
1/21

Semantics Types Judgements

Lambda-calcul et Catégories

RustBelt

Neven Villani

2021-11-24

Neven Villani RustBelt

2/21

Semantics Types Judgements

Introduction

Efficient languages need side effects and memory accesses, which
pure λ-calculus lacks

Unwilling to compromise safety and high-level constructs

Neven Villani RustBelt

3/21

Semantics Types Judgements

Goals of λRust

Guarantee (at the type level) the absence of

data races

use-after-free

dangling or null pointers

Neven Villani RustBelt

4/21

Semantics Types Judgements

Tools

Within the language

exception monad

product and sum types

continuation-style

External

memory monad

integers

Neven Villani RustBelt

5/21

Semantics Types Judgements

Structure

λRust

λ-calculus
+ memory monad

semantic
interpretation
of types

type
checking

memory
semantics

no stuck
execution

safety

no dangling
references

exclusive
ownership

no race
conditions

well-typedness

no use-
after-free

lifetime
logic

thread
safety

(1)

(2)

(3)

Languages

Compile-time
properties

Runtime
properties

control-flow
desugaring(1)

Neven Villani RustBelt

6/21

Semantics Types Judgements

Translation to pure λ-calculus (continuation-style)

funrec f (x) ret k := F Y (λf . λx. λk. F)

if p then F1 else F2 p F1 F2

jump k(x) k x

call f (x) ret k f x k

Neven Villani RustBelt

7/21

Semantics Types Judgements

Memory monad

Memory = N × N→fin LockSt × Val

LockSt = {reading n | n ∈ N} ∪ {writing}

M(Instr) = Memory × Instr

Neven Villani RustBelt

8/21

Semantics Types Judgements

Memory monad

ηInstr : Instr→ M(Instr)

i 7→ ([], i)

µInstr : M(M(Instr))→ M(Instr)

(m′, (m, i)) 7→ (m||m′, i)

where
dom(m||m′) = dom(m′) ∪ dom(m)

(m′||m)(x) =
{

m(x) if x ∈ dom(m)
m′(x) otherwise

Neven Villani RustBelt

9/21

Semantics Types Judgements

Explicit rules

preconditions
(memory|instruction)→ (memory′|result)

Execution error if stuck
Otherwise reduces to the empty continuation λx. x

Neven Villani RustBelt

10/21

Semantics Types Judgements

Locks: reading

h(l) = (reading n, v)
(h | *l)→ (h[l← reading n + 1, v] | *’l)

h(l) = (reading n + 1, v)
(h | *’l)→ (h[l← reading n, v] | v)

Neven Villani RustBelt

11/21

Semantics Types Judgements

Locks: writing

h(l) = (reading 0, v′)
(h | l:=v)→ (h[l← writing, v′) | l:=v)

h(l) = (writing, v′)
(h | l:=v)→ (h[l← reading 0, v) |h)

Neven Villani RustBelt

12/21

Semantics Types Judgements

λRust’s type system

Features

sum and product types

recursive types

lifetimes

Memory management is implicit and determined by lifetimes

Any program that is correctly typed cannot be stuck

Neven Villani RustBelt

13/21

Semantics Types Judgements

Type constructs

ownn τ owned pointer

&αµτ µ-reference to τ with lifetime α

µ ∈ {mut, shr}

µT . τ recursive type

Πτ,Στ products and sums

Neven Villani RustBelt

14/21

Semantics Types Judgements

Standard examples

Option<τ>

() + own τ

Cow<α,τ>

own τ + &αshrτ

Neven Villani RustBelt

15/21

Semantics Types Judgements

What is in a type

a finite size
⟦int⟧ .size = ⟦ownn t⟧ .size =

�
&αµτ
�
.size = 1�

Πτ
�
.size =

∑
i
�
τi
�
.size�

Στ
�
.size = 1 +maxi

�
τi
�
.size

an ownership predicate
⟦int⟧ .own(t, v) = ∃z. v = [z]�
&κmutτ

�
.own(t, v) = ∃l. v = [l] ∗ &κfull∃u. l 7→ u ∗ ⟦τ⟧ .own(t, u)

a sharing predicate�
Πτ
�
.shr(κ, t, l) =∗i

�
τi
�
.shr(k, t, l +

∑
j<i

�
τj

�
.size)

⟦int⟧ .shr(κ, t, l) = ∃v. &κfrac(λq. l 7→
q v) ∗ ⟦int⟧ .own(t, v)

Neven Villani RustBelt

16/21

Semantics Types Judgements

Safety

Thread safety for a type is a property of its ownership and sharing
predicates

τ is Send if ⟦τ⟧ .own(t, v) is independent of t

τ is Sync if ⟦τ⟧ .shr(t, v, l) is independent of t

Neven Villani RustBelt

17/21

Semantics Types Judgements

Type judgements: structure

Γ |E; L |K; T ⊢ F

Γ |E; L |K; T ⊢ I ⊣ x. T ′

Where

Γ variable bindings x : val or α : lft or T : Type

E external lifetime inclusions κ ⊑e α

L local lifetime inclusions κ ⊑l κ
′

K external type constraints x ◁ τ (incl. continuations)

T local type constraints

Neven Villani RustBelt

18/21

Semantics Types Judgements

Lifetimes

Γ |E; L ⊢ κ ⊑ κ′ Γ |E; L ⊢ κ′ ⊑ κ′′

Γ |E; L ⊢ κ ⊑ κ′′

Γ |E; L ⊢ κ ⊑ κ′ Γ |E; L ⊢ κ alive
Γ |E; L ⊢ κ′ alive

Neven Villani RustBelt

19/21

Semantics Types Judgements

Borrowing

Γ |E; L ⊢ p ◁ own τ⇒ p ◁ &κmutτ, p ◁†κ own τ

Neven Villani RustBelt

20/21

Semantics Types Judgements

Memory accesses

Reads can move data, writes can erase it

old�read new old⊸write new

Neven Villani RustBelt

21/21

Semantics Types Judgements

Summary

semantics defined by a translation to λ-terms

all safety expressed in the type system

theorems prove a correspondance between the two:
any execution of a translation of a well-typed function body
cannot get stuck

not an equivalence: some safe programs are rejected
unsafe escape hatch: looser typing but the interface must be
proven safe

Neven Villani RustBelt

	Semantics
	Types
	Judgements
	

