
1/21

Semantics Types Judgements

Lambda-calcul et Catégories

RustBelt

Neven Villani

2021-11-24

Neven Villani RustBelt



2/21

Semantics Types Judgements

Introduction

Efficient languages need side effects and memory accesses, which
pure λ-calculus lacks

Unwilling to compromise safety and high-level constructs
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Goals of λRust

Guarantee (at the type level) the absence of

data races

use-after-free

dangling or null pointers
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Tools

Within the language

exception monad

product and sum types

continuation-style

External

memory monad

integers
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Structure

λRust

λ-calculus
+ memory monad

semantic
interpretation
of types

type
checking

memory
semantics

no stuck
execution

safety

no dangling
references

exclusive
ownership

no race
conditions

well-typedness

no use-
after-free

lifetime
logic

thread
safety

(1)

(2)

(3)

Languages

Compile-time
properties

Runtime
properties

control-flow
desugaring(1)
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Translation to pure λ-calculus (continuation-style)

funrec f (x) ret k := F Y (λf . λx. λk. F)

if p then F1 else F2 p F1 F2

jump k(x) k x

call f (x) ret k f x k
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Memory monad

Memory = N × N→fin LockSt × Val

LockSt = {reading n | n ∈ N} ∪ {writing}

M(Instr) = Memory × Instr
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Memory monad

ηInstr : Instr→ M(Instr)

i 7→ ([], i)

µInstr : M(M(Instr))→ M(Instr)

(m′, (m, i)) 7→ (m||m′, i)

where
dom(m||m′) = dom(m′) ∪ dom(m)

(m′||m)(x) =
{

m(x) if x ∈ dom(m)
m′(x) otherwise
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Explicit rules

preconditions
(memory|instruction)→ (memory′|result)

Execution error if stuck
Otherwise reduces to the empty continuation λx. x
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Locks: reading

h(l) = (reading n, v)
(h | *l)→ (h[l← reading n + 1, v] | *’l)

h(l) = (reading n + 1, v)
(h | *’l)→ (h[l← reading n, v] | v)
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Locks: writing

h(l) = (reading 0, v′)
(h | l:=v)→ (h[l← writing, v′) | l:=v)

h(l) = (writing, v′)
(h | l:=v)→ (h[l← reading 0, v) |h)
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λRust’s type system

Features

sum and product types

recursive types

lifetimes

Memory management is implicit and determined by lifetimes

Any program that is correctly typed cannot be stuck
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Type constructs

ownn τ owned pointer

&αµτ µ-reference to τ with lifetime α

µ ∈ {mut, shr}

µT . τ recursive type

Πτ,Στ products and sums
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Standard examples

Option<τ>

() + own τ

Cow<α,τ>

own τ + &αshrτ
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What is in a type

a finite size
⟦int⟧ .size = ⟦ownn t⟧ .size =

�
&αµτ
�
.size = 1�

Πτ
�
.size =

∑
i
�
τi
�
.size�

Στ
�
.size = 1 +maxi

�
τi
�
.size

an ownership predicate
⟦int⟧ .own(t, v) = ∃z. v = [z]�
&κmutτ

�
.own(t, v) = ∃l. v = [l] ∗ &κfull∃u. l 7→ u ∗ ⟦τ⟧ .own(t, u)

a sharing predicate�
Πτ
�
.shr(κ, t, l) =∗i

�
τi
�
.shr(k, t, l +

∑
j<i

�
τj

�
.size)

⟦int⟧ .shr(κ, t, l) = ∃v. &κfrac(λq. l 7→
q v) ∗ ⟦int⟧ .own(t, v)
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Safety

Thread safety for a type is a property of its ownership and sharing
predicates

τ is Send if ⟦τ⟧ .own(t, v) is independent of t

τ is Sync if ⟦τ⟧ .shr(t, v, l) is independent of t
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Type judgements: structure

Γ |E; L |K; T ⊢ F

Γ |E; L |K; T ⊢ I ⊣ x. T ′

Where

Γ variable bindings x : val or α : lft or T : Type

E external lifetime inclusions κ ⊑e α

L local lifetime inclusions κ ⊑l κ
′

K external type constraints x ◁ τ (incl. continuations)

T local type constraints
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Lifetimes

Γ |E; L ⊢ κ ⊑ κ′ Γ |E; L ⊢ κ′ ⊑ κ′′

Γ |E; L ⊢ κ ⊑ κ′′

Γ |E; L ⊢ κ ⊑ κ′ Γ |E; L ⊢ κ alive
Γ |E; L ⊢ κ′ alive
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Borrowing

Γ |E; L ⊢ p ◁ own τ⇒ p ◁ &κmutτ, p ◁†κ own τ
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Memory accesses

Reads can move data, writes can erase it

old�read new old⊸write new
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Summary

semantics defined by a translation to λ-terms

all safety expressed in the type system

theorems prove a correspondance between the two:
any execution of a translation of a well-typed function body
cannot get stuck

not an equivalence: some safe programs are rejected
unsafe escape hatch: looser typing but the interface must be
proven safe
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