Computational Lower Bounds for Community Detection on Random Graphs B. Hajek, Y. Wu, J. Xu

http://proceedings.mlr.press/v40/Hajek15.pdf

2015

Presented by Neven Villani

2024-02-26

Introduction and problem statement

Context

Erdös-Rényi graph $\mathcal{G}(N,q)$:

- N vertices
- each pair connected independently with probability \boldsymbol{q}

Community:

- subset of the vertices
- higher connectivity

Erdös-Rényi with Planted Dense Subgraph (PDS)

Neven Villani

Erdös-Rényi with Planted Dense Subgraph (PDS)

$\mathcal{G}(N,K,p,q)$ defined as

- N vertices
- of which a subset S is distinguished $n \in [N]$ belongs to S independently with probability $\frac{K}{N}$
- $n,n'\in [N]$ are connected independently of other pairs
 - with probability p > q if both are in S
 - with probability \boldsymbol{q} otherwise

Remarks and hypotheses

- N, K, p, q are known
- + p = cq for some known fixed c > 1
- $\mathbb{E}(|S|) = K$
- $\mathbb{E}(|V|) = \binom{N}{2}q + \binom{K}{2}(p-q)$

Community detection

Test φ s.t. **Input**: a random graph $G \sim \mathcal{G}(N, q) (H_0)$ or $G \sim \mathcal{G}(N, K, p, q) (H_1)$ **Output**: 0 or 1 **Goal**: minimize the error

$$\mathbb{P}_{(H_0)}(\varphi(G)=1)+\mathbb{P}_{(H_1)}(\varphi(G)=0)$$

Statistical tests

Linear test

Count the total number of edges

$$T_{\mathrm{lin}} \coloneqq \sum_{i < j} A_{i,j}$$

Which is expected to be

• $\binom{N}{2}q$ under (H_0) • $\binom{N}{2}q + \binom{K}{2}(p-q)$ under (H_1)

Linear test

Count the total number of edges

$$T_{\mathrm{lin}} \coloneqq \sum_{i < j} A_{i,j}$$

Answer 1 iff

$$T_{\mathrm{lin}} > \tau_{\mathrm{lin}} \coloneqq \binom{N}{2}q + \binom{K}{2}\frac{p-q}{2}$$

Lower Bounds for PDS detection

Neven Villani

Scan test

Count the edges in the densest *K*-subgraph

$$T_{\text{scan}} \coloneqq \max_{S' \colon |S'| = K} \sum_{i < j \in S'} A_{i,j}$$

Which is expected to be

•
$$\binom{K}{2}q$$
 under (H_0)

• $\binom{K}{2}p$ under (H_1)

Scan test

Count the edges in the densest *K*-subgraph

$$T_{\text{scan}} \coloneqq \max_{S' \colon |S'| = K} \sum_{i < j \in S'} A_{i,j}$$

Answer 1 iff

$$T_{\rm scan} > \tau_{\rm scan} \coloneqq \binom{K}{2} \frac{p+q}{2}$$

Lower Bounds for PDS detection

Neven Villani

Success conditions

It is possible to...

- upper bound $\mathbb{P}_{(H_0)}(T_{\text{lin}} > \tau_{\text{lin}}) + \mathbb{P}_{(H_1)}(T_{\text{lin}} \le \tau_{\text{lin}})$ by a term that decreases exponentially with $\frac{K^4q}{N^2}$
- upper bound $\mathbb{P}_{(H_0)}(T_{\mathrm{scan}} > \tau_{\mathrm{scan}}) + \mathbb{P}_{(H_1)}(T_{\mathrm{scan}} \leq \tau_{\mathrm{scan}})$ by a term that decreases exponentially with $K\log\frac{Ne}{K} K^2q$
- lower bound $\min_{\varphi} \mathbb{P}_{(H_0)}(\varphi(G) = 1) + \mathbb{P}_{(H_1)}(\varphi(G) = 0)$ close to 1 when $q = O\Big(\min\Big(\frac{1}{K}\log\frac{Ne}{K}, \frac{N^2}{K^4}\Big)\Big)$

Success condition under asymptotic regime

$$q = \frac{1}{c}p = N^{-\alpha}, \ K = \Theta(N^{\beta}), \ N \to +\infty$$

- plugging the above in $\frac{K^4 q}{N^2} \to +\infty$ gives as a condition $\beta > \frac{\alpha}{4} + \frac{1}{2}$
- while $K \log \frac{Ne}{K} K^2 q \to -\infty$ requires $\beta > \alpha$
- the impossibility lower bound is thus tight in this regime

Landscape (asymptotic regime)

Lower Bounds for PDS detection

A hardness lower bound through a reduction

Planted Clique (PC)

 $\mathcal{G}(n,k,\gamma)$

- Erdös-Rényi graph $\mathcal{G}(n,\gamma)$
- of which a subgraph S of size **exactly** k is randomly chosen
- S is turned into a clique

PC vs PDS

Remark: $\mathcal{G}(n, k, \gamma)$ is almost $\mathcal{G}(n, k, 1, \gamma)$

Lower Bounds for PDS detection

Neven Villani

n

PC Hypothesis

(parameterized by $0 < \gamma \leq \frac{1}{2}$)

Conjecture:

There is no polynomial test that can distinguish between

- + (H_0) : $\mathcal{G}(n, \gamma)$, and
- $\bullet \ (H_1){:}\ \mathcal{G}(n,k,\gamma)$

when $k = o(\sqrt{n})$

The reduction

Known: $n, k, \gamma, N = ln, K = lk, q, p = cq$ **Input:** adjacency matrix A of a graph that is either $\mathcal{G}(n, \gamma)$ or $\mathcal{G}(n, k, \gamma)$ **Output:** \tilde{A} close in distribution to $\mathcal{G}(N, q)$ or $\mathcal{G}(N, K, p, q)$ resp.

Remark: impossible to map *exactly* $\mathcal{G}(n, k, \gamma)$ to $\mathcal{G}(N, K, p, q)$, but we can get close enough when averaging over a certain set.

Intuition

Main steps

- randomly partition [n] into sets $\{V_i\}_{i \in [n]}$ within V_i add $\operatorname{Binom}\left(\binom{|V_i|}{2}, q\right)$ edges
- between V_i and V_j add
 - $P_{i,j}$ edges if *i* and *j* are connected
 - $Q_{i,i}$ edges if they are not

for well-chosen distributions $P_{i,j}$ and $Q_{i,j}$ s.t.

- $(1 \gamma)Q_{i,j} + \gamma P_{i,j}$ is exactly $\operatorname{Binom}(|V_i| |V_j|, q)$
- $P_{i,j}$ is close to $\operatorname{Binom}(|V_i| |V_j|, p)$

Key properties

- under the null hypothesis of PC, the resulting graph is distributed according to $\mathcal{G}(N,q)$
- under the alternative distribution of PC, the output is indistinguishable from $\mathcal{G}(N,K,p,q)$ when averaging over the random partition

 \rightarrow a polynomial test for PDS would give a polynomial test for PC.

Conclusion

Conclusion

- Community detection modeled as distinguishing $\mathcal{G}(N,q)$ from $\mathcal{G}(N,K,p,q)$
- easy when community is large or graph is dense
- provably impossible when graph is sparse and community is small
- combinatorial algorithm when community is small and graph is dense
 - optimal under a conjectured hardness result of a similar wellstudied problem