Exercice 1 : schémas de LEWIS

Proposer un schéma de LEWIS le plus représentatif possible pour les entités chimiques suivantes :

H₂; F₂; O₂; N₂; HCl; CO; NO; BH₃; CH₄; NH₃; H₂O; CO₂; NH₄⁺; NO₃⁻; SO₄²⁻; PCl₅

Exercice 2 : géométrie

Donner la figure de répulsion puis la structure géométrique des molécules suivantes (autour de l'atome en **gras**) :

BH₃; **C**H₄; **N**H₃; H₂**O**; **C**O₂; **P**Cl₅; **S**F₆

Exercice 3 : délocalisation électronique

Montrer, sur les molécules suivantes, les enchaînements d'atomes donnant lieu à une délocalisation électronique. Écrire les formes mésomères lorsque cela est possible.

$$CO_2Et$$
 \overline{N}
 CO_2Et
 \overline{N}
 CO_2Et

 $-Ph\ représente\ un\ cycle\ phényle\ -C_6H_5\ et\ -Et\ représente\ un\ radical\ éthyle\ -CH_2CH_3.$

Exercice 4 : Pourcentage d'ionicité

Le bromure d'hydrogène HBr possède un moment dipolaire $\mu_{\rm HBr}=0,83$ D. La distance $d_{\rm H-Br}$ dans la molécule est égale à 141 pm. Calculer le pourcentage d'ionicité de la liaison H-Br.

Exercice 5 : acétonitrile

(Grand classique) ★☆☆

L'acétonitrile est une molécule de formule CH₃ – CN.

- 1. Proposer un schéma de LEWIS et préciser la géométrie autour des atomes de carbone.
- **2.** L'acétonitrile perd facilement un proton pour former un carbanion. Proposer un schéma de Lewis pour ce carbanion.
- 3. Justifier de la stabilité particulière de ce carbanion.

Exercice 6: protoxyde d'azote

Le protoxyde d'azote, longtemps utilisé comme gaz anesthésique, a pour formule N2O.

- 1. Écrire toutes les formes mésomères de N_2O , sachant que l'atome central est un atome d'azote.
- **2.** Expérimentalement, on mesure deux longueurs de liaison différentes : 113 pm et 119 pm. Expliquer.

L'ion azoture $\mathrm{N_3}^-$ a une géométrie linéaire. Une seule longueur de liaison d_{NN} = 116 pm est expérimentalement observée dans ce composé.

- 3. Établir les différentes formes mésomères de cet ion.
- 4. Quelle est la plus représentative?
- **5.** Le méthylazoture CH₃ N₃ dérive de l'ion azoture. Écrire ses différentes formes mésomères.

L'ion thiocyanate a pour formule SCN⁻.

- **6.** Proposer des formes mésomères pour cet ion.
- 7. La charge négative de l'ion thiocyanate est partagée à peu près équitablement entre l'atome de soufre et l'atome d'azote. En déduire les structures du thiocyanate de méthyle et de son isomère, l'isothiocyanate de méthyle.