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Introduction and problem statement



Context

Erdös-Rényi graph 𝒢(𝑁, 𝑞):
• 𝑁  vertices
• each pair connected independently with probability 𝑞

Community:
• subset of the vertices
• higher connectivity
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Erdös-Rényi with Planted Dense Subgraph (𝖯𝖣𝖲)

𝑁

𝑞

𝑁

𝑞

∼ 𝐾

𝑝

𝒢(𝑁, 𝑞) 𝒢(𝑁, 𝐾, 𝑝, 𝑞)
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Erdös-Rényi with Planted Dense Subgraph (𝖯𝖣𝖲)

𝒢(𝑁, 𝐾, 𝑝, 𝑞) defined as
• 𝑁  vertices
• of which a subset 𝑆 is distinguished

𝑛 ∈ [𝑁] belongs to 𝑆 independently with probability 𝐾𝑁
• 𝑛, 𝑛′ ∈ [𝑁] are connected independently of other pairs

• with probability 𝑝 > 𝑞 if both are in 𝑆
• with probability 𝑞 otherwise
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Remarks and hypotheses

• 𝑁 , 𝐾 , 𝑝, 𝑞 are known
• 𝑝 = 𝑐𝑞 for some known fixed 𝑐 > 1
• 𝔼(|𝑆|) = 𝐾
• 𝔼(|𝑉 |) = (𝑁

2 )𝑞 + (𝐾
2 )(𝑝 − 𝑞)
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Community detection

Test 𝜑 s.t.
Input: a random graph 𝐺 ∼ 𝒢(𝑁, 𝑞) (𝐻0) or 𝐺 ∼ 𝒢(𝑁, 𝐾, 𝑝, 𝑞) (𝐻1)
Output: 0 or 1
Goal: minimize the error

ℙ(𝐻0)(𝜑(𝐺) = 1) + ℙ(𝐻1)(𝜑(𝐺) = 0)
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Statistical tests



Linear test

Count the total number of edges

𝑇lin ≔ ∑
𝑖<𝑗

𝐴𝑖,𝑗

Which is expected to be
• (𝑁

2 )𝑞 under (𝐻0)
• (𝑁

2 )𝑞 + (𝐾
2 )(𝑝 − 𝑞) under (𝐻1)
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Linear test

Count the total number of edges

𝑇lin ≔ ∑
𝑖<𝑗

𝐴𝑖,𝑗

Answer 1 iff

𝑇lin > 𝜏lin ≔ (
𝑁
2

)𝑞 + (
𝐾
2

)
𝑝 − 𝑞

2
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Scan test

Count the edges in the densest 𝐾-subgraph

𝑇scan ≔ max
𝑆′: |𝑆′| =𝐾

∑
𝑖<𝑗∈𝑆′

𝐴𝑖,𝑗

Which is expected to be
• (𝐾

2 )𝑞 under (𝐻0)
• (𝐾

2 )𝑝 under (𝐻1)

Lower Bounds for 𝖯𝖣𝖲 detection Neven Villani 11 / 25

11



Scan test

Count the edges in the densest 𝐾-subgraph

𝑇scan ≔ max
𝑆′: |𝑆′| =𝐾

∑
𝑖<𝑗∈𝑆′

𝐴𝑖,𝑗

Answer 1 iff

𝑇scan > 𝜏scan ≔ (
𝐾
2

)
𝑝 + 𝑞

2
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Success conditions

It is possible to…
• upper bound ℙ(𝐻0)(𝑇lin > 𝜏lin) + ℙ(𝐻1)(𝑇lin ≤ 𝜏lin) by a term that

decreases exponentially with 𝐾
4𝑞

𝑁2

• upper bound ℙ(𝐻0)(𝑇scan > 𝜏scan) + ℙ(𝐻1)(𝑇scan ≤ 𝜏scan) by a term
that decreases exponentially with 𝐾 log 𝑁𝑒

𝐾 − 𝐾2𝑞
• lower bound min𝜑 ℙ(𝐻0)(𝜑(𝐺) = 1) + ℙ(𝐻1)(𝜑(𝐺) = 0) close to 1

when 𝑞 = 𝑂(min( 1
𝐾 log 𝑁𝑒

𝐾 , 𝑁2

𝐾4 ))

Lower Bounds for 𝖯𝖣𝖲 detection Neven Villani 13 / 25

13



Success condition under asymptotic regime

𝑞 =
1
𝑐
𝑝 = 𝑁−𝛼,  𝐾 = Θ(𝑁𝛽),  𝑁 → +∞

• plugging the above in 𝐾
4𝑞

𝑁2 → +∞ gives as a condition 𝛽 > 𝛼
4 + 1

2
• while 𝐾 log 𝑁𝑒

𝐾 − 𝐾2𝑞 → −∞ requires 𝛽 > 𝛼
• the impossibility lower bound is thus tight in this regime
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Landscape (asymptotic regime)

0 1 2
𝛼

0

1
2

1

𝛽

𝐾=Θ(𝑁𝛽)

𝑝=𝑐𝑞=Θ(𝑁−𝛼)

linear

exp. impossible
𝛽=

𝛼

𝛽=𝛼
4
+1

2
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A hardness lower bound through a reduction



Planted Clique (𝖯𝖢)

𝒢(𝑛, 𝑘, 𝛾)
• Erdös-Rényi graph 𝒢(𝑛, 𝛾)
• of which a subgraph 𝑆 of size exactly 𝑘 is randomly chosen
• 𝑆 is turned into a clique
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𝖯𝖢 vs 𝖯𝖣𝖲

Remark: 𝒢(𝑛, 𝑘, 𝛾) is almost 𝒢(𝑛, 𝑘, 1, 𝛾)

𝑛

𝛾

𝑘

1

𝑛

𝛾

∼ 𝑘

1

𝒢(𝑛, 𝑘, 𝛾) 𝒢(𝑛, 𝑘, 1, 𝛾)
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𝖯𝖢 Hypothesis

(parameterized by 0 < 𝛾 ≤ 1
2 )

Conjecture:
There is no polynomial test that can distinguish between
• (𝐻0): 𝒢(𝑛, 𝛾), and
• (𝐻1): 𝒢(𝑛, 𝑘, 𝛾)

when 𝑘 = 𝑜(
√

𝑛)
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The reduction

Known: 𝑛, 𝑘, 𝛾, 𝑁 = 𝑙𝑛, 𝐾 = 𝑙𝑘, 𝑞, 𝑝 = 𝑐𝑞
Input: adjacency matrix 𝐴 of a graph that is either 𝒢(𝑛, 𝛾) or 𝒢(𝑛, 𝑘, 𝛾)
Output: ̃𝐴 close in distribution to 𝒢(𝑁, 𝑞) or 𝒢(𝑁, 𝐾, 𝑝, 𝑞) resp.

Remark: impossible to map exactly 𝒢(𝑛, 𝑘, 𝛾) to 𝒢(𝑁, 𝐾, 𝑝, 𝑞), but we
can get close enough when averaging over a certain set.
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Intuition

𝑛
𝑁 = 𝑛𝑙
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Main steps

• randomly partition [𝑛] into sets {𝑉𝑖}𝑖∈[𝑛]
• within 𝑉𝑖 add Binom(( |𝑉𝑖|

2 ), 𝑞) edges
• between 𝑉𝑖 and 𝑉𝑗 add

• 𝑃𝑖,𝑗 edges if 𝑖 and 𝑗 are connected
• 𝑄𝑖,𝑗 edges if they are not

for well-chosen distributions 𝑃𝑖,𝑗 and 𝑄𝑖,𝑗 s.t.
• (1 − 𝛾)𝑄𝑖,𝑗 + 𝛾𝑃𝑖,𝑗 is exactly Binom(|𝑉𝑖| |𝑉𝑗|, 𝑞)
• 𝑃𝑖,𝑗 is close to Binom(|𝑉𝑖| |𝑉𝑗|, 𝑝)
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Key properties

• under the null hypothesis of 𝖯𝖢, the resulting graph is distributed
according to 𝒢(𝑁, 𝑞)

• under the alternative distribution of 𝖯𝖢, the output is
indistinguishable from 𝒢(𝑁, 𝐾, 𝑝, 𝑞) when averaging over the
random partition

→ a polynomial test for 𝖯𝖣𝖲 would give a polynomial test for 𝖯𝖢.
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Conclusion



Conclusion

• Community detection modeled as distinguishing 𝒢(𝑁, 𝑞) from
𝒢(𝑁, 𝐾, 𝑝, 𝑞)

• easy when community is large or graph is dense
• provably impossible when graph is sparse and community is small
• combinatorial algorithm when community is small and graph is dense

• optimal under a conjectured hardness result of a similar well-
studied problem
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