Complément

CAPACITÉS EXPÉRIMENTALES EXIGIBLES

Mesures de grandeurs physiques

Nature et méthodes	Capacités exigibles
Mesures de :	Sélectionner et utiliser le matériel adapté à la précision requise.
— Volume	Distinguer les instruments de verrerie In et Ex. Préparer une solution de concentration en masse ou en quantité de ma-
— Masse	tière donnée à partir d'un solide, d'un liquide, d'une solution de composi-
— pH	tion connue avec le matériel approprié.
Conductance et conductivité	Utiliser les méthodes et le matériel adéquats pour transférer l'intégralité du solide ou du liquide pesé.
 Tension et intensité du cou- rant 	Utiliser les appareils de mesure (balance, pH-mètre, conductimètre, volt- mètre, ampèremètre, thermomètre, réfractomètre, spectrophotomètre,
Température	polarimètre) en s'appuyant sur une notice.
 Pouvoir rotatoire 	Mettre en œuvre des mesures calorimétriques à pression constante.
 Indice de réfraction 	Choisir les électrodes adaptées à une mesure électrochimique. Construire un dispositif électrochimique à partir de sa représentation sym-
Absorbance et transmittance	bolique. Étalonner une chaîne de mesure si nécessaire.

II Chimie organique

Nature et méthodes	Capacités exigibles
Transformation chimique	
Transformations à chaud, à froid, à	Choisir la verrerie adaptée à la transformation réalisée et aux conditions
température ambiante.	opératoires mises en œuvre.
Contrôle et régulation de la tempéra-	Réaliser le ou les montages appropriés et en expliquer le principe et l'in-
ture du milieu réactionnel.	térêt.
	Choisir ou justifier l'ordre d'introduction des réactifs.
	Réaliser et réguler une addition au goutte à goutte.
	Utiliser le moyen de chauffage ou de refroidissement adéquat.
	Suivre et contrôler l'évolution de la température dans le réacteur.
	Choisir un moyen approprié pour réguler une éventuelle ébullition.
	Utiliser un réfrigérant, contrôler et réguler le reflux.
Suivi de l'évolution de la transforma-	Mettre en œuvre des méthodes permettant de suivre qualitativement ou
tion.	quantitativement l'avancement de la transformation.
Séparation et purification	
	Choisir ou justifier un protocole de séparation ou de purification d'un pro-
	duit, sur la base de données fournies ou issues d'observations et/ou de
	mesures.

Nature et méthodes	Capacités exigibles
Séparation de deux liquides non	Réaliser une extraction liquide-liquide.
miscibles.	Identifier la nature des phases dans une ampoule à décanter.
	Distinguer extraction et lavage d'une phase.
Séparations par distillation.	Réaliser une hydrodistillation.
	Réaliser une distillation fractionnée.
Séparation de deux espèces dis-	Élaborer et mettre en œuvre un protocole de séparation de deux espèces
soutes dans une phase liquide.	dissoutes dans une phase liquide.
Séparation d'un soluté du solvant.	Expliquer l'intérêt de l'évaporateur rotatif.
Séparation d'un liquide et d'un solide.	Réaliser et mettre en œuvre une filtration simple, une filtration sous pression réduite.
	Choisir et justifier la méthode de filtration adaptée au système étudié.
Lavage d'un solide.	Réaliser et justifier les différentes étapes du lavage d'un solide : ajout du solvant de lavage, trituration, essorage.
Recristallisation d'un solide.	Expliquer et mettre en œuvre la technique de recristallisation.
necristallisation d'un solide.	Justifier à l'aide de données pertinentes et/ou par l'observation le choix
	d'un solvant de recristallisation et la quantité mise en œuvre.
Séchage d'un liquide.	Utiliser un desséchant solide et estimer correctement, par l'observation,
Secriage a un liquide.	· ·
	la quantité à utiliser.

III Caractérisations

Nature et méthodes	Capacités exigibles
Caractérisation d'une espèce chi-	
mique et contrôle de sa pureté	
	Proposer ou mettre en œuvre, à partir d'informations fournies, des tests qualitatifs préalables à l'élaboration d'un protocole.
Chromatographie sur couche mince.	Mettre en œuvre une chromatographie sur couche mince pour l'identifi- cation d'un produit et le suivi d'une transformation.
	Justifier le choix de la méthode de révélation utilisée.
	Interpréter l'ordre d'élution des différentes espèces en relation avec leurs propriétés physico-chimiques et les caractéristiques de la phase stationnaire et de l'éluant.
Détermination expérimentale de grandeurs physiques ou spectrosco-	Extraire d'une banque de données des informations sur les propriétés physiques des produits.
piques caractéristiques de l'espèce	Mesurer une température de fusion.
chimique (les principes théoriques	Mesurer un indice de réfraction.
de la RMN sont hors programme).	Mesurer un pouvoir rotatoire.
	Mesurer une absorbance.
	Déterminer un coefficient d'absorption molaire en spectroscopie UV-visible.
	Comparer les données tabulées aux valeurs mesurées et interpréter d'éventuels écarts.
	Comparer les caractéristiques d'un produit synthétisé avec celles du produit commercial.
	À partir d'une mesure appropriée, déterminer le rendement d'une synthèse, d'une méthode de séparation.

PC – Lycée Baimbridge – Les Abymes 1/2 2024-2025

IV Dosages

Nature et méthodes	Capacités exigibles
Dosages par étalonnage	Déterminer une concentration en exploitant la mesure de grandeurs phy-
	siques caractéristiques de l'espèce ou en construisant et en utilisant une
	courbe d'étalonnage.
	Déterminer une concentration ou une quantité de matière par spectro-
	photométrie UV-visible.
Dosages par titrage	
Titrages directs, indirects. Équiva-	Identifier et exploiter la réaction support du titrage (recenser les espèces
lence.	présentes dans le milieu au cours du titrage, repérer l'équivalence, justi-
Titrages simples, successifs, simul-	fier qualitativement l'allure de la courbe ou le changement de couleur ou
tanés.	d'aspect observé).
Méthodes expérimentales de suivi	Proposer ou justifier le protocole d'un titrage à l'aide de données fournies
d'un titrage : pH-métrie, conductimé-	ou à rechercher.
trie, potentiométrie à intensité nulle,	Mettre en œuvre un protocole expérimental correspondant à un titrage
indicateurs de fin de titrage.	direct ou indirect.
	Choisir et utiliser un indicateur de fin de titrage.
Méthodes d'exploitation des courbes	Exploiter une courbe de titrage pour déterminer la quantité de matière,
expérimentales.	masse ou concentration de l'espèce titrée.
	Exploiter une courbe de titrage pour déterminer une valeur expérimentale
	d'une constante thermodynamique d'équilibre.
	Utiliser un logiciel de simulation pour tracer des courbes de distribution et
	confronter la courbe de titrage simulée à la courbe expérimentale.
	Justifier la nécessité d'effectuer un titrage indirect.
	Distinguer équivalence et repérage de fin de titrage.

V Cinétique

Nature et méthodes	Capacités exigibles
Suivi cinétique de transformations chimiques Suivi de l'évolution temporelle d'une grandeur physique. Limitation de l'évolution temporelle (trempe) d'un système par dilution, transformation chimique ou refroidissement. Régulation de la température.	Choisir une méthode de suivi prenant en compte la facilité de mise en œuvre, les propriétés des espèces étudiées, la durée de la transformation estimée ou fournie. Exploiter les résultats d'un suivi temporel de concentration pour déterminer les caractéristiques cinétiques d'une réaction. Proposer en mettre en œuvre des conditions expérimentales permettant la simplification de la loi de vitesse. Déterminer une énergie d'activation.

VI Capacités expérimentales spécifiques par thème

VI.1 PCSI

Notions et contenus	Capacités exigibles
Transformation chimique d'un sys-	Déterminer une constante thermodynamique d'équilibre et tester l'influence de
tème	différents paramètres sur l'état d'équilibre d'un système.
Cinétique en réacteur fermé de	Établir une loi de vitesse à partir du suivi temporel d'une grandeur physique.
composition uniforme	Déterminer l'énergie d'activation d'une réaction chimique.
Structure des entités chimiques or-	Déterminer la composition d'un système chimique ou suivre une transformation
ganiques	chimique en utilisant l'activité optique.
Solubilité, miscibilité	Déterminer une constante de partage.
	Réaliser une extraction, un lavage et les interpréter en termes de solubilité, miscibilité, constante de partage, ou log P.
Synthèse organique en laboratoire	Mettre en œuvre un protocole expérimental sur un exemple simple et représen-
	tatif d'une synthèse organique en laboratoire. Justifier et réaliser les différentes
	étapes de cette synthèse.
Construction du squelette car-	Décrire et mettre en œuvre un protocole de préparation d'un organomagnésien
boné : synthèse et utilisation	mixte et de son utilisation pour créer une liaison carbone-carbone. Justifier les
d'organomagnésiens mixtes	étapes et conditions expérimentales, y compris l'hydrolyse terminale.
Modèle du cristal parfait	Illustrer l'influence des conditions expérimentales sur la formation de solides et
	de solides cristallins.
Réactions acide-base et de précipi-	Mettre en œuvre une réaction acide-base et une réaction de précipitation pour
tation	réaliser une analyse qualitative ou quantitative en solution aqueuse.
	Illustrer un procédé de retraitement ou de recyclage ou de séparation en solu-
	tion aqueuse.
Oxydants et réducteurs, réactions	Réaliser une pile et étudier son fonctionnement.
d'oxydoréduction	Mettre en œuvre une réaction d'oxydo-réduction pour réaliser une analyse
	quantitative en solution aqueuse.
Diagramme potentiel-pH	Mettre en œuvre des réactions d'oxydoréduction en s'appuyant sur l'utilisation
	d'un diagramme potentiel-pH.

VI.2 PC

Notions et contenus	Capacités exigibles
Changements de phase de corps	Mettre en œuvre une distillation fractionnée ou une hydrodistillation à la pres-
purs et de mélanges binaires	sion atmosphérique.
Étudo simátique dos vásotions	Treasy at utilizer des sources seurent natential
Etude cinétique des réactions	Tracer et utiliser des courbes courant-potentiel.
d'oxydo-réduction	Mettre en œuvre une électrolyse.
Constitution et réactivité des com-	Préparer, analyser, caractériser ou déterminer la constante de formation d'un
plexes	complexe d'une entité du bloc d.
	Mettre en œuvre une réaction de complexation pour réaliser une analyse qua-
	litative ou quantitative en solution aqueuse.
Synthèses organiques au labora-	Conduire des synthèses, des purifications, des caractérisations et des ana-
toire.	lyses de la pureté de produits à l'aide de protocoles donnés.
	Proposer ou adapter un protocole expérimental permettant de réaliser une syn-
	thèse organique à partir de données fournies.
	Analyser et justifier les choix expérimentaux dans une synthèse organique.

PC – Lycée Baimbridge – Les Abymes 2/2 2024-2025