
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Counting Abstraction and Decidability for the
Verification of Structured Parameterized Networks

Marius Bozga1 , Radu Iosif1 , Arnaud Sangnier2 , and Neven Villani1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000, France
{firstname}.{lastname}@univ-grenoble-alpes.fr

2 DIBRIS, Univ. of Genova, Italy
{firstname}.{lastname}@unige.it

Abstract. We consider the verification of parameterized networks of replicated
processes whose architecture is described by hyperedge-replacement graph gram-
mars in the style of Courcelle. Due to the undecidability of verification problems
such as reachability or coverability of a given configuration, in which we count
the number of replicas in each local state, we develop two orthogonal verifica-
tion techniques. We present a counting abstraction able to produce, from a graph
grammar describing a parameterized system, a finite set of Petri nets that over-
approximate the behaviors of the original system. The counting abstraction is im-
plemented in a prototype tool, evaluated on a non-trivial set of test cases. More-
over, we identify a decidable fragment, for which the coverability problem is in
2EXPTIME and PSPACE-hard.

1 Introduction

The architecture is a crucial design aspect for the functionality of a computer network.
For instance, the code of a consensus protocol changes depending on whether it is used
in a ring or a clique-shaped network. The architecture also influences the traffic balance
and overall efficiency of communication. Formal modelling of network architectures is
a key enabler for the use of verification algorithms that prove absence of error scenarios
in a distributed environment (e.g., deadlocks, races or mutual exclusion violations), or
convergence towards a desired goal (e.g., building a spanning-tree or electing a leader).

The impressive size of present day networks requires parameterized models, that de-
scribe infinite families of networks having an unbounded number of nodes. The problem
of parameterized verification (i.e., proving correctness for any number of processes) of-
ten amounts to model-checking a small cut-off of the system (see [8] for a survey). In
cases where a cut-off does not exist or is too large, symbolic representations of invari-
ants (i.e., sets of configurations closed under local and communication actions) using
e.g., boolean constraints [19], well-structured transitions systems [1], monadic second-
order logic [11] or finite-state automata [28] can be used to decide a parameterized
safety problem in a matter of seconds. This is because, in particular, parameterized
verification methods do not suffer from the state explosion problem of classical model-
checking techniques, that scale poorly in the number of concurrent processes.

However, a current limitation is that most techniques rely on hard-coded network
topologies, typically cliques [22], rings [14] or combinations thereof [5]. Many archi-

https://doi.org/10.5281/zenodo.15223051
https://orcid.org/0000-0003-4412-5684
https://orcid.org/0000-0003-3204-3294
https://orcid.org/0000-0002-6731-0340
https://orcid.org/0000-0003-2726-5036

tecture description languages have been developped by the software engineering com-
munity (see, e.g., [13] and [15] for surveys) to support network design but, in general,
these languages lack support for verification. Only few recent parameterized verifica-
tion techniques take architectures as input of the problem, described using, e.g., first-
order [9] or separation logic [12]. Such descriptive (logic-based) languages are typically
hard to use, because of the generality of their semantics, that requires complex frame
conditions to specify what is actually not part of the architecture.

Contributions We consider the parametric verification problem for process networks
specified by graph grammars that use operations of the standard hyperedge-replacement
(HR) algebra of graphs [17] to describe how graphs are inductively build from smaller
subgraphs. This constructive aspect of graph grammars makes them appealing for net-
work design, because recursive specification of types and datastructures are widespread
among programmers. Graph grammars are, moreover, at the core of a solid theory
(see [17] for a comprehensive survey). In principle, HR graph grammars can specify
families of graphs having bounded tree-width, such as chains, rings, stars, trees (of un-
bounded rank) and beyond, e.g., overlaid structures such as trees or stars with certain
nodes linked in a list. Since cliques and grids are families of unbounded tree-width,
neither can be specified using HR graph grammars.

Because the parameterized verification problem is undecidable, even for chain-like
networks, we consider two orthogonal lines of work. First, following the seminal work
of German and Sistla [22], where identities of processes communicating through ren-
dezvous in a clique is ignored to keep only the number of processes in each state, we
define a counting abstraction that folds the infinite set of networks specified using a HR
grammar into a finite set of Petri nets, which subsumes the behaviors of the original
set of networks. As a consequence, if a set of places is not covered by an execution of
some of the resulting Petri nets, then it is not covered by the original set of behaviors.
These coverability problems can be used to express mutual exclusion, and can encode
other properties (e.g., finite-valued consensus). Even though, computing the counting
abstraction for clique networks is fairly simple [22], it is less trivial for families of net-
works specified by a grammar. We circumvent these technical challenges by defining
appropriate HR algebras, in which the abstraction can be computed by a finite Kleene
iteration of the grammar. This line of work is motivated by several recent advances on
the theory [20] and tool support [31] for the reachability and coverability problem for
Petri nets. The abstraction has been implemented in a prototype tool and a number of
experiments showing the effectiveness of the method have been carried out.

Second, we define a decidable fragment of the original problem, by restricting the
local behavior of the nodes to pebble-passing systems, where a finite (but unbounded)
number of identical pebbles can be moved from one node to another. We inspire our-
selves from token-passing systems[4,6] for which a restriction on the behavior of each
proccess allows to get decidability results of some verification problems. Note that in
our case, the processes definition are simple, but we allow an unbounded number of to-
kens/pebbles. Interestingly, our decidable restriction applies only to the local behavior
and does not restrict the family of networks considered, other than that they must be the
language of a given HR grammar. Examples of problems from this decidable fragment
include token-rings, tree-traversal used, in general, for notification and binary consen-

2

sus among the participants of general (HR-specified) architectures. We have studied the
complexity of the decidable fragment and found it to be doubly-exponential in the unary
size of the coverability property and in the maximal tree-width the set of networks gen-
erated by the grammar. At the same time, we found the problem to be PSPACE-hard.

Related Work Traditionally, verification of unbounded networks of parallel processes
considers known architectural patterns, typically cliques or rings [22,14]. Because the
price for decidability is drastic restriction on architecture styles [8], more recent works
propose practical semi-algorithms, e.g., regular model checking [24] or automata learn-
ing [16]. Here the architecture is implicitly determined by the class of language recog-
nizers: word automata encode pipelines or rings, whereas tree automata describe trees.

Specifying parameterized concurrent systems inductively is reminiscent of network
grammars [29,26,23], that use inductive rules to describe systems with linear (pipeline,
token-ring) architectures obtained by composition of an unbounded number of pro-
cesses. In contrast, our language is based on the HR graph algebra. Verification of net-
work grammars against safety properties (reachability of error configurations) requires
the synthesis of network invariants [33], computed by costly fixpoint iterations [27] or
by abstracting (forgetting the particular values of indices in) the composition of a small
number of instances [25]. A more recent line of work considers a lightweight invariant
synthesis method based on the inference of structural invariants3 of an infinite family
of Petri nets, for parameterized systems whose network architectures are specified using
logic [9,12]. This method is geared towards deadlock-freedom and mutual exclusion,
whereas our counting abstraction method works for coverability properties, in general.

Other methods to verify safety properties of parameterized networks consist in
changing the semantics of behaviors to obtain an over-approximation having a decid-
able safety verification problem. In [2], the authors have implemented such a scheme
using a monotonic abstraction, where the resulting abstraction is a well-structured tran-
sition systems [1]. They first consider pipeline architectures, where communication is
done by checking existentially or universally the state of the other proceess. In [3], a
similar technique is applied to networks with clique architectures, where processes can
manipulate shared boolean and natural variables. In contrast, both our methods target
network architectures defined by unrestricted HR graph grammars.

2 Preliminaries

We denote by N the set of positive integers, including zero. For i, j ∈ N, we denote
by [i, j] the set {i, . . . , j}, considered empty if i > j. The cardinality of a finite set A is
denoted ||A||. A singleton {a} will be denoted a. By A ⊆fin B, we mean that A is a finite
subset of B. The union of two disjoint sets A and B is denoted as A⊎B. The Cartesian
product of two sets A and B is denoted A×B. As usual, we denote by A∗ the set of
(possibly empty) sequences of elements from A.

For a function f : A → B and C ⊆ A, we write f (C)
def
= { f (c) | c ∈C} and f ⇃C

def
=

{(c, f (c)) | c ∈C}. The inverse of a function f : A→ B is the relation f−1 def
= {(f (a),a) |

a ∈ A}. To alleviate notation, we write f (x,y) instead of f ((x,y)), when no confusion

3 Invariants that depend on the structure of a Petri net, which hold for any of its executions.

3

arises. For two functions f : A → B and g : C → D, the function f ×g : A×B →C×D
maps each pair (a,c) ∈ A×C into the pair (f (a),g(c)) ∈ B×D. A bijective function
f : A → A is a finite permutation if the set {a ∈ A | f (a) ̸= a} is finite. In particular,
a↔ b denotes the finite permutation that switches a with b and leaves the other elements
of the domain unchanged. A finite partial function is denoted as f : A⇀finB and dom(f),
img(f) denote its domain and range, respectively. When f : A → C and g : B → C
coincide on their shared domain A∩B, we write f ∪ g : A∪B → C the function such
that (f ∪g) ⇃A= f and (f ∪g) ⇃B= g. The full version of the paper contains proofs of
technical results [10].

2.1 Petri Nets

A net is a tuple N = (Q,T,W), where Q is a finite set of places, T is a finite set of
transitions such that Q∩T = /0 and W : (Q×T)∪ (T×Q) → N is a weighted in-
cidence relation between places and transitions. We denote by QN, TN and WN the
places, transitions and incidence relation of N, respectively. For all x,y∈Q∪T such that
W(x,y)> 0, we say that there is an edge of weight W(x,y) between x and y. For an ele-
ment x ∈Q∪T, we define the set of predecessors •x def

= {y ∈ Q∪T |W(y,x)> 0}, suc-
cessors x• def

= {y ∈ Q∪T |W(x,y)> 0} and predecessor-successor pair •x• def
= (•x,x•).

A marking of N= (Q,T,W) is a function m : Q→ N. A transition t is enabled in m
if m(q) ≥W(q, t), for each place q ∈ Q. For all markings m, m′ and transitions t ∈ T,
we write m

t
⇝m′ when t is enabled in m and m′(q) =m(q)−W(q, t)+W(t,q), for all

q ∈Q. Given two markings m and m′, a finite sequence of transitions t = (t1, . . . , tn) is a
firing sequence, written m

t
⇝m′, if and only if either (i) n = 0 and m=m′, or (ii) n ≥ 1

and there exist markings m1, . . . ,mn−1 such that m
t1⇝ m1

t2⇝ . . .
tn−1⇝ mn−1

tn⇝ m′. A
sequence t is fireable from m whenever there exists a marking m′ such that m t

⇝m′.
A Petri net (PN) is a pair N =(N,m0), where N is a net and m0 is the initial marking

of N. For simplicity, we write QN
def
= QN, TN

def
= TN, WN

def
= WN and initN

def
= m0 for

the elements of N . A marking m is reachable in N iff there exists a firing sequence
t such that m0

t
⇝ m. We denote by reach(N) the set of reachable markings of N .

The reachability problem asks, given a PN N and a marking m, does m ∈ reach(N) ?
The coverability problem asks, for a given PN N and marking m, does there exists a
marking m′ ∈ reach(N) such that m≤m′? Here the order of markings is the pointwise
order on N, i.e., m ≤ m′ iff m(q) ≤ m′(q) for all q ∈ QN . The coverability problem

is more concisely stated using the set of covered markings cover(N)
def
= {m | ∃m′ ∈

reach(N) . m≤m′}, i.e., given N and m, does m ∈ cover(N)?

2.2 Parameterized Systems

We begin by defining parameterized communicating systems, i.e., graphs whose ver-
tices model network nodes that run identical copies of one or more process types.
Neighbouring processes synchronize their transitions according to the observable edge
labels of the network graph. In most of the literature (see, e.g., [7] for a survey) pro-
cess types are represented by finite labeled transition systems (LTS), e.g., with disjoint

4

tokC

getC

nokC

relC

tok

get

nok

rel

start stop

work

Process type Cont Process type Proc

(a)

tokC

nokC

tok

nok

work

tok

nok

work

tok

nok

work

(c)

Cont Proc Proc Proc

(relC,get) (rel,get) (rel,get)

Cont

Proc

ProcProc

(relC,get) (getC,rel)

(relC,get)

(getC,rel)(getC,rel)

(relC,get)

(b)

tokC

nokC

noktokwork nok tok work

nok

tok

work

(d)

Fig. 1. Two process types (a), A system with chain-shape network S1 (top) and a system with
star-shape network S2 (bottom) (b). Behavior of S1 (c). Behavior of S2 (d)

observable and internal alphabets of transition labels. For simplicity, here we use PNs
whose transitions mimick closely the transitions of a LTS, thus avoiding the formal
definition of the latter.

Let Λ and ∆ be finite disjoint alphabets of vertex and edge labels, respectively.
A (binary labeled) graph is a tuple G = (V,E,λ), where V is a finite set of vertices,
E ⊆ V×∆×V is a set of labeled binary edges and λ : V → Λ maps each vertex to a
vertex label. Edges (v1,a,v2) are written v1

a−→ v2. We denote by VG, EG and λG the
vertices, edges and vertex labeling of G, respectively. We do not distinguish isomorphic
graphs, i.e., graphs that differ only in the identities of their vertices.

Definition 1. A process type p is a PN having weights at most 1 and exactly one marked
place initially, whose transitions are partitioned into observable Tobs

p and internal Tint
p ,

i.e., Tp = Tobs
p ⊎Tint

p , and each transition has exactly one predecessor and one succes-
sor. Let P = {p1, . . . ,pk} be a finite fixed set of process types such that Qpi ̸= /0, for all
i ∈ [1,k] and Qpi ∩Qp j = /0, for all 1 ≤ i < j ≤ k.

Because a process type has exactly one initial token and all transitions have one pre-
decessor and one successor, both with weight exactly 1, every reachable marking of
a process type has exactly one initial token. A PN having this property is said to be
automata-like. We denote by QP and Tobs

P the sets of places and observable transitions
from some p ∈ P , respectively.

Example 1. Figure 1 (a) shows two process types Cont and Proc. They both represent
entities that can hold a token and they can either grab a token, if they do not have it, or
release the token, otherwise. The first one, which we identify as a controller, has only
observable transitions, whereas the second one, which represents a worker process, has
two internal trasitions start and stop depicted in yellow. These transitions are used to

5

simulate the fact that when the worker has the token, it can move to a working state,
from which he cannot release the token and when it stops working, it can move back to
a state from which the token can be released.

Definition 2. A system S= (V,E,λ) is a graph whose vertices are labeled with process
types from P (Λ= P) and edges with pairs of observable transitions from Tobs

P (i.e., ∆=

Tobs
P ×Tobs

P), such that ti ∈ Tobs
λ(vi)

, for both i = 1,2, for each edge v1
(t1 ,t2)−−−→ v2 ∈ ES.

Example 2. Figure 1 (b) shows two systems labeled with the process types given by
Figure 1 (a). They both represent a network with four entities, one controller of type
Cont and three working processes of type Proc. In S1, the controller can pass a token
to the first working process, which can pass the token to the second one which can pass
the token to the third one. In S2, the controller is at the center and it communicate with
all the working processes that get and release the token.

The communication (i.e., synchronization between processes) in a system is for-
mally captured by the following notion of behavior:

Definition 3. A behavior is a PN N such that 1 ≤ ||•t|| = ||t•|| ≤ 2, for each t ∈ TN .

The behavior of a system S= (V,E,λ) is β(S)
def
= (N,m0), where:

– QN
def
= {(q,v) | q ∈ Qλ(v), v ∈ V}, a place (q,v) corresponds to the place q of the

process type λ(v) that labels the vertex v;
– TN

def
= E∪{(t,v) | t ∈ Tint

λ(v), v ∈ V}, the transitions are either edges of the system
(i.e., modeling the synchronizations of two processes) or pairs (t,v) corresponding
to an internal transition t of the process type λ(v) that labels the vertex v;

– the weight function WN is defined below:

WN((q,v),v1
(t1 ,t2)−−−→ v2)

def
=

{
Wλ(v)(q, ti), if v = vi, for i = 1,2
0, otherwise

WN(v1
(t1 ,t2)−−−→ v2,(q,v))

def
=

{
Wλ(v)(ti,q), if v = vi, for i = 1,2
0, otherwise

WN((q,v),(t,v′))
def
=

{
Wλ(v)(q, t), if v = v′

0, otherwise
WN((t,v′),(q,v))

def
=

{
Wλ(v)(t,q), if v = v′

0, otherwise

– m0(q,v)
def
= initλ(v)(q), for all v ∈ V and q ∈ Qλ(v).

For example, Figure 1 (c) and (d) show the behaviors of the systems from Figure 1 (b).
By construction, among places {(q,v) | q ∈ Qλ(v)} for any v, there is exactly one token
in all reachable markings because λ(v) is automata-like. By extension we say that such
behaviors are automata-like.

A parameterized system S = {S1,S2, . . .} is a possibly infinite set of systems, called
instances. A parameterized system has an infinite set of behaviors, denoted as β(S),
i.e., one for each instance. The verification problems considered in this paper are, given
a parameterized system S and a marking m for a subset Q of the places in P , does there
exist an instance of S whose behavior reaches (covers) a marking that agrees with m
over Q ? We shall define these problems formally, once we have introduced the language
for the specification of parameterized systems.

6

2.3 Algebras

We recall a few notions on algebras needed in the following. A signature is a set of func-
tion symbols F= {op1,op2, . . .}. An F-term is a term built with function symbols from F
and variables of arity zero. An F-term is ground if it has no variables. An F-algebra A =
(A,opA

1 ,op
A
2 , . . .) interprets the function symbols from F as functions over the domain

A. Given F-algebras A and B having domains A and B, respectively, a homomorphism
is a function h : A → B such that h(opA(a1, . . . ,an)) = opB(h(a1), . . . ,h(an)), for each
function symbol op∈ F of arity n and a1, . . . ,an ∈ A. The kernel of a function f : A → B
is the equivalence relation ∼ker(f)⊆ A×A defined as a1 ∼ker(f) a2 ⇐⇒ f (a1) = f (a2).
An equivalence relation ∼⊆ A×A is an F-congruence if and only if, for each function
symbol op ∈ F of arity n and a1,a′1, . . . ,an,a′n ∈ A such that ai ∼ a′i, for all i ∈ [1,n], we
have opA(a1, . . . ,an)∼ opA(a′1, . . . ,a

′
n).

Proposition 1. Let A be an F-algebra having domain A, and f : A → B be a function
such that ∼ker(f) is an F-congruence. Then f is a homomorphism between A and B def

=

(f (A),{opB}op∈F), where opB(b1, . . . ,bn)
def
= f (opA(f−1(b1), . . . , f−1(bn)))

4, for each
function symbol op ∈ F of arity n and all b1, . . . ,bn ∈ f (A). Consequently, f (θA) = θB ,
for each ground F-term θ.

We introduce a standard signature of operations on graphs and define two algebras,
of open systems and behaviors. Let Σ be a countably infinite set of source labels, fixed
in the rest of the paper. With no loss of generality, we assume that Σ is partitioned into
disjoint sets indexed by the process types P = {p1, . . . ,pk}, i.e., Σ = Σp1 ⊎ . . .⊎Σpk .
A source label σ ∈ Σ uniquely identifies a process type ptype(σ) ∈ P such that σ ∈
Σptype(σ). A function α : Σ→ Σ is P -preserving if ptype(α(σ)) = ptype(σ), for all σ∈ Σ.

The signature of the hyperedge-replacement graph algebra (HR) [17] consists of
the constants aσ1,σ2

, for all edge labels a ∈ ∆ and source labels σ1,σ2 ∈ Σ, the unary
symbols restrictτ, for all τ ⊆fin Σ, renameα, for all P -preserving finite permutations
α : Σ→Σ and the binary symbol ⊕. By HR congruence we mean an equivalence relation
that is a congruence for the HR signature.

An open system is a pair Š def
= (S,ξ), where S= (V,E,λ) is a system and ξ : Σ⇀finVS

is an injective partial function that assigns source labels to vertices of S such that
ptype(σ) = λ(ξ(σ)), for each σ ∈ dom(ξ), i.e., the source label of a vertex has the
process type of that vertex. We say that a vertex v ∈ VS is the σ-source of Š if ξ(σ) = v.
The type of Š is type(Š) def

= dom(ξ), i.e., the set of source labels that occurs in S. Since
systems (Definition 2) are in fact open systems of empty type, we blur the distinction
and refer to open systems as systems from now on.

The algebra S (Figure 2) interprets the HR signature over the set S of systems:
- aS

σ1,σ2
is the system having a single a-labeled edge between its two vertices labeled

with process types ptype(σ1) and ptype(σ2), that are the σ1- and σ2-sources, respec-
tively, for each edge label a ∈ ∆ and source labels σ1,σ2 ∈ Σ.

- restrictS
τ (S,ξ)

def
= (S,ξ⇃τ) removes the source labels that are not in τ ⊆fin Σ,

4 The right-hand side of this definition is a singleton that we identify with its element.

7

S
systems

B
behaviors

B♯

folded behaviors

B♭

folded nets
F

flows

β

Lemma 1

φ

Lemma 3
ψEquation 2η Lemma 7

Fig. 2. Homomorphisms between the HR algebras used in this paper. The circled algebras are the
finite and effectively computable ones.

- renameS
α(S,ξ)

def
= (S,ξ◦α−1) relabels the sources according to α; note that ξ◦α−1 is

an injective partial mapping, since α is a finite permutation of Σ,
- (S1,ξ1)⊕S (S2,ξ2) is the disjoint union of (S1,ξ1) and (S2,ξ2), followed by:

* fusion of each pair of common σ-sources vi ∈ VSi , for σ ∈ type(S1)∩ type(S2) and
i = 1,2, into a σ-source labeled with ptype(σ),

* fusion of all identical edges into a single edge with the same label and endpoints.
Every other HR algebra considered in the rest of this paper will be defined from S via
an homomorphism. Figure 2 shows the diagram of these algebras and homomorphisms.
Each such homomorphism h (except for ψ, which has a trivial definition) has a reference
to a lemma proving that ∼ker(h) is an HR congruence.

An open behavior is a pair Ň def
= (N ,ξ), where N is a behavior and ξ : Σ×QP⇀finQN

is an injective partial function assigning pairs (σ,q) to places of N , where σ is a source
label and q is a place from some process type in P . A place r ∈ QN is a (σ,q)-source

of Ň if ξ(σ,q) = r and type(Ň)
def
= dom(ξ) denotes the type of Ň . Since behaviors

(Definition 3) are actually open behaviors of empty type, we blur the distinction and
refer to open behaviors as behaviors, when no confusion arises.

To define the algebra of behaviors, we extend the β function introduced by Definition 3
to (open) systems, as follows. The behavior of the system Š= (S,ξ) is β(Š)

def
= (β(S),ξ),

where β(S) is given in Definition 3 and the source labeling ξ is ξ(σ,q) def
= (q,ξ(σ)) if

ξ(σ) is defined and (q,ξ(σ)) ∈QN , and undefined otherwise, for all σ ∈ Σ and q ∈QP .

Lemma 1. ∼ker(β) is a HR congruence.

We introduce an algebra B of behaviors (Figure 2), whose domain and interpretation
of HR function symbols are defined as in Proposition 1. Since ∼ker(β) is a HR congruence
(Lemma 1), it follows that β is a homomorphism between S and B . As we discuss next,
a grammar that describes a parameterized system S = {S1,S2, . . .} can be reused to
describe its set of behaviors β(S).

2.4 Grammars

A grammar over a signature F is a pair Γ = (Ξ,Π) consisting of a finite set Ξ of
nonterminals and a finite set Π of rules of the form, either (1) X → ρ[X1, . . . ,Xn],
where X ,X1, . . . ,Xn ∈ Ξ are nonterminals and ρ is an F-term whose only variables are
X1, . . . ,Xn, or (2) → X , where X ∈ Ξ; the rules of this form are called axioms. Given
terms θ and η, a step θ⇒Γ η obtains η from θ by replacing an occurrence of a nontermi-
nal X with the term ρ, for some rule X → ρ of Γ. An X-derivation is a sequence of steps

8

starting with a nonterminal X . The derivation is complete if it ends in a ground term.
Let LA

X (Γ)
def
= {θA | X ⇒∗

Γ
θ is a complete derivation} and LA(Γ)

def
=

⋃
→X∈Π LA

X (Γ) be
the language of Γ in the algebra A .

The following result, also known as the Filtering Theorem, allows to build a gram-
mar for the intersection between the language of a grammar and a recognizable set,
i.e., the image of a finite set via an inverse homomorphism [17, Theorem 3.88]:

Theorem 1. Let F = {op1,op2, . . .} be a signature, A = (A,opA
1 ,op

A
2 , . . .) and B =

(B,opB
1 ,op

B
2 , . . .) be F-algebras, such that B is finite, and h be a homomorphism be-

tween A and B . For each F-grammar Γ and set C ⊆ B, one can build a grammar Γh,C
such that LA(Γh,C) = LA(Γ)∩h−1(C).

The construction of the filtered grammar Γh,C is effective: for each rule X → ρ[X1, . . . ,Xn]

of Γ and each sequence of elements b,b1, . . . ,bn ∈ B such that b = ρB(b1, . . . ,bn), the
grammar Γh,C has a rule Xb → ρ[Xb1

1 , . . . ,Xbn
n]; the axioms of Γh,C are → Xc, for each

axiom → X of Γ and each element c ∈C.
The grammars from the rest of the paper use the HR signature to describe parameter-

ized systems. The following example shows two grammars that specify parameterized
systems with chain-like and star-like network topologies, as in Figure 1 (b):

Example 3. The grammar ΓChain below defines systems with chain-like network topolo-
gies and at least three processes including the controller (Figure 1 (b) top):

→C

C → restrict{σ1}((relC,get)(σ3,σ2)⊕ (rel,get)(σ2,σ1))

C → restrict{σ1}renameσ1↔σ2
(C⊕ (rel,get)(σ1,σ2))

Cont Proc Proc

σ1(relC,get) (relC,get)

C
Proc

σ1(rel,get)

The right-hand sides of the last two rules correspond to the graphs on the right. Simi-
larly, the ΓStar grammar below defines systems with star-shaped network topology and
at least two processes including the controller (Figure 1 (b) bottom):

→ Z

Z → restrict{σ1}((relC,get)(σ1,σ2)⊕
S (getC,rel)(σ1,σ2))

Z → restrict{σ1}(Z ⊕ (relC,get)(σ1,σ2)⊕
S (getC,rel)(σ1,σ2))

Cont

σ1

Proc

(relC,get)

(getC,rel)

Z σ1
Proc

(relC,get)

(getC,rel)

The following argument will be repeated several times: if A is some HR algebra re-
lated to S by a homomorphism h, then h(LS(Γ)) = LA(Γ), for each grammar Γ written
using the HR signature. Moreover, if the domain of A is finite, the language LA(Γ) is
finite and effectively computable by a finite Kleene iteration, provided that the interpre-
tation of each function symbol from the HR signature in A is effectively computable.
The finite and effectively computable algebras in question are circled in Figure 2.

As a consequence of Lemma 1, a grammar that specifies a parameterized system
defines also its set of behaviors:

Lemma 2. For each HR grammar Γ, we have β(LS(Γ)) = LB(Γ).

9

We consider the problems of reachability and coverability for parameterized sys-
tems specified by grammars and give the formal definitions of the decision problems:

Definition 4. The Reach(Γ,Q ,m) (resp. Cover(Γ,Q ,m)) problem takes in input a gram-
mar Γ, a set of places Q ⊆ QP , a mapping m : Q → N and asks for the existence
of a system S ∈ LS(Γ) and marking m ∈ reach(β(S)) (resp. m ∈ cover(β(S))) where
∑v∈VS:q∈QλS(v)

m(q,v) =m(q), for all q ∈ Q .

Unsurprisingly, both problems are undecidable, even for simple grammars defining pa-
rameterized systems with chain-like topologies (see Example 3), when the structure of
the process types is unrestricted.

Theorem 2. The Reach and Cover problems are undecidable.

Proof sketch. With 3 process types one can write a grammar whose language consists of
nets that simulate executions of two-counter Minsky machines, and the halting problem
thus reduces to coverability. ⊓⊔

3 Counting Abstraction

We define the counting abstraction of a set of behaviors as a set of PNs having finitely
many underlying nets with possibly infinitely many initial markings each. The basic
idea is to fold (i) the copies of the same place from some process type into a single
place and (ii) the transitions having the same sets of predecessors and successors into
a single transition. We show that the counting abstraction of the set of behaviors of a
parameterized system described by an HR grammar can be computed by evaluating the
same grammar in a finite HR algebra. Moreover, the infinite set of initial markings of
a folded PN can be finitely described by another PN derived from the initial grammar
describing the system. While the counting abstraction itself is not inherently tied to HR,
and may abstract any family, the generation of initial markings on the other hand is
strongly based on the HR-grammar (Section 3.2).

3.1 Folding

We define a folding function on the domain B of system behaviors. Let Š = (S,ξ) be
a system and (N ,ξ) = β(Š) be its behavior (Definition 3). The folding is defined as
quotienting a behavior N via an equivalence relation ≡ on the places of N . Note that
quotienting is a standard operation, meaning that equivalent places and transitions hav-
ing the same sets of predecessor and successor equivalence classes [q]≡, for q ∈ QN ,
are joined together, the result being denoted as N /≡.

We recall that the places of N are pairs (q,v), where q ∈QP , v ∈VS and the sources
of the behavior are labeled by the function ξ. A function η : Σ → VS, having dom(η)⊇
dom(ξ), defines the following equivalence relation ≡[η] ⊆ QN ×QN :

(q1,v1)≡[η](q2,v2) ⇐⇒ q1 = q2 and {v1,v2}∩ img(η) ̸= /0 ⇒ v1 = v2 (1)

10

tokC

nokC

tok

nok

work

tokC

nokC

noktokwork

Fig. 3. Foldings of the behaviors given in Figure 1 (c) and (d), respectively.

i.e., two places of N corresponding to the same place of a process type (within two
distinct instances thereof) are considered equivalent, except for the sources with labels
η, that are equivalent only with themselves. The equivalence class of a place (q,v)∈QN
is denoted [(q,v)]≡[η]

. Because we have assumed that the set of places corresponding to
different process types are disjoint, (q1,v1)≡[ξ](q2,v2) implies that λS(v1) = λS(v2),
i.e., the two vertices are instances of the same process type.

The folding of (N ,ξ) is defined as φ(N ,ξ)
def
= (N /≡[ξ]

,ξ/≡[ξ]
), where, for each map-

ping η : Σ → VS having dom(η) ⊇ dom(ξ), we define ξ/≡[η]
(σ, [q]≡[η]

)
def
= [ξ(σ,q)]≡[η]

if σ ∈ dom(η), else undefined, for each σ ∈ Σ. We refer to Figure 3 for examples.
The following lemma allows to define an algebra of abstract behaviors B♯ (Figure 2)

from the algebra B of behaviors, using Proposition 1. The domain of B♯ is the set B♯ of
folded behaviors, i.e., quotients of behaviors (N ,ξ) w.r.t. the ≡[ξ] relation.

Lemma 3. ∼ker(φ) is an HR congruence.

As an immediate consequence of Lemma 3, we obtain that φ is a homomorphism
between B and B♯, hence the same HR grammar can be used to both specify an infinite
set of behaviors and compute its folded abstraction:

Corollary 1. For each HR grammar Γ, we have φ(LB(Γ)) = LB♯
(Γ).

Because P is a finite set of process types, each having finitely many places, the
folded language LB♯

(Γ) has a finite set of underlying nets. This is because each tran-
sition t in a behavior N ∈ LB(Γ) has at most two incoming/outgoing edges. Since the
same holds for each transition of its quotient, i.e., N /≡[ξ]

, there are finitely many places

and transitions in each underlying net of some N ∈ LB♯
(Γ). Nevertheless, the language

LB♯
(Γ) is unbounded, because the set of initial markings is unbounded. In order to

represent this set in a finite way, we shall proceed in two steps:
1. Isolate the initial markings that correspond to a given net from LB♯

(Γ); we address
this problem using the Filtering Theorem (Theorem 1).

2. Give a finite representation to the set of initial markings of each net; we tackle this
problem using Esparza’s idea [18] of building PNs that simulate the derivations of
the “filtered” grammars obtained in the previous step.
To formally define the finite set of underlying nets from a language LB♯

(Γ), we
consider the function ψ on the domain B♯, that drops the initial marking:

ψ((N,m0),ξ)
def
= (N,ξ) (2)

11

Then, ψ(LB♯
(Γ)) is finite, because the numbers of places and transitions in each net

from this set are bounded by ||QP || and ||QP ||4 (i.e., each transition has at most 2 in-
coming and 2 outgoing edges of weight 1), respectively.

Since none of the operations from B♯ modify the initial markings, it is straight-
forward that ∼ker(ψ) is a HR congruence. We define the algebra B♭ (Figure 2) having
the finite domain B♭ def

= ψ(B♯) and the usual interpretations of the HR function symbols
given by Proposition 1. By standard arguments (similar to Lemma 2 and Corollary 1),
we obtain that ψ is a homomorphism between B♯ and B♭, i.e., ψ(LB♯

(Γ)) = LB♭
(Γ).

As previously discussed, LB♭
(Γ) is a finite set. However, to ensure that this set can

be effectively computed, the computation of the interpretation of the HR signature in
B♭ needs to be effective:

Proposition 2. For each function symbol op from the HR signature, the function opB♭

is effectively computable.

By the previous arguments, the language LB♭
(Γ) is finite and effectively computable,

hence it can be produced by a finite Kleene iteration of the monotonic function that
maps a tuple of sets indexed by the nonterminals of Γ into their B♭ interpretations, given
by the rules of Γ. Let {(N1,ξ1), . . . ,(Nn,ξn)}

def
= LB♭

(Γ) be this set. Using the Filtering
Theorem (Theorem 1) one can effectively build grammars Γ1, . . . ,Γn such that:

ψ(LB♯
(Γi)) = LB♭

(Γi) = {(Ni,ξi)}, for each i ∈ [1,n] (3)

More precisely, the Filtering Theorem gives, for each i ∈ [1,n], a grammar Γi such that
LB♯

(Γi) = LB♯
(Γ)∩ψ−1({(Ni,ξi)}). By applying ψ to both sides of the equality, we

obtain (Equation 3), thus taking care of the first step of the construction (1).

3.2 Initial Markings

Let Γ = (Ξ,Π) be any of the grammars Γ1, . . . ,Γn (Equation 3). To simplify matters
at hand, we assume w.l.o.g that the right-hand side of each rule in Γ has exactly one
occurrence of an HR function symbol, i.e., a constant aσ1,σ2

, a unary function symbol
restrictτ or renameα, or the binary function symbol ⊕, applied to 0, 1 or 2 variables,
respectively. Note that each grammar can be put in this form, at the cost of adding
polynomially many extra nonterminals.

First, we annotate each nonterminal X ∈ Ξ with sets of sources τ that are visible
(i.e., have been introduced by a constant aσ1,σ2

and have not been removed by some
application of restrict

τ′) in each complete derivation starting in Xτ, where Xτ is a short-
hand for the pair (X ,τ). The annotated grammar Γ̂ = (Ξ̂,Π̂) can be built from Γ by a
standard worklist iteration 5 The language of the annotated grammar Γ̂ is the same as
the original grammar Γ. Next, we use the annotated grammar Γ̂ = (Ξ̂,Π̂), to build a PN
I(Γ̂) that generates the initial markings of Γ in the set of folded PNs (Corollary 1).

This construction is quite intuitive: by reinterpreting each rule of Γ̂ as a transition
of I(Γ̂), we get a PN whose firing sequences mimick derivations of Γ̂ in which the

5 The annotation algorithm is given in the full version of the paper. [10]

12

tokC
nokC

tok
nok

work

O C

tok
nok

work

tokC
nokC

O Z

Fig. 4. I(Γ̂Chain) (left) and I(Γ̂Star) (right), showing how to initialize the marking of stars and
chains generated by the grammars presented in Example 3.

rules/transitions of Γ̂ and I(Γ̂) are applied in the same order. More precisely, we create
a Petri net with one place representing each nonterminal X ∈ Ξ̂, in which each rule of the
form X → ρ[X1, ...,Xn] is translated to some transition t such that •t• = (X ,{X1, ...,Xn}),
and each rule of the form → X is translated to some transition t such that •t• = (O,X)

(here O ̸∈ Ξ̂ is a newly created place that receives the initial token, as in Figure 4). This
construction is such that a partial derivation having k occurrences of the nonterminal
variable X , when reinterpreted as a firing sequence, leads to a marking with k tokens in
the place corresponding to X . Assume that Xτ ⇒∗

Γ̂
θ is a complete derivation, i.e., θ is a

ground HR term. Then, every instance of some process type p that occurs in the system
(S,ξ)

def
= θS starts in a vertex labeled by a source label σ ∈ Σ such that, either:

(a) σ is removed by an application of restrict
τ′ such that σ ̸∈ τ′, then σ occurs in the

subtree of θ rooted at the particular occurrence of restrict
τ′ that removed it, or

(b) σ is visible at the root of θ, i.e., σ ∈ τ.
When processing the rules of the form Xτ → restrict

τ′(X1
τ1) and → Xτ in the con-

struction of I(Γ̂), we add an outgoing edge to each place q that is initially marked in
ptype(σ), for some σ ∈ τ1 \ τ′ or σ ∈ τ. Then, for every instance of the process type
that occurs in the system, its initial marking will be added to q by a firing sequence of
I(Γ̂). We refer to Figure 4 for examples of initialization PNs obtained by this construc-
tion applied to Γ̂Chain and Γ̂Star, i.e., the annotated versions of the two grammars from
Example 3. For a PN N and a set of places Q ⊆ QN , we denote by:

reach0
Q (N)

def
= {m ∈ reach(N) |m(q) = 0, for all q ∈ Q } (4)

the set of reachable markings having zero tokens in a place from Q . For a set M of
markings and a set Q of places, we denote by M ⇃Q the set of restrictions of each
m ∈ M to the places in Q . The relation between the set of folded PNs described by an
annotated grammar Γ̂ and the PN I(Γ̂) is formally captured below:

Lemma 4. Let Γ̂ = (Ξ̂,Π̂) be an annotated grammar. Then, we have:

{initN | (N ,ξ) ∈ LB♯
(Γ̂)}= reach0

{O}⊎Ξ̂
(I(Γ̂))⇃QP

13

3.3 Soundness

We now have all the elements to describe our counting abstraction method and prove
its soundness, i.e., if the reachability (resp. coverability) problem has a negative answer
for the abstraction, then the concrete reachability (resp. coverability) problem has a
negative answer.

For each grammar Γi = (Ξi,Πi) defined at (Equation 3), that corresponds to the
(open) net (Ni,ξi), for i ∈ [1,n], we define the PN N(Γi)

def
= (N i,ξi), where:

QN i

def
= QI(Γ̂i)

∪QNi TN i

def
= TI(Γ̂i)

⊎TNi WN i

def
= WI(Γ̂i)

∪WNi initN i

def
= initI(Γ̂i)

Note that reach0
Q
I(Γ̂i)

\QNi
(N(Γi)) is the set of markings of N(Γi) that can be reached

after the full generation of its initial marking, i.e., from those markings that have no
more tokens in any of the places of I(Γ̂i), excepted the initially marked places of QP .

Our verification method for the grammar-based parameterized reachability and cov-
erability problems (Definition 4) relies on the construction of a finite number of PNs
N(Γ1), . . . ,N(Γn) from a given grammar Γ that describes a set of systems.

The soundness of the method is formally captured below:

Theorem 3. Let Γ be an HR grammar such that LB♭
(Γ) = {(N1,ξ1), . . . ,(Nn,ξn)},

Q ⊆ QP a set of places, m : Q → N a mapping. Then, one can effectively build gram-
mars Γ1, . . . ,Γn such that LB♭

(Γi) = {(Ni,ξi)}, for all i ∈ [1,n] and:

1. Reach(Γ,Q ,m) has a negative answer if m ̸∈
⋃n

i=1 reach0
QN(Γi)

\QP
(N(Γi))⇃Q .

2. Cover(Γ,Q ,m) has a negative answer if m ̸∈
⋃n

i=1 cover(N(Γi))⇃Q .

Note that, if Reach(Γ,Q ,m) (resp. Cover(Γ,Q ,m)) has a negative answer, then each
instance the parameterized system described by Γ (i.e., the set of systems LS(Γ)) is safe
with respect to the property encoded by the marking m, i.e., does not reach (resp. cover)
the marking m over the set of places Q . For instance, mutual exclusion (only one pro-
cess of a certain type in a certain state) is naturally encoded as a coverability problem.

3.4 False Positives

As we have announced, our abstraction is sound but not complete. Before we explore a
decidable fragment, we show here a simple example of a net on which false positives
appear (i.e., the abstraction exhibits a violation of safety, but the original net is safe).

Figure 5 illustrates one phenomenon that is a possible cause of false positives. Here,
the folding changes the connectivity of the network: two instances of pb are folded
together and make a path from pa to pc appear that was absent from the original system.
The coverability query mtgt(q1

c)≥ 1 is unsatisfiable in θB , but satisfiable in θB♯
.

To enable the verification of infinite systems that exhibit a similar issue, here is
one possible approach. We give ourselves a new process type p′b, identical copy of
pb, and we alter the grammar and/or the assignment ptype(·) to distinguish between
the instances we do not want folded together. Here we could change ptype(σ′

b) = pb′

(instead of pb). The same abstraction applied to the new system will not fold together

14

q0

q1

t+t−

(a) pa,pb,pc

q1
a

q0
a

q0
b

q1
b

q0
b

q1
b

q0
c

q1
c

(b) θB is safe

q1
a

q0
a

q0
b

q1
b

q0
c

q1
c

(c) θB♯
is not safe

Fig. 5. 3 process types with the same net, and a way of connecting them that produces a false posi-
tive when folded. θ

def
= (t+, t+)

σa,σb
⊕ (t−, t+)

σ′
b,σc

with ptype(σa)= pa, ptype(σb)= ptype(σ′
b)=

pb, ptype(σc) = pc. The safety property is mtgt(q1
c)≥ 1.

instances of pb with instances of p′b, making the false positive disappear. In general
on infinite families, we may modify the grammar to select a subset of instances of a
process type to instead use a copy of the process type that is folded separately. Repeating
this process finitely many times keeps the abstraction finite. This refinement technique
constitute what we call a partial unfolding, because we select a few instances to not
be folded with the rest. Automated detection of when this technique is applicable, and
more advanced transformations of the grammar constitute a research avenue orthogonal
to the abstraction technique we explore here, and may be the topic of future work.

4 A Decidable Fragment

We have shown that the parameterized coverability problem is undecidable, for sys-
tems with fairly simple network topologies (chains) and unrestricted process types
(Theorem 2). We refine this result by proving that only restricting the process types,
but not the topology of the network, suffices to recover decidability. This approach is
inspired by [5], in which token-passing systems (TPS) are found to admit cutoffs, and
thus decidable model-checking, provided that the architecture is definable in monadic
second order logic and of bounded tree-width, like ours. TPS and PPS are similar, with
the tradeoff that TPS may have internal transitions, but only one token in the system.

Albeit based on a simple communication pattern (i.e., passing a pebble from one
node to a neighbour having no pebble), our decidable fragment is non-trivial: we found
it to be in 2EXPTIME, with a PSPACE-hard lower bound.

4.1 Pebble-Passing Systems

The class of pebble-passing systems (PPS) is defined by restricting the process types
and interactions of a system, as in Figure 6. The example from Figure 5 also happens
to be of this form. We give the formal definition below:

Definition 5. Let Ppps be a set of process types, where Qp = {qp⊥,q
p
⊤} and Tp =Tobs

p =
{send, recv}, such that •send• = (qp⊤,q

p
⊥) and •recv• = (qp

⊥,q
p
⊤), for each p ∈ Ppps. Let

∆pps
def
= {(send, recv),(recv,send)} be a set of edge labels. A system S = (V,E,λ) over

Ppps and ∆pps is said to be pebble-passing.

15

qp1
⊥

sendrecv

qp1
⊤

qp2
⊥

sendrecv

qp2
⊤

qpi
⊥

qpi
⊤

(send, recv)

(recv,send)

qpj
⊥

qpj
⊤

Fig. 6. Two process types (left), and two kinds of interactions (right), which all other process
types and interactions in our restriction have the same shape as.

Intuitively, a token in qp⊤ (i.e., m(qp⊤) = 1) represents the ownership of a ressource,
called pebble, and a token in qp

⊥ is the absence of a pebble, called hole. Since each
process type is automata-like (i.e., has a token in exactly one place), each node of the
system can have either a pebble or a hole, in all the reachable markings of its behavior
(Definition 3). An edge (v,(send, recv),v′) (resp. (v,(recv,send),v′)) will be denoted
v → v′ (resp. v′ → v). Intuitively, firing an interaction v → v′ moves a pebble from v to
v′ and simultaneously moves a hole from v′ to v. Thus each transition preserves the total
numbers of pebbles and holes in the system, respectively.

Pebble-passing systems have very strict constraints on their process types and in-
teractions, but no constraints on the set of network topologies, other than that it is
definable by an HR grammar written with constants of the form (send, recv)σ1,σ2 or
(recv,send)σ1,σ2 , for some source labels σ1,σ2 ∈ Σ, where Σ is the set of source labels
that may occur in a grammar. We denote by HRpps the signature of these grammars. The
rest of this section is concerned with the proof of the following theorem:

Theorem 4. The Cover problem for grammars written using the HRpps signature is in
2EXPTIME and PSPACE-hard.

The proof of Theorem 4 is organized as follows. The double exponential upper bound
relies on a result showing that, in order to cover a target marking mtgt it is sufficient to
consider only firing sequences that cross (i.e., move a pebble to and from) each place
at most K times, where K is the size of the unary encoding of mtgt. Based on this
result (Lemma 6), we define an effectively computable algebra F (Figure 2), having
the property that the coverability problem reduces to a membership test on the language
of the input grammar in F . Here the use of HR guarantees that F is finite. The upper
bound follows from the fact that LF (Γ) is computable in double exponential time (see
Proposition 3 for a precise estimation). The lower bound uses a polynomial reduction
from the emptiness problem for 2-way nondeterministic automata [21] (2NFA). This
construction works because (1) 2NFAs run on words which have a chain-like and thus
HR-expressible structure, and (2) 2NFAs have only finite memory, which we are able to
encode within the constraints of PPS.

4.2 Firing Sequences

For the rest of this section, let Š = (S,ξ) be a fixed open pebble-passing system, hav-
ing an underlying system S = (V,E,λ) whose behavior is β(S)

def
= (N,m0). Below, we

introduce an equivalent characterization of the firing sequences of β(S).

16

The footprint of a marking m is a mapping fpm : V → {0,1} defined as fpm(v)
def
=

m(qλ(v)
⊤ ,v), for each vertex v ∈ V. Note that fpm evaluates to 1 on pebble and to 0 on

hole vertices. We say that a marking footprint π is valid over V ⊆ V iff 0 ≤ π(v) ≤ 1
for each vertex v ∈ V , resp. valid, when V = V follows from the context.

Given a subset of states Q ⊆ QP and a marking to cover mtgt : Q → N, the cov-
erability problem asks for the existence of a reachable marking m : QN → {0,1} such
that, for each process type p ∈ P and each place q ∈ Q :

||{v ∈ λ
−1(p) | fpm(v) = 0}|| ≥mtgt(q

p
⊥) (5)

||{v ∈ λ
−1(p) | fpm(v) = 1}|| ≥mtgt(q

p
⊤) (6)

The footprint fpv→v′ : V→ Z of an edge v → v′ ∈ E is defined as fpv→v′(u)
def
= 1 if u = v,

−1 if u = v′ and 0, otherwise. We extend footprints to sequences of edges e ∈ E∗ as in
fpe

def
= ∑e∈e τe. Because each edge v → v′ ∈ E corresponds to the transition that moves

a token from (qλ(v)
⊤ ,v) to (qλ(v)

⊥ ,v) (resp. from (qλ(v′)
⊥ ,v′) to (qλ(v′)

⊤ ,v′)) in the PN β(S),
we shall abuse notation and write β(v → v′) for the transition corresponding to v → v′

in β(S) and β(e) for the sequence of transitions corresponding to e ∈ E∗.

We remark that, for each firing sequence m
β(e)
⇝ m′, we have fpm′ − fpm = fpe. Intu-

itively, fpe is a witness of the fact that the effect of firing the transitions β(e) is to move
pebbles from {v | fpe(v) =−1} to {v | fpe(v) = 1}; the vertices from {v | fpe(v) = 0}
may store pebbles in between, but are ultimately restored to their initial state.

We denote by #e(e) the number of times the edge e occurs in the sequence e. We use
the shorthands #u→(e) def

= ∑u′∈V #u→u′(e) and #→u(e)
def
= ∑u′∈V #u′→u(e). We define the

following partial orders between sequences of edges: e′ ⪯ e def⇐⇒ #e(e′) ≤ #e(e), for
each e ∈ E, and e′ ⊑ e def⇐⇒ e′ ⪯ e and fpe′ = fpe. The following lemma characterizes
the existence of fireable sub-sequences:

Lemma 5. For each marking m and sequence of edges e, the following are equivalent:
(i) fpm+ fpe is a valid marking footprint,

(ii) there exists a sequence of edges e′ ⊑ e such that β(e′) is fireable from m.

Using the previous lemma, we prove that, in order to cover a given marking mtgt,
it suffices to consider only those firing sequences that cross each vertex a bounded
number of times, where the bound is the size of the unary encoding of mtgt. To that
end, we define the degree of a sequence e ∈ E∗ as the maximum number of occurrences
of one vertex in the sequence, i.e., deg(e) def

= max{#u→(e),#→u(e) | u ∈ V}. From now
on, the domain of mtgt will implicitly be the set Q ⊆ QP . To simplify the following
statement, we say that m : QN → N covers mtgt iff ∑(q,v)∈QN

m(q,v)≥mtgt(q), for each
q ∈ Q and that mtgt is coverable by S iff there exists m ∈ reach(β(S)) that covers mtgt.
Since, in a pebble-passing system, markings can be equated to their footprints, we say
that fpm covers mtgt whenever m and mtgt satisfy the conditions (5) and (6) above.

Lemma 6. A marking mtgt is coverable by S iff there exists e ∈ E∗≤K such that fpm0
+

fpe covers mtgt, where K def
= ∑q∈Q mtgt(q), and E∗≤K def

= {e ∈ E∗ | deg(e)≤ K}.

17

4.3 Flows

To check coverability, we consider an algebra F whose elements represent the se-
quences of edges that cross each vertex at most K times. The domain of F is F ⊆
pow([0,K]Σ × [0,K]Σ × [0,K]Q). The elements (f+, f−,n) ∈ F represent sequences of
edges, such that f+(σ) (resp. f−(σ)) is the in-degree (resp. out-degree) of the σ-source
of S and n(q) is the number of tokens that end in q ∈ Q . Intuitively, a tuple (f+, f−,n)
witnesses the existence of a sequence that covers n, that can later be combined with
other sequences which compensate its surplus f+ and deficit f− on the sources of S.
Since we consider only systems with finitely many sources (guaranteed by HR) and
since Q ⊆ Q is finite, F is a finite algebra. We will later characterize its exact size.
Formally, we define the following mappings, where S denotes the set of open systems,
i.e., systems with sources:

ω : E∗≤K ×VΣ → [0,K]Σ × [0,K]Σ × [0,K]Q

ω(e,ξ) = (f+, f−,n) def⇐⇒
f+(σ) = #ξ(σ)→(e) f−(σ) = #→ξ(σ)(e)
n(qp

⊥) = min(mtgt(q
p
⊥), ||{v ∈ λ−1(p)\ img(ξ) | (fpinitp + fpe)(v) = 0}||)

n(qp
⊤) = min(mtgt(q

p
⊤), ||{v ∈ λ−1(p)\ img(ξ) | (fpinitp + fpe)(v) = 1}||)

η : S → pow([0,K]Σ × [0,K]Σ × [0,K]Q)

η(S,ξ)
def
={ω(e,ξ) | e ∈ E∗≤K

S , fpinitβ(S) + fpe is a valid marking footprint over VS \ img(ξ)}

We define the finite algebra of flows F using Proposition 1, where η is taken to be
the homomorphism between S and F :

Lemma 7. ∼ker(η) is a HR congruence.

This implies η(LS(Γ)) = LF (Γ), so all we need is a way of computing LF (Γ).
The remainder of the proof for the upper bound from Theorem 4 thus relies on the fact
that the interpretation of the HR signature in F is effectively computable, which is the
purpose of the proposition below. The size of the grammar Γ is the total number of
occurrences of a nonterminal or function symbol in a rule from Γ, denoted as |Γ|.

Proposition 3. The size of each element f ∈ F is 2O((||Σ||+||P ||)·logK) and the function
opF (f1, . . . , fn) can be computed in time 2O((||Σ||+||P ||)·logK), for each HR-function sym-
bol op of arity n ≥ 0 and all elements f1, . . . , fn ∈ F. Moreover, for each grammar Γ us-
ing source labels from Σ, the language LF (Γ) is computable in time 2|Γ|·2

O((||Σ||+||P ||)·logK)
.

Deciding whether mtgt is coverable by some instance S ∈ LS(Γ), for a given HR gram-

mar Γ, is done by checking restrictF
/0
(LF (Γ))∩{(0,0,mtgt)}

?
= /0. We apply restrict /0

to LF (Γ) to ensure that the sequences of edges considered lead to valid marking foot-
prints on every vertex of a system (S,ξ) ∈ LS(Γ), including the sources from img(ξ),
that were exempt from satisfying this condition (see the above definition of η). Com-
puting restrictF

/0
(LF (Γ)) simply adds a linear factor compared to LF (Γ), and so does

checking if it contains (0,0,mtgt). Thus we have an overall 2EXPTIME upper bound.

18

Name Architecture PPS TPS Result Size Runtime (ms)
fig-1c chain ✓ 2/2 (⃝12,□13)×2 (59+9)±6
fig-1d star ✓ 2/2 (⃝11,□10)×2 (59+9)±4
fig-5 trivial ✓ ✓ 1/2 (⃝13,□10)×3 (49+2)±4
ring ring ✓ ✓ 2/2 (⃝9,□11)×16 (80+21)±4

double-ring ring ✓ 1/1 (⃝8,□14)×34 (113+44)±10
philos ring 1/1 (⃝16,□14)×8 (134+21)±5

consensus star 5/5 (⃝29,□23)×6 (83+26)±6
leader-election ring 1/2 (⃝27,□32)×2 (58+35)±5

tree-dfs binary tree ✓ 2/2 (⃝19,□16)×2 (52+5)±4
tree-down binary tree ✓ ✓ 1/1 (⃝11,□12)×20 (125+36)±7

tree-halves binary tree 4/4 (⃝26,□23)×8 (92+190)±7
tree-nav chained binary tree ✓ ✓ 2/2 (⃝12,□19)×12 (139+46)±7

lock star ✓ 1/3 (⃝9,□11)×4 (59+8)±5
star star ✓ ✓ 3/3 (⃝12,□11)×4 (58+11)±5

star-ring chained star ✓ 3/3 (⃝17,□14)×2 (63+12)±4
server-loop ring of stars 2/3 (⃝19,□19)×8 (112+4627)±20
coverapprox star 1/2 (⃝3,□8)×6 (70+62)±8
simplify-me star 1/2 (⃝7,□9)×4 (64+21)±5
propagation ring 1/2 (⃝13,□13)×4 (90+278)±10

open ring 0/1 (⃝13,□14)×4 (74+269)±13

Fig. 7. Table of experiments. “PPS”, these are pebble-passing systems (Section 4). “TPS”, these
are token-passing systems ([4]). “Result”, S/T means that of T safety properties, we proved S.
“Size”, (⃝p,□t)×n means that LoLA analyzed n nets, consisting of on average p places and t
transitions. “Runtime”, (p+ l)±e means that ParCoSys ran for p+ l milliseconds with a standard
deviation of e milliseconds, including p computing the abstraction and l waiting for LoLA.

The PSPACE lower bound is obtained by a polynomial reduction from the PSPACE-
complete emptiness problem for 2-way nondeterministic finite automata (2NFA). The
idea of the reduction is to simulate a run of a 2NFA on a given word by a grid-like
system. This system encodes each letter of the word horizontally, and each state of
the automaton vertically. The possible movements of the pebble are determined by the
transition relation of the 2NFA. Since there are finitely many states in the automaton,
we have a grid of constant height and unbounded width, which is expressible in HR.

5 Experiments

We have implemented the counting abstraction method in the prototype tool ParCoSys
(Parameterized Coverability) [30]. The input of the tool is a grammar describing the
system and a safety property to be checked. The output is a finite set of Petri nets that is
fed to the LoLA analyzer [32]. Our choice for LoLA was driven by its robustness and
performance, but any Petri net analyzer can be used as back-end, in principle.
We tested6 our tool on the examples listed in Figure 7

– fig-1c and fig-1d are the systems used as examples in Figure 1 (c) and (d) respec-
tively. We easily verify nonduplication of the token (mtgt(tok)+mtgt(tokC) > 1)
and mutual exclusion of processes in the critical section work (mtgt(work)> 1).

6 The times were obtained on a Intel Ultra 7 laptop, with 16GiB RAM, under Ubuntu 24.04. All
benchmark specifications and logs are provided as additional material [30].

19

– fig-5 is the example shown in Figure 5. Here the “Result” 1/2 denotes that mtgt(q1
c)>

0 exhibits a false positive with the default folding, but there is an easy refinement
of the grammar that leads to a successful verification on the second attempt.

– ring is a standard token ring, on which we verify mutual exclusion (mtgt(tok)> 1).
– double-ring is a token ring with two tokens instead of one (mtgt(tok) > 2). It is

mainly interesting as an example of a PPS that is not TPS.
– philos implements the algorithm of dining philosophers. We prove that adja-

cent processes p1 and p2 do not enter their critical section eating simultaneously
(mtgt(eatingp1)> 0∧mtgt(eatingp2)> 0).

– consensus has a star of processes performing 2-valued consensus. All processes
must choose the same value: (mtgt(choose0)> 0∧mtgt(choose1)> 0)).

– leader-election performs a leader election with predetermined winner (found
in [9]). We prove that p0 is the unique winner (mtgt(winp0)> 0∧mtgt(win)> 0).

The rest of the tests are more ad hoc, designed to showcase a wider range of architec-
tures as well as interesting false positives:

– tree-dfs, tree-down, tree-halves, tree-nav are binary trees on which we
prove different ways of expressing mutual exclusion with one or two tokens.

– lock should satisfy a mutual exclusion (mtgt(on)> 1), but a false positive occurs.
A partial unfolding (Section 3.4) allows proving the desired property.

– star and star-ring are stars with easy mutual exclusion properties.
– server-loop is a ring where each node has itself a star of child processes. One

false positive here could theoretically be solved by a partial unfolding, but we have
not yet implemented the logic that would allow for this specific pattern.

– coverapprox, simplify-me and propagation each have a false positive that can
be solved by a refinement technique consisting of deleting transitions that are found
to be unfireable during intermediate stages of the fixed point computation.

– open so far evades our ideas for refinements. We can prove that partial unfolding
on its own is insufficient, since all finite foldings exhibit false positives.

6 Conclusions

We present two orthogonal verification results for parameterized process networks with
topology specified using hyperedge-replacement graph grammars. The first result is a
finitary counting abstraction, that consists in collapsing nodes of the same type in the
parameterized family of Petri nets that gives the semantics of behaviors. The second
result identifies a decidable fragment of the (undecidable) parameterized verification
problem and evaluates its complexity bounds.

Acknowledgements. This research is supported by the French National Research Agency
project ”Parametic Verification of Dynamic Distributed Systems” (PaVeDyS) under
grant number ANR-23-CE48-0005.

Disclosure of interests. The authors have no competing interests to declare that are
relevant to the content of this article.

20

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems for infinite-
state systems. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science,
New Brunswick, New Jersey, USA, July 27-30, 1996, pages 313–321. IEEE Computer Soci-
ety, 1996.

2. P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Monotonic abstraction: on efficient
verification of parameterized systems. Int. J. Found. Comput. Sci., 20(5):779–801, 2009.

3. P. A. Abdulla, G. Delzanno, and A. Rezine. Approximated parameterized verification of
infinite-state processes with global conditions. Formal Methods Syst. Des., 34(2):126–156,
2009.

4. B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of token-
passing systems. In VMCAI’14, volume 8318 of Lecture Notes in Computer Science, pages
262–281. Springer, 2014.

5. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking of
rendezvous systems. Distributed Comput., 31(3):187–222, 2018.

6. B. Aminof and S. Rubin. Model checking parameterised multi-token systems via the com-
position method. In IJCAR’16, volume 9706 of Lecture Notes in Computer Science, pages
499–515. Springer, 2016.

7. R. Bloem, S. Jacobs, and A. Khalimov. Decidability of Parameterized Verification. Morgan
& Claypool Publishers, 2015.

8. R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decidability
of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2015.

9. M. Bozga, J. Esparza, R. Iosif, J. Sifakis, and C. Welzel. Structural invariants for the verifi-
cation of systems with parameterized architectures. In A. Biere and D. Parker, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 26th International Confer-
ence, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume
12078 of Lecture Notes in Computer Science, pages 228–246. Springer, 2020.

10. M. Bozga, R. Iosif, A. Sangnier, and N. Villani. Counting abstraction for the verification of
structured parameterized networks (full version), 2025. arxiv.org/abs/2502.15391.

11. M. Bozga, R. Iosif, and J. Sifakis. Checking deadlock-freedom of parametric component-
based systems. J. Log. Algebraic Methods Program., 119:100621, 2021.

12. M. Bozga, R. Iosif, and J. Sifakis. Verification of component-based systems with recursive
architectures. Theor. Comput. Sci., 940(Part):146–175, 2023.

13. J. Bradbury, J. Cordy, J. Dingel, and M. Wermelinger. A survey of self-management in dy-
namic software architecture specifications. In Proceedings of the 1st ACM SIGSOFT work-
shop on Self-managed systems, pages 28–33. ACM, 2004.

14. M. Browne, E. Clarke, and O. Grumberg. Reasoning about networks with many identical
finite state processes. Information and Computation, 81(1):13 – 31, 1989.

15. A. Butting, R. Heim, O. Kautz, J. O. Ringert, B. Rumpe, and A. Wortmann. A classification
of dynamic reconfiguration in component and connector architecture description. In Pro-
ceedings of MODELS 2017 Satellite Event: Workshops (ModComp), volume 2019 of CEUR
Workshop Proceedings, pages 10–16. CEUR-WS.org, 2017.

16. Y. Chen, C. Hong, A. W. Lin, and P. Rümmer. Learning to prove safety over parameterised
concurrent systems. In D. Stewart and G. Weissenbacher, editors, 2017 Formal Methods in
Computer Aided Design, FMCAD 2017, pages 76–83. IEEE, 2017.

17. B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 2012.

21

https://arxiv.org/abs/2502.15391

18. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. In
Fundamentals of Computation Theory, pages 221–232. Springer Berlin Heidelberg, 1995.

19. J. Esparza, M. A. Raskin, and C. Welzel. Regular model checking upside-down: An
invariant-based approach. In B. Klin, S. Lasota, and A. Muscholl, editors, 33rd Interna-
tional Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, War-
saw, Poland, volume 243 of LIPIcs, pages 23:1–23:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

20. A. Finkel and J. Leroux. Recent and simple algorithms for petri nets. Softw. Syst. Model.,
14(2):719–725, 2015.

21. Z. Galil. Hierarchies of complete problems. Acta Informatica, 1976.
22. S. M. German and A. P. Sistla. Reasoning about systems with many processes. J. ACM,

39(3):675–735, 1992.
23. D. Hirsch, P. Inverardi, and U. Montanari. Graph grammars and constraint solving for soft-

ware architecture styles. In Proceedings of the Third International Workshop on Software
Architecture, ISAW ’98, page 69–72, New York, NY, USA, 1998. Association for Computing
Machinery.

24. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with
rich assertional languages. Theoretical Computer Science, 256(1):93 – 112, 2001.

25. Y. Kesten, A. Pnueli, E. Shahar, and L. D. Zuck. Network invariants in action. In CONCUR
2002 - Concurrency Theory, 13th International Conference, volume 2421 of LNCS, pages
101–115. Springer, 2002.

26. D. Le Metayer. Describing software architecture styles using graph grammars. IEEE Trans-
actions on Software Engineering, 24(7):521–533, 1998.

27. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized linear
networks of processes. In The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 346–357. ACM Press, 1997.

28. A. W. Lin and P. Rümmer. Regular model checking revisited. In E. Olderog, B. Steffen,
and W. Yi, editors, Model Checking, Synthesis, and Learning - Essays Dedicated to Bengt
Jonsson on The Occasion of His 60th Birthday, volume 13030 of Lecture Notes in Computer
Science, pages 97–114. Springer, 2021.

29. Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and automatic
verification. In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems,
International Workshop, volume 407 of LNCS, pages 151–165. Springer, 1989.

30. N. Villani, R. Iosif, A. Sangnier, and M. Bozga. Parcosys: Counting abstraction for the
verification of structured parameterized networks, Apr. 2025. Ongoing development version
at https://gricad-gitlab.univ-grenoble-alpes.fr/neven/parcosys.

31. K. Wolf. Petri net model checking with lola 2. In V. Khomenko and O. H. Roux, editors,
Application and Theory of Petri Nets and Concurrency - 39th International Conference,
PETRI NETS 2018, Bratislava, Slovakia, June 24-29, 2018, Proceedings, volume 10877 of
Lecture Notes in Computer Science, pages 351–362. Springer, 2018.

32. K. Wolf and N. Lohmann. Lola : A low level petri net analyzer.
https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/.

33. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. In Automatic Verification Methods for Finite State Systems, International Work-
shop, volume 407 of LNCS, pages 68–80. Springer, 1989.

22

https://gricad-gitlab.univ-grenoble-alpes.fr/neven/parcosys
https://theo.informatik.uni-rostock.de/theo-forschung/tools/lola/

	Counting Abstraction and Decidability for the Verification of Structured Parameterized Networks

