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1 Path Integrals in Quantum Mechanics

1.1 Path integrals

You have seen in the Quantum Theory course that transition amplitudes in non-relativistic
quantum mechanics can be computed by path integrals. Consider a simple particle of mass m
in a potential V (q), q being the position. The classical action S and the classical Lagrangian
L are

S[q] =

Z
dt L(q(t), q̇(t)) L(q, q̇) =

m

2

q̇2 � V (q) (1.1)

and the classical equation of motion, satisfied by a classical trajectory qcl(t) are obtained by
extremizing the action with respect to variations of the trajectory (Euler-Lagrange equations)

q(t) = qcl(t) + �q(t)
�S[q]

�q(t)
= � d

dt

@L

@q̇
� @L

@q
= �m q̈(t)� @

@q
V (q) = 0 (1.2)

the end-point of the trajectory being fixed (between initial time ti and final time tf )

�q(ti) = �q(tf ) = 0 (1.3)

The quantum probability amplitude K for propagation from qi at time ti to qf at time tf ,
is the matrix element of the evolution operator U (sometimes called the propagator, or the
propagation kernel)

K(qf , tf ; qi, ti) = hqf |U(tf � ti)|qii = hqf , tf |qi, tii U(t) = exp

✓
t

i~H
◆

(1.4)

(the first notation refers to the Schrödinger picture, the second one to the Heisenberg picture).
H is the quantum Hamiltonian

H =

1

2m
P 2

+ V (Q) (1.5)

K can be written as a sum of histories q(t)

K(qf , tf ; qi, ti) =

Z

q(ti)=qI
q(tf )=qf

D[q] exp

✓
i

~S[q]
◆

(1.6)

The precise derivation of this formula, as well as its proper mathematical definition, is
obtained by decomposing the evolution of the system in a large number N of evolutions
during elementary time step �t = ✏ = t/N , at arbitrary intermediate positions q(tn = n✏),
n 2 {1, · · · , N � 1}, using the superposition principle. One then uses the explicit formula
for the propagation kernel at small time (the potential V (q) may be considered as constant
locally)

K(qf , ✏, qi, 0) '
✓
2i⇡~✏
m

◆�1/2

exp

✓
i

~

✓
m

2

(qf � qi)2

✏
� ✏V

✓
qf + qi

2

◆◆◆
(1.7)
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Figure 1: Path integral: time discretization

and one then takes the continuous time limit ✏ ! 0. The precise definition of the measure
over histories or paths is (from the prefactor)

D[q] =
N�1Y

n=1

 
dq(tn)

✓
2i⇡~✏
m

◆�1/2
!

(1.8)

1.2 Euclidean time

Before discussing the meaning of path integrals, let us generalize the evolution operator U(t)
to "complex time". Let us consider the case of a particle in a potential well V (q) with a
minimum, and growing fast enough at infinity (for instance an harmonic oscillator), so that
the spectrum Ek of the hamiltonian H is discrete, bounded from below (there is a ground
state), and unbounded from above. The energy levels are labelled as E

0

< E
1

< E
2

< · · ·
etc. and En ! +1 with n. Then the evolution operator

U(t) = exp

✓
t

i~H
◆

=

1X

i=0

exp

✓
t

i~Ei

◆
|iihi| (1.9)

(considered as an element of the algebra A = B(H) of the bounded 2 operators over the
Hilbert space H = L2

(R) of the system), exists not only for real t (where it is unitary) but
for t complex provided that t is in the lower half plane

Im(t)  0 =) kU(t)k1 < 1 =) U(t) 2 B(H) (1.10)

2The norm kAk1 of an operator is defined as kAk21 = sup
 2H

h |AA†| i
h | i and corresponds for matrices to the

modulus of the largest eigenvalue of A
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Not only U(t) exists, but it is an analytic function of t (namely all matrix elements h |U(t)| 0i
are finite and are analytic functions of t).

temps réel

temps Euclidien

rotation
de Wick

Figure 2: Complex time and Wick rotation

Now consider U(t) for purely imaginary times t = �i⌧ . This rotation by �⇡/2 in the
complex time plane is called a Wick rotation. We shall call ⌧ = it "Euclidean time" for
reasons that will become clear in the next lecture. Obviously the evolution operator becomes
(the “E” stands for “Euclidean”)

UE(⌧) = U(�i⌧) = exp

⇣
�⌧~H

⌘
(1.11)

UE is proportional to the density matrix ⇢� of the same quantum system at finite temperature
T , if we identify

⌧

~ = � =

1

kBT
(1.12)

since the density matrix is

⇢� =

1

Z(�)
exp (��H) =

1

tr[UE(⌧)]
UE(⌧) (1.13)

The partition function is
Z(�) = tr [UE(⌧)] (1.14)

Let us thus compute this partition function, using path integral methods. We now have to
compute the evolution operator at imaginary time � = it, starting from qi at �i = 0, up to
qf at �f = ⌧ = ~/(kBT ), and take the trace

tr[UE(⌧)] =

Z
dq hq|UE(⌧)|qi i.e. qi = qf = q (1.15)
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We can easily repeat the path integral calculation, decomposing the evolution at Euclidean
time into a large number of small steps. Everything amounts in fact to replace real times s
by imaginary times � = is. The action S[q(s)] becomes

S[q(s)] =

Z
ds

 
m

2

dq(s)

ds

2

� V (q(s))

!
(1.16)

=

Z
(�i)d�

 
�m

2

dq(�)

d�

2

� V (q(�))

!
(1.17)

= i

Z
d�

 
m

2

dq(�)

d�

2

+ V (q(�))

!
= iSE[q(�)] (1.18)

Computing the trace amounts to sum over periodic histories such that q(0) = q(⌧) (since
qi = qf ), but integrating also over all possible initial positions at � = 0. One obtains a path
integral over periodic Euclidean histories (with period ⌧ = ~/(kBT ))

Z(�) =

Z

q(0)=q(⌧)

DE [q] exp

✓
�1

~SE[q]

◆
(1.19)

temps réel
t 

t

  t temps Euclidien périodique

Figure 3: Periodic Euclidean time

But now each history q = [q(�)] is weighted by a real positive number W [q], similar to a
Boltzmann weight for the Gibbs distribution in statistical mechanics

W [q] = exp

✓
�1

~SE[q]

◆
' W

Gibbs

= exp

✓
� Energy
kBTemperature

◆
(1.20)

The Euclidean action

SE[q] =

Z
d�

 
m

2

dq(�)

d�

2

+ V (q(�))

!
(1.21)
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plays the rôle of the energy of a configuration of a statistical system, and the (reduced)
Planck constant ~ plays the role of the temperature for this statistical system. Note the +

sign in front of the potential energy term in the Euclidean action, to be compared with the
� sign in the ordinary action at real time. In our example the Euclidean action amounts to
the integrated Hamiltonian over the time... but this is not always so simple.

1.3 Dictionnary Quantum Mechanics $ Statistical Mechanics

One thus has a mathematical analogy between a quantum mechanical system at Euclidean
time (hence at finite temperature TQ (for instance the 1D harmonic oscillator with a single
degree of freedom q, its position), and an extended 1 dimensional statistical system at finite
temperature TS (a chain of linearily coupled oscillators along a closed circle with total length
L, the local order parameter of the oscillator at position � being the variable q(�). The
dictionary is

Quantum system Statistical 1D system

Euclidean time � x position along the chain

degree of freedom q(�) q(x) local order parameter

Euclidean action SE[q] E [q] energy of a microstate

Planck’s constant ~ TS temperature

temperature TQ L�1 L = size of the system

As we shall see, this analogy extends to Euclidean Relativistic Quantum Field Theories $
Extended Statistical Systems D > 1.

Remember the fundamental relation between the temperature of a quantum system and
the periodicity in Euclidean time of the corresponding path integral for this system.

kB Temperature =

~
Period in Euclidean Time

(1.22)

This mathematical relation allows for instance to derive the Beckenstein-Hawking tempera-
ture of a black hole, or the Unruh temperature of the vacuum in an accelerated frame in a
very elegant way.

1.4 Semiclassical expansion and quantum fluctuations

Path integrals allow to grasp what is happening for simple systems (with a few degrees
of freedom) in the regime when quantum fluctuations are small. Beware! Small quantum

Perimeter Scholars International 11 Nov. 2012
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temps périodique (température finie)

position q

temps (Euclidien)

Path intégral for a quantum oscillator

chaine fermée de longueur L

paramètre d’ordre S

position sur la chaine

A chain of coupled classical oscillators

Figure 4: Equivalence between a single quantum oscillator and a classical chain of oscillators

fluctuations do not necessarily mean small quantum effects! Let us consider ~ as a parameter
in the path integral, that we are free to tune to small values. When ~ ! 0, in fact only
trajectories q(t) “close to” classical trajectories qclassical(t) (solutions of the equation of motion)
contribute.

1.4.1 Gaussian integrals

As a toy model, let us consider the Gaussian integral (A “no-time” quantum mechanical
model). The real Gaussian integral is

Z
+1

�1
dx e�(x�x

0

)

2/2�
= (2⇡�)1/2 (1.23)

The integrand e

�(x�x
0

)

2/2� is depicted on Fig. 5 . It has a maximum at x = x
0

, and is of order
O(1) for |x�x

0

| ⇠ p
� (the variance). The term e

�x2

0

/2� is the contribution of the maximum,
and the coefficient (2⇡�)1/2 the contribution of the fluctuations around the maximum. This
is the zero dimensional analog of the path integral at imaginery time.

Now consider the imaginary Gaussian integral
Z

+1

�1
dx ei(x�x

0

)

2/2�
= (2i⇡�)1/2 (1.24)

Perimeter Scholars International 12 Nov. 2012



3HULPHWHU�6FKRODUV�,QWHUQDWLRQDO�

4)7�,,�/HFWXUH�1RWHV��

)UDQoRLV�'DYLG�

1RY�������

QRW�IRU�GLIIXVLRQ

François David Quantum Field Theory II

Figure 5: The real Gaussian function

The real and imaginary part of the distribution e

i(x�x
0

)

2/2� are depicted on Fig. 6. It is a pure
phase, but is slowly varying around the stationary phase point x = x

0

, in a domain of widthp
�. away from this domain, the phase in oscillating very quickly, and the contributions

cancel out. The term e

ix2

0

/2� is the contribution of the stationary phase point x = x
0

, the
coefficient (2i⇡�)1/2 the contribution of the fluctuations around x

0

.

Figure 6: The imaginary Gaussian fonction: the real part and the imaginary part are blue
and red.

1.4.2 Semiclassical limit: real time

This simple picture extends to quantum mechanics and path integrals (with non trivial
mathematics!). In the limit ~ ! 0 the path integral

K(qf , qi; t) =

Z

q(0)=qi
q(t)=qf

D[q] exp

✓
i

~S[q]
◆

(1.25)

is dominated by the stationary phase trajectory q
0

(s) which extremises the action S[q]

�S[q]

�q(s)

����
qc

= 0 =) mq̈
0

= �V 0
(q

0

) (1.26)

that is the classical trajectory going from qi to qf in a time t. This gives a leading classical
phase exp

�
i
~S[q0]

�
. Only the non-classical trajectories q = q

0

+ �q “close enough” to q
0

contributes to the path integral. They give the multiplicative factor in front of the phase,
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which can be obtained from the “determinant” of the quadratic form S 00
0

given by the second
functional derivative of the action S[q]; this quadratic form is a symmetric function3 H

0

(u, v)
of two time variables u and v, called the Hessian of the action S.

S 00
0

= H
0

(u, v) =
�2S[q]

�q(u)�q(v)

����
q
0

(1.27)

One obtains

K(qf , qi; t) =

✓
det


i

~
S 00
0

2⇡

�◆�1/2

exp

✓
i

~S[q0]
◆

(1 +O(~)) (1.28)

The determinant det

h
i

~
S00
0

2⇡

i
is the determinant of a differential operator (an infinite dimen-

sional matrix) and requires some care to be calculated (one must go back to the precise
discretization in time which defines the path integral). The subleading O(~) terms to the
right are subdominant terms coming from the fact that the action is in general not quadratic
in q. They can be calculated by different methods.

The strongly non-classical trajectories, far away from the classical ones, do not contribute
to the path integral when ~ is small because of the strong destructive interferences between
such trajectories.

q

q'

t

espace de
 configuration

Figure 7: Path integral is the semi-classical regime: the smooth classical trajectory domi-
nates, the irregular non-classical trajectories near the classical one give the main contribution.

In fact the determinant can be computed more easily using the WKB approximation (thus
going back to the Schrödinger equation). There is a remarkable formula, thanks to Van Vleck

3In fact it is a distribution, giving the integral kernel of a linear operator acting on functions  (t).
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and Morette, which gives this determinant in terms of the second derivative of the classical
action S

0

, considered as a function of the initial and final conditions4, with respect to qi and
qf

det


i

~
S 00
0

2⇡

�
=

✓
� 1

2i⇡~
@2S

0

(qf , qi; t)

@qi · @qf

◆�1

(1.29)

1.4.3 Semiclassical limit: imaginary time

The same arguments are valid for the Euclidean path integral

KE(qf , qi; ⌧) =

Z

q(0)=qi
q(⌧)=qf

D[q] exp

✓
�1

~SE[q]

◆
(1.30)

It is dominated by the saddle point trajectory q
0

(�) which minimizes the Euclidean action
SE[q]

�E[q]

�q(�)

����
qc

= 0 =) mq̈
0

= V 0
(q

0

) (1.31)

Note the change of sign in front of the potential V . One gets

KE(qf , qi; ⌧) =

✓
det


1

~
SE

00
0

2⇡

�◆�1/2

exp

✓
�1

~SE[q0]

◆
(1 +O(~)) (1.32)

1.4.4 Multiple trajectories, quantum interferences

As you have seen in the Quantum Theory course, this is valid when several different classical
trajectories can contributes to the path integral. In these cases, one has simply to add the
contributions of the different classical contributions, each with its quantum phase (given by
the classical action), and its normalization (given by the quantum fluctuations). In many
cases the gaussian approximation (neglecting the O(~) corrections) are sufficient. One re-
covers easily the classical results for phenomena involving quantum interferences (two slits
experiments, the Aharonov-Bohm effect).

Transition Amplitude '
X

classical trajectories

det[S 00
[qa]]

�1/2
e

i

~S[qa] (1.33)

Another impressive application of semiclassical calculations is the estimation of the den-
sity of states of complicated quantum systems which may even be classically chaotic. The
density of states ⇢(E) is given by a “trace formula" (Gutzwiller formula) involving the clas-
sical density of states ⇢

classical

(E), plus a quantum contribution given by a sum over all the

4As in the derivation of the Hamilton-Jacobi equations in classical mechanics.
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periodic orbits qa of energy E (now the energy E is fixed, but the period Ta is arbitrary), of
the form

⇢(E) = ⇢
classical

(E) +

1

⇡~
X

periodic orbits

of energy E

Re

h
�a(E) e

i

~ (S[qa]+TaE)

i
(1.34)

the coefficients �a(E) are given by the contribution of the fluctuations around each orbit
in the path integral, and contains a topological phase factor related to the stability of the
trajectories (Maslov index). I do not give more details here. See also the works by Balian
and Bloch.

1.5 Operators and correlation functions

The path integral formalism allows to compute matrix elements of operators (observables).
For instance, inserting a q(t

1

) in the path integral amounts to insert a position operator Q at
time t

1

(in the Heisenberg picture, between the initial and final states, as depicted in Fig. 8

hq0, t|Q(t
1

)|q, 0i =

Z
D[q] exp


i

~S[q]
�
q(t

1

) (1.35)

Inserting a function A(q(t)) amounts to insert the operator A(Q)(t).

q

q'

t

espace de
 configuration

temps
i=0 1 2 i N

Q

Figure 8: One operator e.v.

Similarily, inserting two q’s at two different times t
1

and t
2

amounts to insert the time

ordered product T [Q(t
1

)Q(t
2

)]

T [Q(t
1

)Q(t
2

)] =

(
Q(t

2

)Q(t
1

) if t
1

< t
2

,

Q(t
1

)Q(t
2

) if t
1

> t
2

.
(1.36)
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Namely

hq0, t|T [Q(t
1

)Q(t
2

)]|q, 0i =

Z
D[q] exp


i

~S[q]
�
q(t

1

) q(t
2

) (1.37)

As depicted on Fig. 9, the path integral automatically performs the time ordering of operators.
This is obviously valid for an arbitrary number of operators Ai(ti), i = 1, 2, 3, ....

q

q'

t

espace de
 configuration

temps
i=0 1 2 t N

A

B

t1 2

Figure 9: Two operators e.v.

This works also when computing the expectation value of operators on thermal state. For
computing the e.v. of an operator A (which is independent of time since thermal states are
stationary states), since it is given by a ratio of two traces

hA(t)i� = hAi� =

tr

�
A e

��H
�

tr (e

��H
)

(1.38)

it is given by the ratio of two path integrals at imaginary periodic time, with period ⌧ =

~/kBT .

hAi� =

R
q(0)=q(⌧)
D[q] exp

⇥
�1

~SE[q]
⇤
A[q(⌧

0

)]

R
q(0)=q(⌧)
D[q] exp

⇥
�1

~SE[q]
⇤ (1.39)

The numerator being depicted of Fig. 10
Real time correlators of two operators A and B on a thermal state are easily obtained.

Start from the e.v. of these operators at imaginary times ⌧
1

< ⌧
2

. It is defined as

hB(⌧
2

)A(⌧
1

)i� =

1

Z�

tr

⇥
e

��HB(⌧
2

)A(⌧
1

)

⇤

=

1

Z�

tr

⇥
e

�(⌧�⌧
2

)H/~Be

�(⌧
2

�⌧
1

)H/~Ae�⌧
1

H/~⇤ (1.40)
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tem
ps im

aginaire  

A(t)
temps réel

Figure 10: Periodic imaginary time contour for evaluating hA(t)i� at finite temperature.

and given by the path integral

tr

⇥
e

��HB(⌧
2

)A(⌧
1

)

⇤
=

Z

E
D[q] e�

1

~SE [q] A(⌧
1

)B(⌧
2

) (1.41)

depicted on Fig. 11

temps reel

tem
ps im

aginaire  

A(⌧
1

)

B(⌧
2

)

Figure 11: Imaginary times contour T for the correlator hA(⌧
1

)B(⌧
2

)]i� at finite temperature.

Now perform the Wick rotation

⌧
1

= it
1

, ⌧
2

= it
2

(1.42)

to obtain the e.v. of the time ordered product at real times

hT [B(t
2

)A(t
1

)]i� =

1

Z�

tr

�
e

��HB(t
2

)A(t
1

)

�
t
1

< t
2

(1.43)

It is given by a path integral mixing evolutions at real times and imaginary times, depicted
on Fig. 12.

Notice that it is necessary to include both a “time-forward contour” (to represent the evo-
lution operators U(t)) and a “time-backward contour” (to represent the evolution operators
U(�t) = U †

(t)). This is a simple example of the so-called two-times representation at the
basis of the Schwinger-Keldisch formalism used to study off-equilibrium quantum systems
in condensed matter, nuclear and high energy physics, etc. Please remember that there is
nothing mysterious here. This simply reflects that in quantum physics the physical proba-
bilities are given by probability amplitudes ⇥ their complex conjugates, and path integrals
construct probability amplitudes, not probabilities!
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tem
ps im

aginaire  

temps reelA(t
1

) B(t
2

)

Figure 12: Complex times contour T for the correlator hT [A(t
1

)B(t
2

)]i� at finite temperature.

1.6 Projection on the ground state

One last simple but important point. Starting from a thermal state at temperature T , taking
the zero temperature limit T ! 0 (i.e. � = 1/kBT ! 1) amounts to project on the lowest
energy state, that is the ground state |0i. Indeed, for a single operator

lim

�!+1
hA(⌧

0

)i� = lim

�!+1

P
nhn|A|nie��En

P
n e

��En
= h0|A(⌧

0

)|0i (1.44)

and for a product of operators

lim

�!+1
hAk(⌧k) · · ·A1

(⌧
1

)i� = h0|Ak(⌧k) · · ·A1

(⌧
1

)|0i (1.45)

Thus in the imaginary time path integral, taking the limit of infinite period

⌧ = ~/kBT ! 1 (1.46)

amounts to compute vacuum expectation values of obervables.

1.7 Green functions

We can then in the path integral formalism “forget about” the evolution over imaginary time,
and consider only the real time evolution from initial time tin = �1 to final time tout = +1.
The corresponding ‘ìn” and “out” vacuum are simply related to the vacuum (in the Heisenberg
picture) by a phase

|0
in

i = |0; t
in

i = e

i

t
in

E
0

~ |0i with t
in

! �1 (1.47)

|0
out

i = |0; t
out

i = e

i

t
out

E
0

~ |0i with t
out

! +1 (1.48)

The vacuum expectation value of time ordered products of operators are called the correlation
functions or the Green functions. They are given by the ratio of IN|OUT matrix elements

h0|T [A
1

(t
1

) · · ·AK(tK)]|0i =
h0

out

|T [A
1

(t
1

) · · ·AK(tK)]|0ini
h0

out

|0
in

i (1.49)
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François David Quantum Field Theory II

The numerator is given by the path integral over the red “time forward” contour of Fig. 13, the
denominator by the blue “time backward” contour. This seems a bit formal and trivial, but
keep it in mind for the next lectures. These points are important in quantum field theory,
in particular when comparing the path integral formalism and the canonical quantization
formalism.
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i · · · · · · |0
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i
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Figure 13: Path integral for vacuum expectation values of
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