type p (a), the corresponding process type p1/2 (b), and εt (c).

4 Translating VR to HR Systems

The existence of several verification techniques for parametric systems with HR archi-
tectures and the scarsity of similar results for VR systems motivates us to define a trans-
lation from VR to HR systems, that preserves the answer of the PRP decision problem
(Definition 5). This translation uses expansion to encode dense graphs as sparse graphs
(see Figure 2). Since labeled graphs are used as system models (Definition 3), the be-
havior of a sparse graph must be equivalent to the behavior of its expansion, on what
concerns the satisfiability of reachability formulæ, thus reducing each instance of the
PRP problem for a VR grammar to an instance of the same problem for an HR grammar.

Theorem 1. There exist computable PH and LH , process types and place labeling re-
spectively, such that for any VR-grammar Γ, variable labeling L : QP→ X and reacha-
bility formula α, one can effectively build a HR-grammar Γ′ such that PRPP(Γ,α,L)

⇐⇒ PRPPH (Γ′,α,LH)

This result shows that it is possible to solve each instance of the parametric model
checking problem that takes a VR grammar as input by an effective reduction to an
instance of the same problem for a HR grammar, which, as previously mentioned, has
received more attention lately [9].

Intuitively the translation works as follows: vertices in the HR system are either
“real” vertices from the original VR system, or routing nodes. A unique vertex of the
HR system will act as representative of all vertices currently π-ports in the VR system,
and communication between a π-port v and a π′-port v′ in the VR system will in the HR
system roughly take the form of (1) a request from v to its representative vπ through
a chain of routing nodes, (2) similarly a request from v′ to its representative vπ′ , (3) a
direct communication between vπ and vπ′ (4) an acknowledgement from vπ to v follow-
ing the inverse chain of routing nodes, (5) an acknowledgement from vπ′ to v′. This is
a simplification because in reality steps (1–2) and (4–5) above may be interleaved, and
rather than a single representative there is one representative per observable transition.
We define below the process types that correspond to routing nodes, give an intuition of
how they function, then show the actual inductive translation.

Let P be the set of process types used by the VR grammars, in the rest of this section.
We define a new set of process types PH such that QP ⊆ QPH , see Figure 5 (b) for an

example. First, let P1/2
def
= {p1/2 | p ∈ P} be a set of process types disjoint from P. A

generic p1/2 is defined below from p ∈ P. Intuitively, p1/2 simulates the behavior of p in
the context of communication through routing nodes: each observable transition is split
into two halves, one sending a request, then eventually receiving the acknowledgement.

11

εup εdnεup εdnεup εdnp1/2 p1/2
(send, recv)

(reset,ack)

(send, recv)

(reset,ack)

(send, recv)

(reset,ack)

(send, recv)

(reset,ack)

(tryup, recv)

(reset,commitup)

(trydn, recv)

(reset,commitdn)
(up,dn)

Fig. 6. An εup-path meeting an εdn-path to simulate the interaction (up,dn) between two vertices
of type p from Figure 5 (a).

- Qp1/2

def
= Qp⊎{t1/2 | t ∈ Tobs

p }, each t1/2 is a new place associated with the transition t,

- Tp1/2

def
= Tint

p ⊎{tryt ,committ | t ∈ Tobs
p }, i.e., each observable transition t of p is split

into tryt (an attempt at firing t) and committ (t has been fired remotely),
- Wp1/2

def
=Wp⇃Qp×Tint

p ⊎Tint
p ×Qp

⊎{(q, tryt ,1),(tryt , t1/2,1) | q ∈ Qp, t ∈ Tobs
p , Wp(q, t) = 1}⊎

{(t1/2,committ ,1),(committ ,q,1) | t ∈ Tobs
p , Wp(t,q) = 1}, i.e., whenever t is an ob-

servable transition from q to q′, there are observable transitions tryt from q to t1/2 and
committ from t1/2 to q′ in p1/2.

- initp1/2

def
= initp.

Second, for each observable transition t ∈ Tobs
P , we consider a new process type εt ,

defined below. See Figure 5 (c) for an example. This is what we call the “routing nodes”.
- Qεt

def
= {idlet ,activet ,waitt , replyt},

- Tεt = Tobs
εt

def
= {recv,send,ack, reset, t},

- Wεt consists of the following edges, all of weight 1:

•recv•
def
=(idlet ,activet)

•send•
def
= (activet ,waitt)

•t• def
= (activet , replyt)

•ack•
def
=(waitt , replyt)

•reset•
def
= (replyt , idlet)

- initεt (idlet)
def
= 1 and initεt (activet) = initεt (waitt) = initεt (replyt)

def
= 0.

Finally, PH def
= P1/2∪{εt | t ∈ Tobs

p }, “real vertices” and “routing nodes” respectively.

Example 8. Figure 5 (a) shows examples of p, p1/2, and εt . Instances of εt exist for
t ∈ Tobs

p = {up,dn}. Two processes of type p communicate via a (up,dn) transition,
which is encoded by a sequence of transitions, see Figure 6:

(tryup︸ ︷︷ ︸
p1/2

, recv),(send, recv), . . . ,(send, recv),(up︸ ︷︷ ︸
εup

, dn︸︷︷︸
εdn

),(reset,ack), . . . ,(reset,ack),(reset︸ ︷︷ ︸
εup

,commitup︸ ︷︷ ︸
p1/2

)

This matches the earlier intuition: the leftmost process tries to execute up and sends
a request through routers εup. At the same time, the right process tries to execute dn
and sends a request through routers εdn. When both requests reach adjacent routers, the
transition (up,dn) is jointly executed. Following that, an acknowledgement is sent back
to the processes that initiated the communication as a sequence of (reset,ack).

The variable labeling L : QP ⇀ X induces the following labeling LH : QPH ⇀ X:

LH (q) def
= L(q), for each q ∈ QP

LH (activet)
def
= L(•t) LH (replyt)

def
= L(t•), for each t ∈ Tobs

P

undefined everywhere else

The rest of the paper is the proof of Theorem 1, instanciated with these PH and LH .

12

4.1 Proof of Theorem 1

The main idea is to use the εt processes to define, for a VR-term θ, a HR-term H (θ)
that evaluates to a sparse system, from which the system valVR(θ) can be retrived using
graph expansion, i.e., valVR(θ) = exp(valHR(H (θ))) (Definition 1). Using the set of port
labels ΠH def

= {π1/2,(π, t),(π, t) | π ∈Π, t ∈ Tobs
ptype(π)} where the process type of π1/2 is

(ptype(π))1/2 and the process type of (π, t) and (π, t) is εt , we define H (θ) inductively
on the structure of θ. That is, in addition to a source label π1/2 for each port label π ∈Π

that occurs in θ, we add two copies of each port label for each observable transition.
Intuitively, (π, t) will be the port label denoting the root of the tree of εt processes, and
(π, t) will be used as backup when we need a fresh copy of (π, t). We define a renaming
function fresh : ΠH ⇀ ΠH by fresh((π, t)) = (π, t), and undefined everywhere else.
That way fresh substitutes each source for its copy and forgets the original one. We
also use the renaming function obs : ΠH ⇀ ΠH which is the identity on Π×Tobs

P and
undefined everywhere else, i.e., obs forgets every port label except the (π, t) labels.

Concretely, creating new edges between εt -vertices is done by the below functions:

Et
ε(π,π

′)
def
=
−−−−−−−→
(send, recv)(π,t),(π′,t) ∥

−−−−−−−→
(reset,ack)(π′,t),(π,t) (π, t) (π′, t)

(send, recv)

(reset,ack)

Et
1/2(π)

def
=
−−−−−−−→
(tryt , recv)π1/2,(π,t) ∥

−−−−−−−−−−−→
(reset,committ)(π,t),π1/2 π1/2 (π, t)

(tryt , recv)

(reset,committ)

Recall that the main invariant during the translation is that whenever v in the VR system
is a π-port, its corresponding vertex in the HR system is linked to the unique represen-
tative of (π, t) through a chain of routers εt .

An essential gadget used by the construction is the encoding of a relabeling function
α : Π⇀Π (which is by definition type-preserving) by a graph denoted enc(α). We show
an example of enc(α), where α is the function [π1 7→ π2,π2 7→ π1,π3 7→ π4]. So as to not
clutter the figure, we simply write Eε to label the entire bundle of edges {Et

ε | t ∈ Tobs
P }

and we write (π,) for {(π, t) | t ∈ Tobs
ptype(π)}.

enc(α)
def
=

n

π,π′∈Π

α(π)=π′

n

t∈Tobs
ptype(π)

Et
ε(π,π

′)

(π1,)

(π2,)

(π3,)

(π1,)

Eε

(π2,)
Eε

(π4,)

Eε

Intuitively, as the renaming α turns every π-port into an α(π)-port, enc(α) links the
previous representatives of (π,) to the new representatives of (α(π),), preserving the
invariant. The translation H is defined inductively on the structure of the term θ:

H (•π) def
= relabobs

(
•π1/2 ∥

(f
t∈Tobs

ptype(π)
Et

1/2(π)
))

Figure 7 (a)

H (add(t,t ′),π,π′(θ1))
def
=
−−→
(t, t ′)(π,t),(π′,t ′) ∥ H (θ1) Figure 7 (b)

H (relabα(θ1))
def
= relabfresh

(
H (θ1) ∥ enc(α)

)
Figure 7 (c,c’,c”)

H (θ1⊕p1,p2 θ2)
def
= relabfresh (H (θ1) ∥ enc(idp1∩p2))
∥ relabfresh (H (θ2) ∥ enc(idp1∩p2)) Figure 7 (d,d’,d”)

These are quite straightforward once we understand the invariant: the translation of •π

13

π1/2

(π, t1)

(π, t2)
...
(π, tn)

Tobs
ptype(π) = {t1, t2, ..., tn}

Et1
1/2

Et2
1/2

Etn
1/2

(a) H (•π)

H (θ1)(π,) (π′,)

(π, t) (π′, t ′)
(t, t ′)

(b) H (add(t,t ′),π,π′(θ1))

H (θ1)

(π1,)

(π2,)

(π3,)

(c) H (θ1)

(π1,)

(π2,)

(π3,)

(π1,)

(π2,)

(π4,)

Eε

(c’) enc(α)

H (θ1)

(π1,)

(π2,)

(π4,)

Eε

(c”) H (relabα(θ1))

H (θ1)

(π1,)

(π2,)

(π3,)

(d) H (θ1)

H (θ2)

(π1,)

(π2,)

(π4,)

(d’) H (θ2)

H (θ1) H (θ2)

(π3,) (π4,)

(π1,)

(π2,)

(d”) H (θ1⊕p1 ,p2 θ2)

Fig. 7. Construction of H for each VR symbol. Relabeling uses α= [π1 7→ π2,π2 7→ π1,π3 7→ π4],
and composition uses p1 = {π1,π2,π3} and p2 = {π1,π2,π4}. Ports in gray are hidden during a
relabeling.

creates a new vertex and links it to all relevant routing nodes, the rule for add(t,t ′),π,π′
establishes a communication between the representatives of (π, t) and (π′, t ′), the one
for⊕ creates a unique common representative, and the relabeling is as explained earlier.

The relation between the systems valVR(θ) and valHR(H (θ)) is captured by the be-
low lemma. Its proof is the same as in [12, Proposition 2.4], where the new edges have
the same label, instead of the following sets of edge labels (Definition 1):

E def
= {(tryt , recv) | t ∈ Tobs

P }∪{(send, recv)}
←−
E def

= {(reset,committ) | t ∈ Tobs
P }∪{(reset,ack)}

We denote (committ , reset)
def
=
←−−−−−−−
(tryt , recv) and (ack, reset)

def
=
←−−−−−−−
(send, recv) (Definition 1).

The meaning and orientation of these edges are shown on an example in Figure 6.

Lemma 1. Let θ be a ground VR-term, S def
= valVR(θ) and S′

def
= valHR(H (θ)). Then,

S = exp(S′). For each v,v′ ∈ VS′ , if E ̸= /0 is the set of edges from v to v′, then exactly
one of the following holds:
1. (procS′(v),procS′(v

′))= (p1/2,εt), E = {(tryt , recv),(committ , reset)} and t ∈Tobs
p ;

2. (procS′(v),procS′(v
′)) = (εt ,εt ′) and E = {(t, t ′)};

3. procS′(v) = procS′(v
′) = εt and E = {(send, recv),(ack, reset)}.

Proof. The proof of S = exp(S′) is the same as [12, Proposition 2.4]. The rest of the
points follow from the definition of H . ⊓⊔

The behaviors of valVR(θ) and valHR(H (θ)) are related by the following notion of
path stuttering (inspired by [6, Definition 7.89]):

14

Definition 6. Let S ∈ S(P) and S′ ∈ S(PH) be two systems and L : QP ⇀ X be a
variable labeling. Given two finite or infinite firing sequences ρ ∈ Paths(β(S)) and
ρ′ ∈ Paths(β(S′)), we say that ρ′ is a stuttering of ρ, and write ρ ⊴L ρ′, when there
exists a finite or infinite sequence A0,A1, . . . ∈ A∞ and integers n0,n1, . . .≥ 1 such that:

AtomsL◦⇃1(ρ) = A0,A1, ... and AtomsL
H ◦⇃1(ρ′) = A0, . . . ,A0,︸ ︷︷ ︸

n0 times

A1, . . . ,A1,︸ ︷︷ ︸
n1 times

. . .

This relation is lifted to systems as S⊴L S
′, if and only if the following hold:

1. for each ρ ∈ Paths(β(S)) there exists ρ′ ∈ Paths(β(S′)) such that ρ⊴L ρ′,
2. for each ρ′ ∈ Paths(β(S′)) there exists ρ ∈ Paths(β(S)) such that ρ⊴L ρ′.

In particular S⊴ S′ implies that S and S′ have sets of reachable configurations that
satisfy the same atoms.

Theorem 2. Let S ∈ S(P) and S′ ∈ S(PH) be systems and L : QP ⇀ X be a variable
labeling such that S⊴L S

′. Then, for any arithmetic formula α, we have

(S,L) |= α ⇐⇒ (S′,LH) |= α

Finally, applying Theorem 2 to the lemma below (proof in Appendix 5) gives Theorem 1.

Lemma 2. Let θ be a VR-term over the alphabets Λ
def
= P⊎Π and ∆

def
= Tobs

P ×Tobs
P , and

L : QP→ X be a variable labeling. Then valVR(θ)⊴L valHR(H (θ)).

For the proof of Theorem 1, let Γ′ be the HR grammar obtained by replacing each occur-
rence of a VR operation op from Γ by the HR operation H (op). “⇒” If PRPP(Γ,α,L)
has a positive answer, there exists a system S ∈ L(Γ) such that (S,L) |= α. Hence, there
exists a ground VR-term θ such that valVR(θ) = S and θ is the result of a complete
derivation of Γ. By the definition of Γ′, H (θ) is a ground HR-term resulting from a
complete derivation of Γ′. By Lemma 2, valVR(θ) ⊴L valHR(H (θ)), hence we obtain
(valHR(H (θ)),LH) |= α, by Theorem 2 and PRPPH (Γ′,φ,LH) has a positive answer.
The “⇐” direction uses a symmetric argument. ⊓⊔

5 Conclusions and Future Work

We consider the parametric reachability problem for families of networks of finite-state
processes specified using VR graph grammars. Our approach is to reduce the problem to
HR grammars, for which several verification techniques have been developed lately. The
reduction is based on a construction of an HR grammar that expands to the language of
a given VR grammar, by elimination of epsilon-edges. We prove that this construction
preserves any reachability property expressed using first-order arithmetic over variables
that count the number of processes in each state.

Future work involves an implementation of the proposed reduction, based on exist-
ing tools for parametric verification of networks specified using HR grammars [9]. In
particular, we plan to experiment with Azure-like network topologies and suitable rout-
ing (existence of an available route) properties. We also plan to extend the decidability
result for pebble-passing systems with HR grammars [9] to VR grammars.

15

Acknowledgements. This research is supported by the French National Research Agency
project ”Parametic Verification of Dynamic Distributed Systems” (PaVeDyS) under
grant number ANR-23-CE48-0005. We also wish to thank the anonymous reviewers
for their helpful suggestions.

Disclosure of interests. The authors have no competing interests to declare that are
relevant to the content of this article.

Appendix

Proof of Lemma 2

In this entire section, let θ be a fixed ground VR-term written using the set Λ = P⊎Π

of vertex labels. It is easy to check that H (θ) is a ground HR-term written using the set
ΛH def

= PH ⊎ΠH of vertex labels, where the sets PH of process types and ΠH of ports
have been defined above. We write S (resp. S′) for valVR(θ) (resp. valHR(H (θ))).

Take a reachable marking m of β(S′), and any transition t ∈ Tobs
p . We say that a

vertex v of type εt is idle if m(idlet ,v) = 1. We say that v of type εt is waiting on t if
m(waitt ,v) = 1. We say that v of type p1/2 is waiting on t if m(t1/2,v) = 1. Finally, given
a label δ ∈ E and an edge (v′,δ,v) ∈ ES′ , we say that v′ is an E-predecessor of v.

Fact 1 For any reachable marking m of β(S′), a vertex v of type εt is non-idle in m if
and only if there exists a E-predecessor of v that is waiting on t in m. Furthermore if
there exists such an E-predecessor, there will be exactly one.

Proof. This proof is by induction. Since the property must hold for any reachable mark-
ing, we show that it holds for initβ(S′), then that is it preserved by every firing of a
transition.

In initβ(S′) all vertices of type εt are in their initial state and thus have a token in
idlet . All vertices of type p ∈ P have a token in a place of QP, not a place from (TP)1/2.
Therefore in the initial configuration, non-idle processes do not exist, and no process is
waiting. The property is thus easy to verify.

For the inductive step, consider any transition that can occur in β(S′), resulting in
the firing m

δ

⇝m′. The structural properties that we established in Lemma 1 guarantee
that the following case analysis is exhaustive:

– firing an internal transition t in v: no vertex of type εt is involved, and the vertex v
in which the transition occurs is not waiting in either m or m′ since •t and t• are
both places of QP not (TP)1/2. Therefore the property holds in m′.

– firing (v′,(tryt , recv),v): for this interaction to be fireable requires that m(•t,v′) = 1
(v′ is not waiting in m) and m(idlet ,v) = 1 (v is idle in m). The inductive hypothesis
applied to the latter fact yields that all E-predecessors of v are not waiting on t in
m, so when the firing makes v non-idle and v′ waiting on t by m′(t1/2,v′) = 1 and
m′(activet ,v) = 1, it makes v′ the unique E-predecessor of v that is waiting on t
in m′. Meanwhile v′ is not of type εt so is not subject to the condition, v did not
become waiting on t so the possible E-successor of v is not affected, and all other

16

processes retain the same state so must satisfy the same property in m′ as they did

in m. Therefore m
(v′,(tryt ,recv),v)⇝ m′ preserves the desired property.

– firing (v′,(send, recv),v): in the same spirit as the previous case, this transition
makes the token of v′ move from activet to waitt , so v′ remains non-idle and ad-
ditionally becomes waiting on t in m′, and at the same time the token of v moves
from idlet to activet , so v becomes non-idle but remains non-waiting.
Once again, v has gained exactly one waiting E-predecessor, and all other vertices
are unaffected, so m′ satisfies the property.

– firing (v′,(t ′, t),v): this time we must have m(activet ,v′) =m(activet ′ ,v′) = 1, and
m(replyt ,v′) =m(replyt ′ ,v′) = 1. All vertices are non-idle in m′ if and only if they
are non-idle in m, and they are waiting on t in m′ if and only if they are waiting on
t in m. The desired property is thus easily preserved.

– firing (v′,(committ , reset),v): this transition makes v′ (waiting in m) return to non-
waiting in m′, and v (non-idle in m) return to idle in m′. This case is exactly sym-
metrical to the firing of (v′,(tryt , recv),v) and an analoguous reasoning shows that
it preserves the property at hand.

– firing (v′,(ack, reset),v): similarly this case is symmetrical to (v′,(send, recv),v)
and accordingly can be handled by the same reasoning.

Thus the property is preserved by all firings of transitions of β(S′), and therefore holds
in all reachable markings. ⊓⊔

We define a relation ≈ between markings m : Qβ(S) → N and m′ : Qβ(S′) → N,
where m≈m′ if for every place (q,v) ∈Qβ(S) such that m(q,v) = 1 we have one of the
following properties:

(i) m′(q,v) = 1, or
(ii) ∃t ∈ q•. ∃v′ ∈ VS′ .WaitPathm′(v,v′)∧m′(t1/2,v) = 1∧m′(activet ,v′) = 1, or

(iii) ∃t ∈ •q. ∃v′ ∈ VS′ .WaitPathm′(v,v′)∧m′(t1/2,v) = 1∧m′(replyt ,v′) = 1.

where we define the predicate WaitPathm′(v,v′) as the existence of an E-labeled path
v,v1,v2, ...,vk,v′ from v to v′ such that m′(waitt ,vi) = 1 for every 1≤ i≤ k. Furthermore
we say that m′ is canonical if only condition (i) is ever satisfied.

Intuitively m′ is canonical and m≈m′ when m′ has tokens in the same places as m
does. For non-canonical m′, we can tolerate transitions that are partially executed and
depending on whether the partial execution of t is less or more than half we count the
token as being either in •t or in t• (recall: an E-labeled path of S′ simulates a transition
of S, and the progress of this simulation is less than half if we have a path of waitt until
an activet , and more than half if we have a path of waitt until a replyt).

Fact 2 For any m≈m′, we have Atomsℓ(m) = Atomsℓ
H
(m′)

Proof. Due to Lemma 1 and Fact 1, we know that when in the definition of≈ above we
talk about an E-labeled path WaitPathm′(v,v′) in the form of v,v1, ...,vk,v′, it necessar-
ily means that all v1, ...,vk are vertices of type εt , and that they are disjoint from any
other instanciation of WaitPathm′ for a different place. In particular this implies that
the conditions (i), (ii), (iii) are mutually exclusive, and any token in a place activet or

17

replyt can be injectively mapped to some vertex v with a token in t1/2 from which there
is a WaitPathm′ as described.

This induces a bijection between {v ∈ VS |m(q,v) = 1}, and {v ∈ VS′ |m′(q,v) = 1}⊎
{v ∈ VS′ |m′(activet ,v) = 1 for t ∈ q•}⊎{v ∈ VS′ |m′(replyt ,v) = 1 for t ∈ •q}, imply-
ing that they have the same cardinal. It happens that ∑q∈ℓ−1(x)m(q) is exactly the car-
dinal of the first set, and ∑q∈(ℓH)−1(x)m

′(q) is the cardinal of the second. We conclude

that ℓ and ℓH have the same interpretation of x, and since this applies to every x ∈ X we
conclude that the same atoms are satisfied in m and in m′. ⊓⊔

Fact 3 If m′0
δ

⇝ m′1 in β(S′) and δ ∈ E ∪
←−
E , then for all m marking of β(S) we have

m≈m′0 if and only if m≈m′1.

Proof. Once again we rely on Lemma 1 and Fact 1. Consider an interaction that can
be fired between some v and v′, and assume that it results in the transition from m′0 to
m′1. Since ≈ is defined pointwise on each place of β(S) that holds a token, and since
m is unchanged, it suffices to look at exactly the places of β(S′) that are changed by
m′0

δ

⇝ m′1. In all configurations we will show that the equivalence is preserved simply
by changing which of the conditions (i), (ii), (iii) hold on each place. In all that follows
we will write t the transition that we consider (fully determined by the type εt of v′),
and v0 ∈ VS the vertex that is currently being considered for the equivalence. The cases
are as follows:

– (v,(tryt , recv),v′): m is linked to m′0 on (•t,v) by condition (i). Furthermore v0 = v.
We show that after firing δ = (tryt , recv) the markings are now linked by condition
(ii) on the path v,v′.
In m′0, the vertex v which is of type p1/2 has a token in place •t. We know this
because it is the only way that its transition tryt is fireable, and this is why condition
(i) is satisfied. Similarly there must be a token in (idlet ,v′) so that recv is fireable.
After firing δ we now have m′1(t1/2,v) = 1 and m′1(activet ,v′) = 1. This satisfies the
condition for (ii) with WaitPathm′1(v,v

′) instanciated by the trivial path v,v′. Every
step of this reasoning is in fact an equivalence, so we also get the other direction of
the statement.

– (v,(send, recv),v′): m and m′0 are linked on (•t,v0) by condition (ii), in the form of
WaitPathm′0(v0,v) instanciated by some v0,v1, ...,vk,v. We show that m and m′1 are
still linked by condition (ii), but on v′ instead of v.
The interaction (send, recv) belongs to E , so v0,v1, ...,vk,v,v′ is still an E-labeled
path. In fact after we fire δ, we get m′1(waitt ,v)= 1 which means that v0,v1, ...,vk,v,v′

instanciates WaitPathm′(v0,v′). Lastly we have m′1(activet ,v′) = 1, thus satisfying
condition (ii).

– (v,(committ , reset),v′): m is linked to m′0 on (t•,v0) by condition (iii). With a rea-
soning analoguous to the first case, including the fact that v0 = v, we can prove that
m and m′1 are instead linked by condition (i).

– (v,(ack, reset),v′): m is linked to m′0 on (t•,v0) by condition (iii). With a reasoning
analoguous to the second case, we can prove that m and m′1 are still linked by
condition (iii), but using a shorter WaitPath(v0,v) instead of WaitPath(v0,v′).

⊓⊔

18

Fact 4 For any markings m1,m2 : Qβ(S)→ N, transition δ ∈ Tβ(S) such that m1
δ

⇝m2
in β(S), and any m′1 : Qβ(S′) → N, if m1 ≈ m′1 and m′1 is canonical then there exist a

marking m′2 : Qβ(S′)→N, an E-sequence p, and an
←−
E -sequence q, such that m′1

p·δ·q
⇝ m′2

in β(S′) and m2 ≈m′2 with m′2 canonical.

Proof. Firstly if δ is an internal transition, then the canonicity of m1 ≈m2 and the fact
that process types in P1/2 have the same internal transitions as those of P, give that δ

must also be fireable in m2. We thus choose both p and q to be the empty sequence.
Otherwise, we assume that from m1 to m2, the interaction δ = (t, t ′) occurs between

vertices v and v′. As we hinted at in Example 8, we choose p to be (tryt , recv),(send, recv), ...,(send, recv)
on an εt -path starting from v, followed by (tryt ′ , recv),(send, recv), ...,(send, recv), on
an εt ′ -path starting from v′. After that we execute (t, t ′), then propagate backwards for q
as (reset,ack), ...,(reset,ack),(reset,committ) and (reset,ack), ...,(reset,ack),(reset,committ ′)
along the same two paths in reverse.

Since m′1 is canonical, all vertices of type εt and εt ′ in S′ have a token in idlet in m′1.
Since S = exp(S′), the existence of an interaction (t, t ′) between v and v′ implies that
there are some u,u′ in S′ and there exist an εt -path from v to u and an εt ′ -path from v′

to u′. Along such paths, the sequence of transitions described above is a firing sequence
if initially all vertices of type εt and εt ′ are in state idlet and idlet ′ respectively, and they
will return to state idlet or idlet ′ once the entire sequence is fired.

Thus m′1
p·δ·q
⇝ m′2, m′2 is canonical, and m2 ≈m′2. ⊓⊔

Fact 5 Every (finite or infinite) firing sequence in Paths(β(S)) admits a stuttering firing
sequence in Paths(β(S′)).

Proof. Let initβ(S) =m0
δ0⇝m1

δ1⇝m2
δ2⇝ · · · be a (finite or infinite) firing sequence ρ ∈

Paths(β(S)). Using the initialization that initβ(S) ≈ initβ(S′), and the latter is canonical
(since the initial token of εt is in idlet for all t), we can inductively apply Fact 4 at every

step to construct a firing sequence initβ(S′) = m′0
p0 ·δ0q0⇝ m′1

p1 ·δ1 ·q1⇝ m′2
p2 ·δ2 ·q2⇝ · · · which

is a path ρ′ ∈ Paths(β(S′)). In this construction all pi and qi are E-sequences and
←−
E -

sequences respectively, thus invariant for ≈ (Fact 3). This in turn implies that they do
not change the set of atomic propositions that hold (Fact 2).

A path Atomsℓ(ρ) = A0A1A2 · · · , where ρ ∈ Paths(β(S)) is thus transformed by this
construction into a path Atomsℓ

H
(ρ′) = A1+|p0|

0 A1+|q0|+|p1|
1 A1+|q1|+|p2|

2 · · · which gives
ρ⊴L ρ′, for some ρ′ ∈ Paths(β(S′)). ⊓⊔

Fact 6 Any firing sequence of E ∪
←−
E -transitions must be finite.

Proof. In principle, the proof is straightforward: we define a cost function on places
and show that every E-labeled transition moves a token to a place that has a strictly

19

smaller cost. Let c : Qβ(S′)→ N be defined as follows:

c(waitt ,v) = c(idlet ,v) = c(t1/2,v) = 0 for any t,v

c(activet ,v) = 1+ c(activet ,v′) if ∃v′. v E−→ v′

c(activet ,v) = 0 otherwise
c(q,v) = 1+max

t∈q•
max

v′:v
E−→v′

c(activet ,v′) for any q,v

c(replyt ,v) = 1+ max
v′:v′

E−→v

c(t•,v)+ max
v′:v′

E−→v

c(replyt ,v
′) for any t,v

This function, apart from being obviously nonnegative, is well-defined everywhere: the
acyclicity of the subgraph of S′ composed only of E-edges guarantees that the system
of equations above has a solution. More precisely:

– c is obviously well-defined for places of the form (waitt ,v), (idlet ,v), or (t1/2,v);
– when a token is in a place (activet ,v) it can only be involved in transitions in the

direction of E which is acyclic. Furthermore vertices εt form a forest so if v′ such
that v E−→ v′ exists then it is unique, thus c is also well-defined for places of the form
(activet ,v);

– finally c over (q,v) and (replyt ,v) is defined in terms of E-predecessors, which are
not unique (thus why we need a max), but still form an acyclic graph.

Given a marking m, we define

fuel(m)
def
= ∑

q∈QS′

m(q)c(q)

Observe that since m(q) can only take the value 0 or 1, the fuel of a marking is the sum
of the cost of overy place with a token. Our objective is now to show that whenever
m

t0⇝m′ for t0 ∈ Tβ(S′) labeled by δ ∈ E ∪
←−
E , we have fuel(m)> fuel(m′). We do this

by showing the equivalent fact that fuel(m)− fuel(m′) > 0 because most of it cancels
out: partition the set of vertices into •t0 (loses a token when we fire t0), t0• (receives a
token when we fire t0), and the rest (unchanged), and we are left with simply

fuel(m)− fuel(m′) = ∑
q∈•t

c(q)− ∑
q∈t•

c(q)

Now for the case analysis on δ:
– (v,(tryt , recv),v′): fuel(m)−fuel(m′)= c(•t,v)+c(idlet ,v′)−c(t1/2,v)−c(activet ,v′)=

c(•t,v)−c(activet ,v′). Since v E−→ v′, (activet ,v′) is already accounted for in c(•t,v)=
1+maxt∈(•t)•max

v′:v
E−→v′

c(activet ,v′), and thus c(•t,v)> c(activet ,v′). We easily

conclude that fuel(m)− fuel(m′)> 0.
– (v,(send, recv),v′): fuel(m)− fuel(m′) = c(activet ,v) + c(idlet ,v′)− c(idlet ,v)−

c(activet ,v′) = c(activet ,v)−c(activet ,v′) = (1+c(activet ,v′))−c(activet ,v′) = 1
strictly positive as expected.

20

– (v,(committ , reset),v′): fuel(m)−fuel(m′)= c(t1/2,v)+c(replyt ,v′)−c(t•,v)−c(idlet ,v′)=
c(replyt ,v′)−c(t•,v). Since the quantity c(replyt ,v) occurs in max

v:v
E−→v′

c(replyt ,v)

which is part of the sum that constructs c(replyt ,v′), the inequality is obvious.
– (v,(ack, reset),v′): The same reasoning as the previous case applies, since this time

fuel(m)− fuel(m′) = c(replyt ,v)− c(replyt ,v′) and once again c(replyt ,v′) occurs
in max

v:v
E−→v′

c(replyt ,v) leading to c(replyt ,v)− c(replyt ,v′)> 0.

In all cases we obtain fuel(m) > fuel(m′). The function fuel, as we have already jus-
tified, is a well-defined finite nonnegative quantity. It follows that an infinite firing se-
quence of E ∪

←−
E -labeled edges cannot exist. ⊓⊔

Fact 7 For any markings m′1,m
′
2 : Qβ(S′)→N, transition δ∈Tβ(S′) such that m′1

δ

⇝m′2

in β(S), and any m1 : Qβ(S)→N, if m1 ≈m′1 and δ ̸∈E ∪
←−
E then there exists a marking

m2 : Qβ(S)→ N such that m1
δ

⇝m2 in β(S) and m2 ≈m′2.

Proof. If δ = t is an internal transition, it means that for some (q,v) = •t we have
m′1(q,v) = 1. Thee definition of ≈ this implies m1(q,v) = 1 and thus δ is also fireable
in β(S) and obviously leads to m2 ≈m′2.

Otherwise δ = (t, t ′) is an observable transition. It must occur between some e and
e′ of respective types εt and εt ′ , and in m2 they must have a token in activet and activet ′

respectively. By the characterization from Fact 1, there must furthermore exist some
vertices v,v′ such that there is an εt -path from v to e and an εt ′ -path from v′ to e′, and all
vertices along those paths have a token in waitt or waitt ′ respectively. Finally, still from
Fact 1, we obtain that in m′1, v and v′ have a token in t1/2 and t ′1/2 respectively.

Knowing that m1 ≈ m′1, this means that m1(
•t,v) = 1 and m1(

•t ′,v) = 1, and thus
(t, t ′) is fireable in m′1. Firing it yields m′2 with m2(t•,v) = 1 and m2(t ′

•,v) = 1. On
the other hand m′2 only differs from m′1 in that instead of having m′1(activet ,e) = 1
and m′1(activet ′ ,e′) = 1 we now have m′2(replyt ,e) = 1 and m′2(replyt ′ ,e′) = 1. In the
definition of ≈, we thus easily check that m2 ≈m′2. ⊓⊔

Fact 8 Every (finite or infinite) firing sequence in Paths(β(S′)) is a stuttering of a firing
sequence in Paths(β(S)).

Proof. Let initβ(S′) =m′0
t1⇝m′1

t2⇝ · · · be a firing sequence ρ′ ∈ Paths(β(S′)). Let i0 = 0

then i1, i2, ... be an enumeration of all the indices i for which ti ̸∈ E ∪
←−
E . Starting from

initβ(S′) =m0, we apply Fact 7 for every i j in increasing order, to get a firing sequence

ρ defined by m0
ti1⇝m1

ti2⇝ · · · and such that m j ≈m′i j
for every j ≥ 0. Applying Fact 3

in-between gives that m j ≈m′k for every i j ≤ k < i j+1, and Fact 6 guarantees that there

are finitely many stuttering steps. We can finally conclude Atomsℓ(ρ)⊴ Atomsℓ
H
(ρ′).
⊓⊔

Finally we conclude from Fact 5 and Fact 8 that β(S)⊴L β(S′): β(S) and β(S′) have
the same set of paths, up to finite stuttering on the side of S′.

21

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems for infinite-
state systems. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science,
New Brunswick, New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE Computer Soci-
ety, 1996.

2. P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Monotonic abstraction: on efficient
verification of parameterized systems. Int. J. Found. Comput. Sci., 20(5):779–801, 2009.

3. P. A. Abdulla, G. Delzanno, and A. Rezine. Approximated parameterized verification of
infinite-state processes with global conditions. Formal Methods Syst. Des., 34(2):126–156,
2009.

4. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking
of rendezvous systems. In P. Baldan and D. Gorla, editors, CONCUR 2014 - Concurrency
Theory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014.
Proceedings, volume 8704 of Lecture Notes in Computer Science, pages 109–124. Springer,
2014.

5. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking of
rendezvous systems. Distributed Comput., 31(3):187–222, 2018.

6. C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.
7. R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decidability

of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2015.

8. M. Bozga and R. Iosif. Specification and safety verification of parametric hierarchical dis-
tributed systems. In G. Salaün and A. Wijs, editors, Formal Aspects of Component Software
- 17th International Conference, FACS 2021, Virtual Event, October 28-29, 2021, Proceed-
ings, volume 13077 of Lecture Notes in Computer Science, pages 95–114. Springer, 2021.

9. M. Bozga, R. Iosif, A. Sangnier, and N. Villani. Counting abstraction for the verification of
structured parameterized networks. CoRR, abs/2502.15391, 2025.

10. M. Bozga, R. Iosif, and J. Sifakis. Verification of component-based systems with recursive
architectures. Theor. Comput. Sci., 940(Part):146–175, 2023.

11. M. Browne, E. Clarke, and O. Grumberg. Reasoning about networks with many identical
finite state processes. Information and Computation, 81(1):13 – 31, 1989.

12. B. Courcelle. Structural properties of context-free sets of graphs generated by vertex replace-
ment. Information and Computation, 116(2):275–293, 1995.

13. B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 2012.

14. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, pages 85–94, 1995.
15. J. Engelfiet and G. Rozenberg. A comparison of boundary graph grammars and context-free

hypergraph grammars. Information and Computation, 84(2):163–206, 1990.
16. S. M. German and A. P. Sistla. Reasoning about systems with many processes. J. ACM,

39(3):675–735, 1992.
17. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,

and S. Sengupta. Vl2: a scalable and flexible data center network. SIGCOMM Comput.
Commun. Rev., 39(4):51–62, Aug. 2009.

18. D. Hirsch, P. Inverardi, and U. Montanari. Graph grammars and constraint solving for soft-
ware architecture styles. In Proceedings of the Third International Workshop on Software
Architecture, ISAW ’98, page 69–72, New York, NY, USA, 1998. Association for Computing
Machinery.

22

19. K. Jayaraman, N. S. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P. C. Bissonnette, S. Fos-
ter, A. Helwer, M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi, H. Pinnamraju, A. Power,
N. M. Raje, and P. Sharma. Validating datacenters at scale. In J. Wu and W. Hall, editors,
Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM 2019,
Beijing, China, August 19-23, 2019, pages 200–213. ACM, 2019.

20. D. Le Metayer. Describing software architecture styles using graph grammars. IEEE Trans-
actions on Software Engineering, 24(7):521–533, 1998.

21. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized linear
networks of processes. In The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 346–357. ACM Press, 1997.

22. Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and automatic
verification. In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems,
International Workshop, volume 407 of LNCS, pages 151–165. Springer, 1989.

23. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In Automatic Verification Methods for Finite State Systems, International Work-
shop, volume 407 of LNCS, pages 68–80. Springer, 1989.

23

	Verifying Parameterized Networks Specified by Vertex-Replacement Graph Grammars

