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Abstract
Today neural networks are state of the art for numerous task in-

cluding image classification. The best neural networks use an enor-
mous amount of parameters. Some works try to reduce this number
of parameters to be able to make those networks faster. A possible
solution to compress neural networks is to decompose the weights
tensors of the layers in series of low rank tensors.

1 Introduction
For ten years, neural networks are the best performing algorithms for a
large variety of tasks. Among them image classification is probably the
most famous. Those neural networks are characterized by an important
number of parameters without explicit regularization (for most of the cases)
in contrast with traditional algorithms (such as nearest neighbors, binary
tree. . . ). For example, AlexNet [KSH17], VGG-16 [SZ14] or ResNet have
tens of millions trainable parameters.

This huge number of parameters can lead to interesting questions such
as: why is there no irretrievable over-fitting or are all those parameters use-
ful. Many works [CWL+18] have shown that there is redundant informa-
tion and how to remove it. Different techniques exists such as quantization,
pruning or low-rank factorization.

Quantization proposes to lower the numerical precision of weights dur-
ing storage and computation. Pruning is suppressing some connections
between layers, it can be arbitrary connections or blocks of connections to
make the network effectively faster. Low-rank factorization compresses the
information of the weights tensors representing connections between lay-
ers. The low rank factorization can lead to less information and simpler
operations.

Those techniques can be either performed during or after training. In
the latter case, this allows to compress already trained networks that were

1



not specifically designed to be compressed. However afterwards compressed
networks need sometimes to be fine-tuned.

An important technical point is that when compressing neural networks,
it is important to understand how the operations are performed on the ap-
propriate hardware ie on GPU. Indeed, in some cases even with a significant
reduction of the number of operations the network will not be faster.

2 Notations
I try to use calligraphic letters, like X ,Y ,W for tensor with order higher
than 2. I access to the elements of a tensor with the numpy convention
ie X [1, 2, 3] is the element in position (1, 2, 3). Indices will not be used to
access elements, but families or sequences.

The convolution will be from an input X of size S×H ×W to a tensor
Y of size T × H ′ ×W ′ with a kernel K of size T × S ×Wd × Hd where
Wd = 2wd + 1 and Hd = 2hd + 1. To iterate over S I use s, t over T , x over
W , h over Hd, y over H, w over Wd.

A general tensor X will be of size I1 × · · · × IN , its decomposition will
be of rank R or R1, . . . , RN and the components of the decomposition will
be denoted with U (even is U if of order higher than 2). To iter over N I
use k, r over R and ri over Ri.

3 Convolution layer
The convolution layer is one of the most common layer in neural network
especially for images. According to [CWL+18] they represent more than
90% of the computation time in AlexNet, VGG or ResNet.

A convolution transforms a tensor X ∈ RS×W×H (for example an image
of size H ×W with S = 3 colors) into an other tensor Y ∈ RT×W ′×H′ .

Figure 1: A convolution, here Hd = Wd = d1

1figure from [LGR+15]
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The convolution is parameterized by a kernel as which is a dimensional
tensor K ∈ RT×S×(2wd+1)×(2hd+1). We compute the output Y with this
formula:

Y [x, y, t] =
S∑

s=1

hd∑
h=−hd

wd∑
w=−wd

K[t, s, y + h, x+ w]X [s, y + h, x+ w]

For simplicity, in this formula we ignore the special cases at the bound-
ary. We have here a tensor K that we could decompose to compress in
number of parameters and accelerate the convolution operation.

4 Tensor decomposition

4.1 Matrix decomposition

For a matrixM ∈ Rm×n the singular value decomposition gives U ∈ O(m×
m),Σ ∈ D(m × n), V ∈ O(n × n) (where O are the orthogonal matrices
and D the diagonal matrices) such that UΣV = M . The diagonal of Σ is
(σ1, . . . , σk), the singular values ofM . There are rankM non zeros singular
values. Hence we can write, with Ui the i-th column of U and Vi the i-th
line of V :

M =
rankM∑
i=1

σiUiVi

We have a decomposition of M as a sum of low rank matrices (because
all the Ui, Vi are of rank 1). If the rank of M is small enough it is a form
of compression of M without loss.

Furthermore, we can choose to compress M with a small loss of infor-
mation. We now assume that the singular values are sorted decreasingly
such that σrankM is the smallest. To compress M with a small loss of in-
formation we can choose to neglect the small singular values and keep only
the r largest singular values. We then get:

M̃ =
r∑

i=1

σiUiVi

M̃ is a good approximation of M because 2

||M̃ −M ||22 =
rankM∑
i=r+1

σ2
i

and we know that the last singular values are usually small.
2The use of the Frobenius norm to justify the precision of the approximation is

debatable. Especially in the context of compressing neural networks. [DZB+14]
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4.2 CP-decomposition

Figure 2: CP-decomposition3

The analogous of SVD for tensors is the CP-decomposition [Hit27]. For
a tensors X ∈ RI1×···×IN , the CP-decomposition is:

X =
R∑

r=1

λrU
(1)
r ⊗ · · · ⊗ U (N)

r (1)

Where λi ∈ R is the equivalent of singular value and U (j)
i ∈ Rni is the

equivalent of an eigenvectors and R is the rank of the decomposition. An
⊗ is the outer product which is the generalisation to tensor of the product
of a column vector by a line vector. Hence if we write the full expression
of equation (1) we have:

X [r1, . . . , k, . . . , rN ] =
R∑

r=1

λr

N∏
k=1

U (k)
r [ik] (2)

The rank of X is defined as the smallest rank allowing a loss free decom-
position. However in practice the computation of this rank is an NP-hard
problem [Hås90] and R is chosen to have a reasonable trade-off between
the accuracy of the decomposition and the number of parameters.

4.3 Other decomposition

There exist other possible decompositions like the Tucker decom-
position [Tuc66], the tensor train format [Ose11] or the block term
decomposition [DL09]. Each of these decompositions leads to different
compression techniques [KPY+16, NPOV15, YWL+18] but we will focus
on the CP-decomposition.

3figure from [PKC+21]
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5 Convolution decomposition

5.1 CP-convolution

Now we will use the CP-decomposition to decompose the convolution. We
recall that the expression of the convolution is:

Y [t, y, x] =
S∑

s=1

hd∑
h=−hd

wd∑
w=−wd

K[t, s, h, w]X [s, y + h, x+ w] (3)

The tensor K can be decomposed to a CP-decomposition of rank R: 4:

K =
R∑

r=1

U (T )
r ⊗ U (W )

r ⊗ U (H)
r ⊗ U (S)

r

K[t, s, h, w] =
R∑

r=1

U (T )
r [t]U (W )

r [w]U (H)
r [h]U (S)

r [s] (4)

[LGR+15] proposes to replace in the expression K by its
CP-decomposition (substitute equation (4) in equation (3)) to get this
formula:

Y [t, y, x] =
R∑

r=1

wd∑
w=−wd

hd∑
h=−hd

S∑
s=1

U (T )
r [t]U (W )

r [w]U (H)
r [h]U (S)

r [s]X [s, y + h, x+ w]

(5)

=
R∑

r=1

U (T )
r [t]


wd∑

w=−wd

U (W )
r [w]


hd∑

h=−hd

U (H)
r [h]

[
S∑

s=1

U (S)
r [s]X [s, y + h, x+ w]

]
︸ ︷︷ ︸

1×1 conv


︸ ︷︷ ︸

depthwise conv


︸ ︷︷ ︸

depthwise conv︸ ︷︷ ︸
1×1 convolution

(6)

4Compare to the CP-definition we just put the λ in the first vector ie U (T )
r ← λrU

(1)
r .
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Figure 3: CP-convolution, here 2hd+1 = 2wd+1 = d. The last convolution
corresponds to the black sum.5

This formula suggest that we can replace one convolution with 4 one
dimensional convolution, as illustrated in figure 3.

6 Fine-tuning
Before the decomposition and compression we have a fully trained kernel
K. After the decomposition we have an altered K̃. It is then possible to
slightly retrain the model ie fine-tune it to recover a better accuracy and
a better kernel K̄.

Unfortunately [LGR+15] reported difficulties to retrain the model. This
can be due to the fact that the perturbation generated by the compression
is too important to recover from it.

Compress
the model

Fine-tune
the model

Figure 4: Principle of MUSCO: multiple successive steps of compression
and fine tuning6

To fix this issue [GKP+19] proposed MUSCO: Multi stage compression,
that they summarize with figure 4. To avoid getting too far away from the
local optimum they propose to compress with a small compression rate and
(almost) recover the local optimum with fine tuning. It is then possible to
iterate this procedure until finding a sufficient compression rate.

5figure from [LGR+15]
6figure from [GKP+19]
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7 Obvious Benefits
The benefits are at least a lighter network in terms of size and a faster
network in terms of number of operations. In this section I define Wd =
2wd + 1 and Hd = 2hd + 1.

7.0.1 Weight comparison

The initial kernel K ∈ RT×S×Wd×Hd has T × S × Wd × Hd parameters.
In comparison, the decomposition K =

∑R
r=1 U

(T )
r ⊗ U

(W )
r ⊗ U

(H)
r ⊗ U

(S)
r

has for each value of r, T + Wd + Hd + S parameters. In total there is
R(T + Wd + Hd + S) for the decomposed network. We can conclude that
if we have R such that:

R <
T × S ×Wd ×Hd

T +Wd +Hd + S
(7)

then we have compressed the kernel size (or number of parameters) of

a factor
T × S ×Wd ×Hd

R(T +Wd +Hd + S)
.

7.0.2 Number of operation comparison

Here we count the number of operation for one pixel with all his channels.
For example, in the input there are H ×W pixel with S channels.

For each pixel we can count the number of operation in equation (3),
for each pixel there are S×Wd×Hd multiplications by new channel which
gives T × S ×Wd ×Hd multiplications for each pixel.

In comparison, as we can count on figure 3, the first convolution needs
S×R multiplications by pixel. Then there are respectivelyWd×R, Hd×R
and R×T multiplications by pixel for the next convolutions. This leads to
a total of R(T +Wd +Hd + S) multiplications for each pixel.

We conclude that under the same condition as previously expressed
in equation (7) we reduce the number of multiplications by a factor
T×S×Wd×Hd

R(T+Wd+Hd+S)
.

However, a diminution of the theoretical number of operations does not
necessarily mean an actual speed-up when the computation is made because
the execution time is not purely proportional to the number of operation.
Here we have reduced the number of operations by substituting a convo-
lution with 4 smaller convolutions. In this case, as reported in [GKP+19]
there is an effective speed-up.
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Model ∆-top-5 accuracy Compression Speed-up
AlexNet7 -0.81 4.90 2.11
VGG-168 -0.15 1.51 2.41

Table 1: Some results of MUSCO (the ∆-top-5 is the difference of accuracy
with the original mode, compression an sped-up are ratio compared to the
original model, the speed-up is measured on GPU)

8 Experimental results
In this section I report the results from [GKP+19] because they compressed
all the convolution layers (on the contrary [LGR+15] only compressed one
layer) and the code is publicly available.

In their experiments they used a generalization of the CP-decomposition
that is the Tucker decomposition but the principle is the same. I present
the result to give an idea of the efficiency of those low-ranks techniques: it
is possible to get a two times faster network with minimal accuracy loss.
See table 1 for the results.

9 Bias-variance interpretation and potential
hidden benefits

In this section we only consider networks for classification in supervised
learning.

In this section, we assume that the data are from a distribution P and
P (y|x) give the the probability of the data x to be of the class y. We
consider that the goal is to minimize the expected risk for a loss function
l: EP (f) = E(x,y)∼P [l(f(x), y)] (we will only write E(f)).

9.1 Summary of the error decomposition

The goal of the machine learning algorithm is to find9 f ∗ = argminf E(f)

We will note f̃ the approximation of f ∗ found by the algorithm with the
available data.

Following the work of [BB07], we can decompose the error in three parts:

1. First the model is constrained with the class of function it can learn.
We note F the ensemble of functions that the algorithm can learn.

7[KSH17]
8[SZ14]
9For all argmin we just suppose that it exists and we choose one of the minimizer.
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For example, for a linear model the class of possible functions is quite
restrictive, and the possible propositions of the algorithm are only
linear functions. Here, for a neural networks, even if the the class of
possible functions is bigger we can still have an optimal function that
is not in this class of functions. We note fF = argminf∈F E(f). We
therefore have a bias-error or approximation error: εapp = E(f ∗) −
E(fF).

2. In addition, we have no access to the theoretical distribution P but
only to n samples, giving an approximate distribution Pn. As a
consequence we minimize the expected risk with respect to Pn in-
stead of P . This risk is known as the empirical risk: EPn(f) =
E(x,y)∼Pn [l(f(x), y)]. We can only minimize EPn with f inside the class
F so we get: fn = argminf∈F En(f) We therefore have a variance-
error or estimation error10: εest = E(fF)− E(fn).

3. Even with good optimization techniques, it is not always easy to find
a function minimizing a formula. Hence our algorithm only gives an
approximation f̃n of fn. We have therefore an optimization error11:
εopt = E(fn)− E(f̃n).

We can then write the total error as:

ε = εapp + εest + εopt (8)

9.2 Impact of the compression on the errors

In this part I discuss the evolution of the different errors during the com-
pression. I write εcx for the errors of the compressed network before fine
tuning and εfx for the final errors of the compressed network.

The first step of the compression is the decomposition. The decompo-
sition is a restriction of the class F because we restrict the rank of the
tensors. We note F̃ the new class of functions. As F̃ ⊂ F we have that
εfapp = εcapp ≥ εapp.

After the decomposition a step of fine-tuning is performed to recover
a better accuracy. As the approximation and estimation errors are fixed,
it means that the optimization error is reduced: εfopt < εcopt. Moreover as
we performed compression by small step to be able to recover the local
optimum we can guess that εfopt ≈ εopt. This can be true only if the the
added rank constraints don’t force to go to a totally different local minima,
which could be the case for high compression ratio.

10In the original article they consider that the available data is not deterministic and
they consider εest = E(E(fF ) − E(fn)) with the expectation taken with respect to the
random choice of training set. Here for simplification we do not consider this refinement.

11Here we consider that the optimization algorithm is deterministic.
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It is more difficult to know how the estimation error changes. In theory,
as we increase the bias error we could expect the estimation error to be
lower. But in our case, it is special because somehow the approximation
error is not independent of the data as we use the data to select the class
of possible functions. (Of course it is always a bit the case but it is usually
chosen by an expert using prior knowledge and not learned by an algo-
rithm.) As we carefully select F̃ we expect the approximation error not
to grow too much, therefore if the estimation error was reduced we could
expect to find better results for the compressed network, which is not the
case.

However, one advantage of some simpler models (than deep neural net-
works) is their robustness.

9.3 Robustness

After the compression we can’t really see a reduction of the estimation
error: εest = E(fF) − E(fn). However rank constraints can be considered
as a regularization technique, as the information in the model is constrained
to be smaller. As pointed by [JG18, BMCM19] regularization can improve
robustness.

Hence even if EP [fF ] − EP [fn] is not reduced, if instead of P we con-
sider P̂ the distribution P with attacks, it is possible that EP̂ [fF ]−EP̂ [fn]
is smaller after the compression than before. We can conclude that ro-
bustness could be an hidden benefit of the compression. In fact, tensor
decomposition is already used in combination with dropout to improve ro-
bustness [BKB+21, KKP+21].

9.4 Transfer learning

An interesting question about compression is how specific is the architecture
selection. It is well known that to train a neural network on a task it is
easier to start from an other pretrained network on a similar task and then
fine-tune it. This allows to reduce the estimation and optimization error
because the knowledge given by the first training is reused.

Therefore if the selected architecture by compression (ie the rank con-
straint weight tensors given after a first training) is general enough, it could
be even more efficient for transfer learning as there are less weights to up-
date and the network is more regularized. On the contrary, if the model
selection is too specific, it will be impossible to learn a new task starting
from a decomposed network. To my knowledge, there is at this day no
work exploring this possibility.
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10 Conclusion
Deep neural networks are known to be over-parameterized. Hence it is
possible to compress them without too much loss in precision. One of the
possible compression techniques is tensor decomposition. I presented the
CP-decomposition which allows compression and speed-up of the network.
Moreover, compression is a form of regularization which could lead to other
benefits like robustness or easier transfer learning. However those aspects
are for now largely unexplored.
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