## Lambda-calcul et Catégories RustBelt

Neven VILLANI

2021-11-24

## Introduction

Efficient languages need side effects and memory accesses, which pure  $\lambda$ -calculus lacks

Unwilling to compromise safety and high-level constructs

## Goals of $\lambda_{Rust}$

#### Guarantee (at the type level) the absence of

- data races
- use-after-free
- dangling or null pointers

| Semantics<br>000000 | Types<br>00000 | Judgements<br>0000 |
|---------------------|----------------|--------------------|
|                     |                |                    |
| Tools               |                |                    |

Within the language

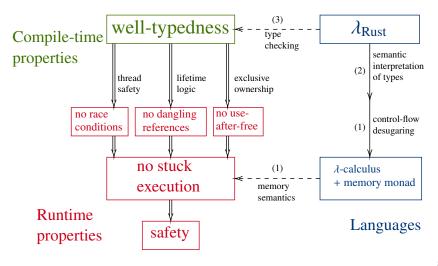
- exception monad
- product and sum types
- continuation-style

External

- memory monad
- integers

| Semantics | Types | Judgemen |
|-----------|-------|----------|
| 000000    | 00000 | 0000     |
|           |       |          |

#### Structure



### Translation to pure $\lambda$ -calculus (continuation-style)

funrec  $f(\overline{x})$  ret k := Fif p then  $F_1$  else  $F_2$ jump  $k(\overline{x})$ call  $f(\overline{x})$  ret k  $f(\overline{x})$   $f(\overline{x})$   $f(\overline{x})$   $f(\overline{x})$  $f(\overline{x})$ 

### Memory monad

# $$\begin{split} \text{Memory} &= \mathbb{N} \times \mathbb{N} \to_{\text{fin}} \text{LockSt} \times \text{Val} \\ \text{LockSt} &= \{ \texttt{reading} \, n \mid n \in \mathbb{N} \} \cup \{ \texttt{writing} \} \end{split}$$

#### $M(\text{Instr}) = \text{Memory} \times \text{Instr}$

| Semantics<br>00●000 | Types<br>00000 | Judgements<br>0000 |
|---------------------|----------------|--------------------|
|                     |                |                    |
| Memory monad        |                |                    |

$$\begin{split} \eta_{\text{Instr}} &: \text{Instr} \to M(\text{Instr}) \\ &i \mapsto ([], i) \\ \mu_{\text{Instr}} &: M(M(\text{Instr})) \to M(\text{Instr}) \\ &(m', (m, i)) \mapsto (m || m', i) \end{split}$$

where

$$dom(m||m') = dom(m') \cup dom(m)$$
$$(m'||m)(x) = \begin{cases} m(x) & \text{if } x \in dom(m) \\ m'(x) & \text{otherwise} \end{cases}$$

## Explicit rules

#### preconditions

#### $\overline{(\text{memory}|\text{instruction}) \rightarrow (\text{memory'}|\text{result})}$

Execution error if stuck Otherwise reduces to the empty continuation  $\lambda x. x$  Types 00000

## Locks: reading

$$\frac{h(l) = (\operatorname{reading} n, v)}{(h \mid {}^{*}l) \to (h[l \leftarrow \operatorname{reading} n + 1, v] \mid {}^{*'}l)}$$

$$\frac{h(l) = (\texttt{reading } n + 1, v)}{(h \mid *`l) \to (h[l \leftarrow \texttt{reading } n, v] \mid v)}$$

Types 00000

## Locks: writing

$$\frac{h(l) = (\text{reading } 0, v')}{(h \mid l := v) \rightarrow (h[l \leftarrow \text{writing}, v') \mid l := v)}$$

$$\frac{h(l) = (\texttt{writing}, v')}{(h \mid l := v) \to (h[l \leftarrow \texttt{reading}\, 0, v) \mid \textcircled{\otimes})}$$

### $\lambda_{\text{Rust}}$ 's type system

Features

- sum and product types
- recursive types
- lifetimes

Memory management is implicit and determined by lifetimes

Any program that is correctly typed cannot be stuck

## Type constructs

| $\operatorname{own}_n \tau$                   | owned pointer                                     |
|-----------------------------------------------|---------------------------------------------------|
| ${\bf \&}^{\alpha}_{\mu}\tau$                 | $\mu$ -reference to $\tau$ with lifetime $\alpha$ |
|                                               | $\mu \in \{\texttt{mut}, \texttt{shr}\}$          |
| $\mu T. \tau$                                 | recursive type                                    |
| $\Pi \overline{\tau}, \Sigma \overline{\tau}$ | products and sums                                 |

| Semantics | Types | Judgements |
|-----------|-------|------------|
| 000000    | oo●oo | 0000       |
|           |       |            |

#### Standard examples

#### • Option< $\tau$ >

 $() + \operatorname{own} \tau$ 

#### • Cow< $\alpha$ , $\tau$ >

$$\operatorname{own} \tau + \&_{\operatorname{shr}}^{\alpha} \tau$$

Types 000●0

#### What is in a type

#### • a finite size

- $\llbracket int \rrbracket$ .size =  $\llbracket own_n t \rrbracket$ .size =  $\llbracket \&^{\alpha}_{\mu} \tau \rrbracket$ .size = 1
- $\llbracket \Pi \overline{\tau} \rrbracket$ .size =  $\sum_i \llbracket \overline{\tau}_i \rrbracket$ .size
- $\llbracket \Sigma \overline{\tau} \rrbracket$ .size = 1 + max<sub>i</sub>  $\llbracket \overline{\tau}_i \rrbracket$ .size
- an ownership predicate
  - $\llbracket int \rrbracket$  .own $(t, \overline{v}) = \exists z. \ \overline{v} = [z]$
  - $\llbracket \&_{\text{mut}}^{\kappa} \tau \rrbracket$ .own $(t, \overline{v}) = \exists l. \ \overline{v} = [l] * \&_{\text{full}}^{\kappa} \exists \overline{u}. \ l \mapsto \overline{u} * \llbracket \tau \rrbracket$ .own $(t, \overline{u})$
- a sharing predicate
  - $\llbracket \Pi \overline{\tau} \rrbracket$ .shr $(\kappa, t, l) = \bigstar_i \llbracket \overline{\tau}_i \rrbracket$ .shr $(k, t, l + \sum_{j < i} \llbracket \overline{\tau}_j \rrbracket$ .size)
  - $\llbracket int \rrbracket .shr(\kappa, t, l) = \exists \overline{v}. \&_{frac}^{\kappa} (\lambda q. \ l \mapsto^{q} \overline{v}) * \llbracket int \rrbracket .own(t, \overline{v})$



Thread safety for a type is a property of its ownership and sharing predicates

- $\tau$  is Send if  $[\tau]$  .own $(t, \overline{v})$  is independent of t
- $\tau$  is Sync if  $[[\tau]]$ .shr $(t, \overline{v}, l)$  is independent of t

Types 00000

### Type judgements: structure

$$\begin{split} & \Gamma \,|\, E; L \,|\, K; T \vdash F \\ & \Gamma \,|\, E; L \,|\, K; T \vdash I \dashv x. \; T' \end{split}$$

#### Where

| Γ | variable bindings $x : val \text{ or } \alpha : lft \text{ or } T : Type$ |
|---|---------------------------------------------------------------------------|
| Ε | external lifetime inclusions $\kappa \sqsubseteq_e \alpha$                |
| L | local lifetime inclusions $\kappa \sqsubseteq_l \overline{\kappa}'$       |
| K | external type constraints $x \triangleleft \tau$ (incl. continuations)    |
| Т | local type constraints                                                    |

Types 00000

#### Lifetimes

# $\frac{\Gamma \mid E; L \vdash \mathbf{\kappa} \sqsubseteq \mathbf{\kappa'} \qquad \Gamma \mid E; L \vdash \mathbf{\kappa'} \sqsubseteq \mathbf{\kappa''}}{\Gamma \mid E; L \vdash \mathbf{\kappa} \sqsubseteq \mathbf{\kappa''}}$

## $\frac{\Gamma \mid E; L \vdash \kappa \sqsubseteq \kappa' \qquad \Gamma \mid E; L \vdash \kappa \text{ alive}}{\Gamma \mid E; L \vdash \kappa' \text{ alive}}$

| Semantics<br>000000 | Types<br>00000 | Judgements |
|---------------------|----------------|------------|
|                     |                |            |
| Borrowing           |                |            |

#### $\overline{\Gamma \,|\, E; L \vdash p} \triangleleft \mathsf{own}\, \tau \Longrightarrow p \triangleleft \&^{\kappa}_{\mathsf{mut}} \tau, p \triangleleft^{\dagger \kappa} \mathsf{own}\, \tau$

#### Memory accesses

#### Reads can move data, writes can erase it

old 
$$\sim^{\text{read}}$$
 new old  $\sim^{\text{write}}$  new

## Summary

- semantics defined by a translation to  $\lambda$ -terms
- all safety expressed in the type system
- theorems prove a correspondance between the two: any execution of a translation of a well-typed function body cannot get stuck
- not an equivalence: some safe programs are rejected unsafe escape hatch: looser typing but the interface must be proven safe