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0.1 Introduction

The effect of interactions on many-particle quantum systems particles has proven
to be of the most fascinating problems in physics. From the fundamental physics
point of view, this is a formidable challenge that combines the difficulties of quantum
mechanics and statistical physics. Indeed even in very small clumps of matter there
are more particles than stars in the universe and when these particles interact one is
thus totally unable to solve by brute force the coupled equations. This is even more
so when one deals with quantum particles, which behaves as interfering waves, and
must in addition obey the principles of symmetrization and antisymmetrization. As
a consequence of this complexity, beautiful new physics emerge from the collective
behavior of these particles, something that could not even be guessed at by simply
looking at the solutions of small numbers of coupled particles. However, finding the
proper tools to even tackle such a type of problems is an herculean task. Fortunately
some important concepts allow us to understand the main physical properties of many
of these systems. However many systems defy our understanding and we need to
build new tools to tackle them. This forces us to accomplish progress in our way to
understand these systems theoretically, either analytically or numerically.

The pressure to solve these problems goes way beyond the academic realm. Un-
derstanding how electrons behave in solids led to technological revolutions such as
silicon-based electronics and the transistor, the control of spin in magnetic storage
and electronics, or the fascinating applications of superconductivity. Hence, this en-
deavor is intimately connected with our ability to engineer and control solids, and
make devices of use in our everyday’s life.

Recently a new type of physical systems, cold atoms in optical lattices, has provided
a marvelous laboratory to tackle the effects of strong correlations in quantum systems.
These systems made of light and neutral atoms constitute a welcome alternative to the
standard realization in solid state physics. Because in these systems interactions are
short-ranged and controllable, because optical lattice can be engineered in a flexible
ways and phonon modes are absent, these systems can be viewed as model realizations.
In addition, they have opened the path to novel physics which uses the control and
flexibility of these systems (mixtures of bosons-fermions, possibility to change rapidly
the potentials, isolated quantum systems etc..) In particular they have allowed to
realize quantum systems in reduced dimensionality in which quite remarkable novel
physics can occur.

In these lectures we give an introduction to the physics of interacting quantum
systems, both bosonic and fermionic. We review the main concepts and tools which
are cornerstones of our understanding of such systems and point out the challenges
that interactions pose. These lecture cannot of course make any claim of completeness
given the broad scope of the problem, and we encourage the reader to search the
literature for more.

The plan of the lectures is as follows. In Section 0.2 we will give an introduction
to the physics of quantum particles in periodic lattices. The presentation is essentially
targeted to the case of cold atomic systems. We will examine how the interactions
should be taken into account and define the basic models, such as the Hubbard model,
that can be used to describe such interacting systems. In Section 0.3 we examine for
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the case of bosons, how the combined effects of lattice and interaction can turn the
system into an insulator, the so-called Mott insulator, and discuss the corresponding
physics. Section 0.4 discusses what happens when the system is one-dimensional. In
that case the fact that two particles cannot cross without feeling their interaction
lead to novel physics effects. This section discusses this new physics and the methods
needed to access it. We then move in Section 0.5 to the case of fermions. We discuss
first Fermi-liquid theory and the concept of quasiparticles, a remarkable description of
the low-energy excitations of interacting fermion systems, due to Landau. In a nutshell,
this approach implies that the effect of interactions does not qualitatively change the
nature of low-energy excitations as compared to a non-interacting system, except of
course if the interactions are strong enough to lead to a instability of the system and
for example destroy metallic behavior. Fermi liquid theory and the concepts behind it
have been the cornerstone of our understanding of the properties of most solids. We
will then see in Section 0.6 how, in a similar way than for bosons, the combination
of a lattice and strong interactions can turn a Fermi liquid into a Mott insulator. We
look in Section 0.7 at the properties of one-dimensional fermions, show how Fermi
liquid theory fails because low-energy excitations are now collective modes instead of
quasiparticles, and examine the corresponding physics both for the conducting and
insulating phases. Finally we draw some conclusions and give some perspectives in
Section 0.8.

0.2 Optical lattices

Before dealing with the effects of interactions let us first have a look at the properties
of individual quantum particles. One essential ingredient, both in solids and in cold
atom systems is the presence of a periodic potential. In solids, such a potential occurs
naturally for the electrons because of the presence of the regular array of positively
charged nucleus. In cold atomic systems it can be imposed by the presence of an optical
lattice. Such a potential takes usually the form (in the direction of the lattice) (Bloch,
Dalibard and Zwerger, 2008)

V (x) = V0 sin2(kx) (0.1)

where k = π/a, with a the lattice spacing. The presence of such a periodic potential
changes considerably the properties compared to the one of free particles.

0.2.1 Zero kinetic energy (“Atomic” limit)

Let us first analyze the effects of the periodic potential by considering a limit in which
the periodic potential would be extremely large, and in particular much larger than
the kinetic energy of the particles. In that case, as shown in Fig. 0.1 it is a good
approximation to consider that the particles remain mostly localized around one of
the minima of the potential. Because in the condensed matter context this means that
they stay essentially localized around each atom, this limit is called “atomic limit”,
a somewhat confusing term in the cold atom context. Let us examine the case of the
optical lattice potential (0.1). If the particles stay around the minima we can expand
the periodic potential. The Hamiltonian to solve becomes then (for one minimum)
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Fig. 0.1 a) If the periodic potential is extremely high compared to the kinetic energy, it

is a good approximation to consider that the particles are essentially localized around the

minima of the potential. In that case one has approximately the solutions of an harmonic

oscillator. b) Since the wavefunctions in different wells have a small overlap there is a finite

tunneling amplitude t to go from one well to the next. c) One can thus describe such a system

by particles forced to be on a lattice, with a certain hopping amplitude t which will delocalize

them. In addition if two particles are on the same site they will feel the repulsion and pay an

energy U .

H =
P 2

2m
+ V0(kx)2 (0.2)

and is thus the Hamiltonian of an harmonic oscillator. As shown in Fig. 0.1 around
each minima, there is thus a full set of eigenstates

ψj,n(r) = ψn(r −Rj) (0.3)

which is centered around the jth site Rj = aj, and is the nth excited state with the
energy

En = ω0(n+
1

2
) (0.4)

with

ω2
0 =

2V0k
2

m
(0.5)

Note that this frequency is associated with each well of the optical lattice in the limit
of a deep lattice, and should not be confused with the frequency associated with the
shallow parabolic trap usually present in those systems. If the barriers are extremely
high then the states centers around different sites j are essentially orthogonal and can
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thus serve as a complete basis of all the states of the system. A convenient way to
represent the system, is to use the second quantization representation (Mahan, 2000).

We introduce creation (and destruction) operators b†j,n which will create (destroy) a
particle in the state (0.3). Note that this does not mean that the particle is created
at the position Rj but with the wavefunction (0.3). The Hamiltonian of the system is
then

H =
∑
j,n

~ω0[
1

2
+ n]b†j,nbj,n (0.6)

Although extremely primitive, this limit allows us already to deduce a certain
number of parameters. For example one can have an estimate of the interactions
among the particles. Optical lattices play, in that respect a central role. To understand
that point, let us assume that the microscopic interaction between the atoms can be
described by the standard contact interaction (Pitaevskii and Stringari, 2003):

U(r) =
4π~2as
m

δ(r) = gδ(r) (0.7)

Starting from such interaction one can define in the continuum a dimensionless ratio
which is the typical kinetic energy relative to the interaction energy. This ratio reads

γ =
Eint

Ekin
=

gnm

~2n2/3
' 4πn1/3as (0.8)

in three dimensions, using that the density of particles n−1/3 = a the mean interparticle
distance. Typical numbers for the parameter γ would be γ = 0.02. In other words, the
interaction is normally quite weak. In order to see strong interaction effect one thus
needs to reinforce it. This can be reached by either increasing the interaction itself,
for example by using a Feshbach resonance (Bloch, Dalibard and Zwerger, 2008), or
confinement (Olshanii, 1998), or by acting on the kinetic energy via an optical lattice
as we discuss below.

In the optical lattice, as we saw, wavefunctions on different sites have essentially
zero overlap, which means that the interaction between particles located on different
sites is essentially zero. Indeed if we take for example the ground state wavefunction
of the harmonic oscillator:

ψ0(x) =
(mω0

~π

)1/4

e−
mω0
2~ x2

(0.9)

The above is for one dimension. In three dimensions the wave function is the product
of the above wavefunction for each of the coordinates. Given the fact that ω0 ∼

√
V0

(see (0.5)) the spatial extension of the wavefunction decreases as 1/V
1/4
0 and can thus

be much smaller than the “intersite” distance a (see Fig. 0.1) for large potentials V0.
It means that, if we use the second quantization representation of (0.6), interaction
can only involve operators on a given site.

If two particles are present on one given site, one can estimate the energy cost
coming from the interactions. Let us assume that both particles are present in the
lowest energy state of the harmonic oscillator (see Fig. 0.1). Then the energy cost is
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U =
1

2

∫
dr1dr2U(r1 − r2)|ψ0(r1)|2|ψ0(r2)|2 (0.10)

Using the expression for the interaction (0.7) and the wavefunction (0.9) extended to
the three dimensional case, one obtains

U =
g

2
√

2
(
√
mω0~π)

3/2
(0.11)

Using the second quantization representation, and general expressions for the two-body
operators, this leads to an interaction term in the Hamiltonian of the form

Hint =
U

2

∑
j

n̂j,0(n̂j,0 − 1) (0.12)

where
n̂j,0 = b†j,0bj,0 (0.13)

is the operator counting the number of particles in the state 0 on site j. One thus sees
that the higher the barriers the larger is the energy cost of having two particles and
more on the same site. This is because the wavefunctions are tighter and tighter con-
fined and thus feel a local repulsion more strongly. Of course this expression, involving
only one orbital is only valid if the population of the higher levels is zero. This implies
in particular that one should be in a limit where the temperature is small compared to
the interlevel separation T � ω0 but also that the interaction parameter U is smaller
than the interlevel separation U � ω0. Otherwise it is more favorable to promote one
of the particle to a higher orbital state, which might reduce in part the overlap of
the wavefunctions. This is energetically more favorable than paying the full repulsion
price. If these conditions are not met one needs to involve several orbitals to build the
model.

0.2.2 Tight binding approximation

The approximation of the previous chapter essentially remove the kinetic energy of the
particles, that remains localized around one site. This is clearly an oversimplification.
Given the fact that there is some level of overlap of the wavefunctions on different sites
there is a finite probability of tunneling between two sites. We can thus build a theory
including this tunneling starting from the basis of wavefunctions localized around
each site, defined in the previous section. This method is known as a the tight-binding
approximation (Ashcroft and Mermin, 1976; Ziman, 1972). It is specially transparent
and contains all the main features of exact solutions in periodic potential that we will
detail in the next section. We will thus examine it in details.

Let us for simplicity restrict ourselves to the lowest orbital |0〉 on each site. Gener-
alizing to several orbital per site poses no problem. Let us take a system with N sites.
We can write the full wavefunction of the problem as a linear combination of all the
wavefunction on each site since we consider that they are essentially orthogonal

ψ(r) =
1√
N

N−1∑
j=0

αjψ0(r −Rj) (0.14)
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where the αj are coefficients to determine. Since we want the problem to be invariant
by a translation of a, the wavefunction can only be multiplied by a phase if we translate
x by a

ψ(x+ a) = eikaψ(x) (0.15)

which defines the parameter k. This parameter, which of course depends on the wave-
function ψ is known as the pseudomomentum of the system. Note that this constraint
is in fact an exact statement, known as the Bloch theorem. In order to satisfy the
constraint (0.15) it is easy to see that we can take

ψk(r) =
1√
N

N−1∑
j=0

eikRjψ0(r −Rj) (0.16)

which ensures also the proper normalization of the wavefunction. In order to have inde-
pendent wavefunctions we should not take values of k leading to the same coefficients.
Since Rj = aj values of k differing by 2π/a would lead to the same coefficients. We
must thus restrict the values of k to an interval of size 2π/a, called the first Brillouin
zone. Typically one takes k ∈ [−π/a, π/a]. All physical quantities are thus periodic
over this interval. In addition not all values of k are allowed. Because of the system
is of size N , k must be quantized. The precise quantization depends on the boundary
conditions. For example for periodic boundary conditions ψ(x + La) = ψ(x) imposes
that k is a multiple of an integer:

k =
2πp

N
, p ∈ Z (0.17)

There are thus in the first Brillouin zone exactly N values of k and thus N independent
functions ψk(x).

0.2.3 More general relations

Many of the relations or properties that we have obtained within the tight binding
approximation are in fact general and exact. Let us briefly review them here.

The first one is the Bloch theorem which states that in a periodic potential there
exist a quantum number k labeling the eigenfunctions such that

ψk(r) = eikruk(r) (0.18)

where uk(r) is a periodic function

uk(r + a) = uk(r) (0.19)

The constraints on the pseudomentum k that we have established in the previous
section hold.

In the same way the tight binding wavefunction has the right structure. One can
represent the eigenfunction under a form known as Wannier functions (Ashcroft and
Mermin, 1976; Ziman, 1972):

ψk(r) =
1√
N

∑
j

φ(r −Rj) (0.20)
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The Wannier function is given by

φ(r −Rj) = φRj (r) =
1√
N

∑
k

e−ikRjψk(r) (0.21)

Two Wannier functions centered on two different sites are exactly orthogonal

〈φRi |φRj 〉 = δi,j (0.22)

and the wavefunction φRj (r) is essentially localized around the site Rj . We see that
in the limit of high barriers, the local functions around one of the minimum of the
potential provide an approximate form for the Wannier function.

Let us for example look at a Wannier function that would correspond to (0.18)
with a uk(r) independent of k. In that case the Wannier function would be (in one
dimension)

φRj (x) = u(r)

√
N

π

sin(π(x−Rj)/a)

x−Rj
(0.23)

showing the localization around the site Rj .

0.2.4 Hubbard and related models

Optical lattices thus provide a natural realization for certain models of interacting
quantum systems with local interactions. In condensed matter these models are ap-
proximation of the realistic situations. Indeed in a solid the basic interaction is nor-
mally the Coulomb interaction between the electrons. However in a metal this interac-
tion is screened, with a quite short screening length, of the order of the lattice spacing
in a good metal (Ashcroft and Mermin, 1976; Ziman, 1972). It is thus tempting to
replace the interaction with a local one. It is however in principle a caricature of the
reality since the screening length can vary, hence the need to take into account inter-
actions with a range longer than a single site etc. When comparing a certain solution
of these models with reality, it is thus difficult to known if discrepancies are due to
the approximations made in the solution or in the approximations made in the model.
Optical lattices at least provide a reasonably clean realization of such models that
can be compared directly with theoretical predictions. Let us examine some of these
models

Bosonic Hubbard model:. We already obtained this model in Section 0.2.2. It is

H = −t
∑
〈i,j〉

(b†i bj + h.c.) +
U

2

∑
j

n̂j(n̂j − 1) (0.24)

where 〈〉 denotes nearest neighbors. t is the hopping amplitude from one site to the
next, and U the energy cost of putting two particles on the same site. This model
describes quantum particles (typically bosons) hopping on a lattice and paying the
interaction price U . This is essentially the simplest model that contains all the impor-
tant elements of the competition between kinetic energy and interactions in a solid:
i) the kinetic energy; ii) the notion of filling of a band (which would not be present
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in a continuum); iii) the interaction. This model known as the Hubbard model was
introduced in 1963 (Hubbard, 1963) for fermions (see below). The model (0.24) which
applies to bosons is sometimes referred to as the Bose-Hubbard model to distinguish it
from its venerable ancestor. One can of course add several perturbations to the above
model. The most common ones are the confining potential or any local potential, such
as disorder. This would lead to

Hµ =
∑
j

µj n̂j (0.25)

For the confining potential the chemical potential term is of the form µj ∝ j2 and takes
of course any suitable form depending on the perturbation. Optical lattices allow an
easy control of the hopping amplitude t while Feshbach resonance changes U (Bloch,
Dalibard and Zwerger, 2008). These two methods allows for a large variation of the
ratio U/t which controls the strength of the interaction effects.

As mentioned already (0.24) is a faithful description of the system in the optical
lattice provided the temperature T and interaction U are smaller than the distance
between the lowest orbital and the first excited one, an energy of order ~ω0. Otherwise
one must generalize the above model to a multiorbital one. Note that if the optical
lattice is not deep enough, or if the scattering length is too large, additional terms will
appear in the hamiltonian and the simple one-band Hubbard model is no longer valid:
for a discussion, see e.g. (Werner, Parcollet, Georges and Hassan, 2005).

t − V model:. For spinless fermions (0.24) would not contain any interaction since
the Pauli principle forbids double occupancy of a given site. For spinless fermions one
can thus consider an interaction of the form:

HV = V
∑
〈i,j〉

n̂j n̂j (0.26)

In condensed matter this is merely taking into account the long range nature of the
interactions. In cold atoms it is rather difficult to realize but could be relevant for
systems with longer range interactions such as dipolar molecules. The model with
kinetic energy on the lattice and the interaction (0.26) is known as t − V model and
is also related to models for spins as we will see below.

Hubbard model:. Since electrons in solids have a spin 1/2, i.e. an internal degree
of freedom, it is important to consider the generalization of this class of models to
the case of two species of particles. This is the canonical Hubbard model for fermions
(Hubbard, 1963). Hopping conserves the internal degree of freedom (that we will call
“spin” for simplicity), while a local interaction can only exist between two opposite
spins since the Pauli principle prevents two fermions of the same spin to be on the
same site. The model is thus

H = −t
∑

〈ij〉,σ=↑↓

(c†iσcjσ + h.c.) + U
∑
i

n̂i,↑n̂i,↓ (0.27)

where ↑, ↓ denote the two eigenstates of opposite spin (for example the two eigen-
state of the spin along the z direction). In the cold atom context the “spin” degree
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of freedom can denote any two possible internal state. This model contains the essen-
tial ingredients of the physics of strongly correlated quantum systems. Even if it is
extremely simple to write it is extremely challenging to solve.

Generalizations:. Of course this Hamiltonian can be complicated in several ways,
by putting for example state dependent hopping amplitudes t↑ t↓ (Cazalilla, Ho and
Giamarchi, 2005), by adding longer range interactions to the system or by considering
a larger number of internal degrees of freedom. All these models can be (or have been
already) potentially realized in cold atomic systems.

In addition to the fermionic Hubbard model, cold atomic systems have also allowed
to realize bosonic systems with internal degrees of freedom. This has lead to several
interesting models, in particular the one of a two component Bose-Hubbard model.
Contrarily to the case of fermions for which the Pauli principle prevent the occupation
of a site by two particles of the same species Bosons can have such terms. The inter-
action term for the two component Bose-Hubbard model thus involves three different
interactions

H =
U↑↑
2

∑
i

n̂i↑(n̂i↑ − 1) +
U↓↓
2

∑
i

n̂i↓(n̂i↓ − 1) + U↑↓
∑
i

n̂i↑n̂i↓ (0.28)

As we will see in the next section, the combination of these three interactions can lead
to a wide range of physical behaviors.

With respect to these models, cold atoms, given the local nature of the interactions
and the degree of control on the lattice, interactions and the nature of the particles
are a fantastic laboratory to realize and test these models. There are however several
limitations or points to keep in mind. We have already mentioned some of them. Let
us summarize them here:

1. If one wants to be able to use a single band model the separation between level
in one of the optical lattice well must be larger than the interaction. This is not
a major problem when the lattice is deep, and when the interaction is reasonably
small, but it can become a serious limitation if the interaction is increased by a
Feshbach resonance.

2. If one want to use the optical lattice to reduce the kinetic energy in order to
change the ratio of the kinetic energy/interactions then one has to worry about
the temperature. Indeed if the kinetic energy becomes small compared to the
temperature one has a essentially a classical system.

3. Finally the confining potential which corresponds to a locally varying chemical
potential is both an advantage and a serious limitation. Indeed as we will discuss
the physics of such systems depends strongly on the filling. So controlling the
chemical potential and/or the number of particles per site is of course crucial.
Having a confining potential has the advantage that in the system there are many
different values of the chemical potential and thus one does not need (it would be
in practice extremely difficult) to control exactly the number of particles compared
to the number of sites. On the other hand the system is inhomogeneous which
mean that most measurements will give an average response over many different
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phases, obscuring deeply the physics. Clearly this question is related to the ability
or not to probe the system locally.

0.2.5 Superexchange

The models of the previous sections describe the behavior of itinerant quantum par-
ticles on a lattice. Particularly interesting behavior occurs when these particles can
have internal degrees of freedom such as in the Hubbard model. In that case it is
possible as we will discuss in the following sections that due to the interactions the
charge of the particles gets localized for special filling of the lattice, for example one
particle per site (Mott transition). In such a case as we will discuss later the repulsion
between the charges (U in the Hubbard model (0.27) can lead to an insulating phase
in the case of one particle per site (Mott transition). For the Bose-Hubbard model
with one component such a ground state would be featureless. But for systems with
two (or more) components, both fermionic and bosonic, the ground state is a priori
quite complex since on each site one has to choose the state of the internal degree of
freedom (which we will call spin in all this section).

As shown in Fig. 0.2 if the repulsion is very large charge excitations which would put
two particle per site would cost an energy of order U and are thus essentially forbidden.
On the other hand since U is not infinite there could be virtual processes that allow
the system to benefit from the kinetic energy, while leaving the system in a sector
with exactly one particle per site. These processes are the so-called superexchange
processes. Here we will not give the full derivation of the superexchange term, this
can be found in quite details in (Giamarchi, 2011) for example. We simply give here a
qualitative argument.

Since the charge is essentially frozen one can stay in the Hilbert space in which each
site has exactly one particle per site and only the spin degree of freedom remain. It
means that on each site we have need to states to fully describe the Hilbert space. We
can thus reduce the complete Hamiltonian (0.27) to an effective hamiltonian acting
only on the spin degrees of freedom. For fermions it is easy to see that if one has two
parallel spins on neighboring sites, no kinetic energy process can take place. On the
other hand if the spins are antiparallel second order perturbation theory (see Fig. 0.2)
can lead back to the initial state or lead to a state in which the two spins have been
exchanged. The matrix element involved if of order J = t2/U since each hopping has
an amplitude t and the intermediate state is of energy U . The first process can be
described by the effective Hamiltonian (written only for two spins)

H1 = JSz1S
z
2 −

J

4
(0.29)

where we have introduced the spin operators Sα = 1
2σ

α where the σα are the three
Pauli matrices. As usual we introduce the two eigenstate of Sz and the hermitian
conjugate operators S+ = Sx + iSy and S− = Sx − iSy. These operators verify

Sz |↑, ↓〉 = ±1

2
|↑, ↓〉

S+ |↓〉 = |↑〉 , S+ |↑〉 = |↓〉
(0.30)
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t
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t

(a) (b)
Fermions

Bosons

Fig. 0.2 For a large repulsion U and one particle per site, charge excitations cost an energy

of order U , but virtual processes allow to gain some kinetic energy. a) For fermions the Pauli

principle completely blocks hopping if the spins are parallel. b) For opposite spins virtual

hopping is possible. This leads to a superexchange that is dominantly antiferromagnetic (see

text). For bosons both processes are possible and depend on the intra- and inter-species

interactions. Bosonic factors favor parallel spins. Thus if all interactions are equal for bosons

the superexchange is dominantly ferromagnetic (see text). Changing the interactions between

the two type of species allow to go from the ferromagnetic exchange to the antiferromagnetic

one.

The equation (0.29) shows that the energy of two antiparallel spins is lowered by an
energy −J/2 while the one of two parallel spins remains zero. The second process leads
to an exchange of the two spins and can be written as

H2 =
J

2
[S+

1 S
−
2 + S−1 S

+
2 ] (0.31)

Putting the two processes together and taking proper care of the numerical factors
one obtains for the full effective Hamiltonian (up to a constant energy term)

H =
J

2

∑
〈ij〉

[S+
i S
−
j + S−i S

+
j ] + J

∑
〈ij〉

Szi S
z
j = J

∑
〈ij〉

~Si · ~Sj (0.32)
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where J ' 4t2/U for large values of U . This hamiltonian is known as the Heisenberg
hamiltonian. We thus see that the combination of kinetic energy, Pauli principle and
interaction leads to a remarkable exchange term between the spins which looks very
much like the dipolar one that would exist for the direct magnetic exchange between
magnetic moments. However there are also remarkable differences. This exchange,
nicknamed superexchange, is responsible for many of the magnetic properties of the
strongly interacting quantum systems in solids (Auerbach, 1998). Some noteworthy
points are as follows

1. Compared to an exchange between magnetic moments this superexchange is
isotropic in the spins variables and will not couple the lattice direction with the
spin directions. In that sense it is even simpler than a normal dipolar exchange.
The spin rotation invariance of (0.32) comes of course from the spin rotation
invariance of the original Hubbard hamiltonian (0.27).

2. Quite importantly the order of magnitude of typical interactions are quite differ-
ent. Direct magnetic exchange are quite ridiculous in solids. If one take spins on
typical lattice spacing distance in a solid one obtains direct magnetic exchange
of less than 1K. On the contrary since kinetic energy is typically 1eV and inter-
actions of the order of ∼ 10eV leads for solids to a J of the order J ∼ 1000K.
Superexchange is thus in solids by far the dominant term and is at the root of
the magnetic properties that we can observe in nature. In cold atoms the “spin”
is of course merely an internal degree of freedom so the superexchange is the only
term that can exist.

3. For fermions because of the Pauli principle J > 0 which means that the Fermionic
Hubbard model lead to antiferromagnetic phases. The situation is quite different
for Bosons as indicated in Fig. 0.2. In that case, both species can hop, so the
sign of the effective exchange J will depend on the relative values of the intra-
and inter-species interactions. If the intra-species U↑↑ and U↓↓ is the largest, than
it is very much like a Pauli principle and one recovers an antiferromagnetic su-
perexchange. On the contrary if the inter-species interaction U↑↓ is the largest
then one has a ferromagnetic (i.e. a negative J) superexchange. In the case where
all the interactions are equal then the bosonic factors still favor a ferromagnetic
exchange (Duan, Demler and Lukin, 2003). Multicomponent bosonic systems will
thus offer a particularly rich physics (Kleine, Kollath, McCulloch, Giamarchi and
Schollwoeck, 2007; Zvonarev, Cheianov and Giamarchi, 2007).

0.3 The Bose-Hubbard model and the superfluid to Mott insulator
transition

In this section, we make our first encounter with the Mott phenomenon: strong re-
pulsive interactions between particles can prevent the formation of an itinerant state
and favour a situation in which particles are localized. This phenomenon is of key
importance to the physics of strongly correlated materials. Many remarkable physical
properties are found for those materials which are close to a Mott insulating state.
For example, high-temperature superconductivity is found in copper oxides when a
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Fig. 0.3 (a) Typical real-space configuration of particles in an itinerant (metallic or su-

perfluid) state. (b) Typical real-space configuration in the Mott insulating state, in which

double-occupancies are strongly suppressed. (Center:) Sir Nevil Mott. Adapted in part from

(Bloch, 2005).

metallic state is induced by introducing a relatively small amount of charge carriers
into a Mott insulator.

In such circumstances, particles “hesitate” between itinerant and localized behav-
ior, making quantum coherence more difficult to establish and leading to a number
of possible instabilities. From a theoretical viewpoint, one of the key difficulties is to
describe consistently an entity which is behaving simultaneously in a wave-like (delo-
calized) and particle-like (localized) manner. Viewed from this perspective, strongly
correlated quantum systems raise fundamental questions in quantum physics. Because
the Mott phenomenon is so important, the theoretical proposal (Jaksch, Bruder, Cirac,
Gardiner and Zoller, 1998) and experimental observation (Greiner, Mandel, Esslinger,
Hänsch and Bloch, 2002) of the Mott transition in a gas of ultra-cold bosonic atoms
in an optical lattice have truly been pioneering works establishing a bridge between
modern issues in condensed matter physics and ultra-cold atomic systems.

In this section, we deal with this phenomenon in the simplest possible context: that
of the Hubbard model for bosonic atoms in an optical lattice. The case of fermions
will be considered later, in Section 0.6 and Section 0.7. The hamiltonian of this model
reads (see also (0.24)):

H = −
∑
ij

tij b
†
i bj +

U

2

∑
i

n̂i(n̂i − 1) +
∑
i

vtrap(i) n̂i − µ
∑
i

n̂i (0.33)

0.3.1 General considerations: lifting a macroscopic degeneracy

Let us first consider a homogeneous system (vtrap = 0) in the limit where there is no
hopping tij = 0 (very deep lattice) as discussed in the Section 0.2.1. The hamiltonian
is then diagonal in occupation-number basis and has eigenstates |n〉 with energies
E0
n = U

2 n(n − 1) − µn. These energy levels cross at specific values of the chemical
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potential µ0
n = nU at which E0

n = E0
n+1. Hence, the nature of the ground-state

depends crucially on the value of the chemical potential:

• If µ ∈ ](n− 1)U, nU [, the ground-state is non-degenerate, with exactly n bosons
on each lattice site.

• If µ = nU , having n or n−1 bosons on each lattice site is equally probable. Hence,
the ground-state has a macroscopic degeneracy 2Ns (with Ns the number of sites
in the lattice).

The number of particles per site in the ground-state as a function of chemical potential
has the form of a “staircase” made of plateaus of width U in which 〈n̂〉 remains
constant, separated by steps at µ0

n = µn at which it jumps by one unit (Fig. 0.4). In
the context of mesoscopic solid-state devices, this is called the “Coulomb staircase”:
in order to increase the charge by one unit, a Coulomb charging energy must be paid
due to the electrostatic repulsive interactions between electrons.

Within a given plateau µ ∈ ](n− 1)U, nU [, the first excited state (at constant total
particle number) consists in moving one boson from one site to another one, leaving a
site with occupancy n− 1 and another one with occupancy n+ 1. The energy of this
excitation is:

∆0
g = E0

n+1 + E0
n−1 − 2E0

n = U (0.34)

Hence, the ground-state is separated from the first excited state by a finite energy gap.
(In passing, we note that this gap can be written as ∆0

g = (E0
n+1 − E0

n) + (E0
n−1 −

E0
n) which in chemist’s terminology corresponds to ionization energy minus affinity).

Adding or removing an electron also requires a finite amount of energy: hence the
system is incompressible. Indeed, each plateau has a vanishing compressibility:

κ =

(
∂2E

∂n2

)−1

=
∂n

∂µ
(0.35)

Having understood the zero-hopping limit, we can ask what happens when a small
hopping amplitude is turned on. Obviously, a non-degenerate incompressible ground-
state separated by a gap from all excitations is a quite protected state. Hence, we
expect that the system will remain incompressible and localized when turning on a
small hopping, for µ well within a given charge plateau. In contrast, the hopping am-
plitude is likely to be a singular perturbation when starting from the macroscopically
degenerate ground-state at each of the degeneracy points µ0

n = nU . One natural way
for the perturbation to lift the degeneracy is to select a unique ground-state which
is a superposition of the different degenerate configurations, with different number of
particles on each site. If the mixing between the different charge states corresponds to
a state with small phase fluctuations (the phase is the conjugate variables to the local
charge), the resulting state will be a superfluid. Hence, we expect that a superfluid
state with Bose condensation will occur already for infinitesimal hopping at the de-
generacy points µ = nU . These expectations are entirely confirmed by the mean-field
theory presented in the next section. We note in passing that interesting phenomena
often happen in condensed-matter physics when a perturbation lifts a large degeneracy
of the ground-state (the fractional quantum Hall effect is another example).
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0.3.2 Mean-field theory of the bosonic Hubbard model

As usually the case in statistical mechanics, a mean-field theory can be constructed
by replacing the original hamiltonian on the lattice by an effective single-site problem
subject to a self-consistency condition. Here, this is naturally achieved by factorizing
the hopping term (Fisher, Weichman, Grinstein and Fisher, 1989; Sheshadri, Krishna-

murthy, Pandit and Ramakrishnan, 1993): b†i bj → const.+〈b†i 〉bj+b†i 〈bj〉+· · · in which
“· · · ” denote fluctuations which are neglected. Another essentially equivalent formu-
lation is based on the Gutzwiller wavefunction (Rokhsar and Kotliar, 1991; Krauth,
Caffarel and Bouchaud, 1992). The effective 1-site hamiltonian for site i reads:

h
(i)
eff = −λib† − λib+

U

2
n̂(n̂− 1)− µn̂ (0.36)

In this expression, λi is a “Weiss field” which is determined self-consistently by the
boson amplitude on the other sites of the lattice through the condition:

λi =
∑
j

tij 〈bj〉 (0.37)

For nearest-neighbour hopping on a uniform lattice of connectivity z, with all sites
being equivalent, this reads:

λ = z t 〈b〉 (0.38)

These equations are easily solved numerically, by diagonalizing the effective single-site
hamiltonian (0.36), calculating 〈b〉 and iterating the procedure such that (0.38) is satis-
fied. The boson amplitude 〈b〉 is an order-parameter associated with Bose condensation

in the ~k = 0 state: it is non-zero in the superfluid phase.
For densities corresponding to an integer number n of bosons per site on average,

one finds that 〈b〉 is non-zero only when t/U is larger than a critical ratio (t/U)c
(which depends on the filling n). For t/U < (t/U)c, 〈b〉 (and λ) vanishes, signalling a
non-superfluid phase in which the bosons are localized on the lattice sites: the Mott
insulator. For non-integer values of the density, the system is a superfluid for all t/U >
0. This fully confirms the expectations deduced on a qualitative basis at the end of
the previous section.

Perturbative analysis. It is instructive to analyze these mean-field equations close
to the critical value of the coupling: because λ is then small, it can be treated in
(0.36) as a perturbation of the zero-hopping hamiltonian . Considering a given plateau
µ ∈](n− 1)U, nU [, the perturbed ground-state reads:

|ψ0〉 = |n〉 − λ
[ √

n

U(n− 1)− µ
|n− 1〉+

√
n+ 1

µ− Un
|n+ 1〉

]
(0.39)

so that:

〈ψ0|b|ψ0〉 = −λ
[

n

U(n− 1)− µ
+

n+ 1

µ− Un

]
(0.40)

Inserting this in the self-consistency condition yields:
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Fig. 0.4 Left: phase diagram of the Bose Hubbard model as a function of chemical potential

µ/U and coupling t/U . An incompressible Mott insulator is found within each lobe of integer

density. Right: density profiles in a harmonic trap. The “wedding cake” structure (see text)

is due to the incompressibility of the Mott insulator (numerical calculations courtesy of

H.Niemeyer and H.Monien, figure courtesy F.Gerbier).

λ = −z t λ
[

n

U(n− 1)− µ
+

n+ 1

µ− Un

]
+ · · · (0.41)

where “...” denotes higher order terms in λ. This equation can be viewed as the
linear term in the expansion of the equation of state for λ. As usual, the critical
value of the coupling corresponds to the vanishing of the coefficient of this linear term
(corresponding to the quadratic or mass term of the expansion of the Landau free-
energy). Hence the critical boundary for a fixed average (integer) density n is given
by:

zt

U
=

(n− µ/U)(µ/U − n+ 1)

1 + µ/U
(0.42)

Phase diagram.. This expression gives the location of the critical boundary as a
function of the chemical potential. As expected, it vanishes at the degeneracy points
µ0
n = nU where the system becomes a superfluid for infinitesimal hopping amplitude.

In the (t/U, µ/U) plane, the phase diagram (Fig. 0.4) consists of lobes inside which the
density is integer and the system is a Mott insulator. Outside these lobes, the system
is a superfluid. The tip of a given lobe corresponds to the the maximum value of the
hopping at which an insulating state can be found. For n atoms per site, this is given
by:

zt

U
|c,n = Maxx∈[n−1,n]

(n− x)[x− n+ 1]

1 + x
=

1

2n+ 1 + 2
√
n(n+ 1)

(0.43)

So that the critical interaction strength is (U/zt)c ' 5.8 for n = 1, and increases as n
increases ((U/zt)c ∼ 4n for large n).
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Mott gap.. The gap in the Mott insulating state is of course reduced by the hopping
from its zero-hopping value ∆0

g = U . We can obtain its mean-field value from the
extension of the density plateau:

∆g(n) = µ+(n)− µ−(n) (0.44)

where µ± are the solutions of the quadratic equation corresponding to (0.42), i.e:

(µ/U)2 − [2n− 1− (zt/U)](µ/U) + n(n− 1) + (zt/U) = 0 (0.45)

yielding:

∆g(n) = U

[
(
zt

U
)2 − 2(2n+ 1)

zt

U
+ 1

]1/2

(0.46)

The Mott gap is ∼ U at large U/t and vanishes at the critical coupling (∝ (U−Uc)1/2

within mean-field theory).

Incompressibility and “wedding-cake” shape of the density profile in the trap. The
existence of a gap means that the chemical potential can be changed within the gap
without changing the density. As a result, when the system is placed in a trap, it
displays density plateaus corresponding to the Mott state, leading to a “wedding cake”
structure of the density profile (Fig. 0.4). This is easily understood in the local density
approximation, in which the local chemical potential is given by: µ(r) = µ−vtrap(r) =
µ−mω2

0r
2/2, yielding a maximum extension of the plateau: ∼ (2∆g/mω

2
0)1/2. Several

authors have studied these density plateaus beyond the LDA by numerical simulation
(see e.g (Batrouni, Rousseau, Scalettar, Rigol, Muramatsu, Denteneer and Troyer,
2002)), and they have also been imaged experimentally, see e.g. (Fölling, Widera,
Müller, Gerbier and Bloch, 2006).

0.3.3 Mean-field theory: the wave-function viewpoint

An alternative, but equivalent, viewpoint on the above mean-field theory is to formu-
late it as a variational ansatz for the ground-state wave-function (Rokhsar and Kotliar,
1991; Krauth, Caffarel and Bouchaud, 1992).

In the zero-hopping limit, the ground-state wave-function within a given density
plateau reads:

Ψt=0
0 =

∏
i

|n〉i =
∏
i

1√
n!

(b†i )
n|0〉 (0.47)

In the opposite limit of a non-interacting system (U = 0), the ground-state wave-

function is obtained by placing all bosons in the ~k = 0 state:

ΨU=0
0 =

1√
N !

(b†~k=0
)N |0〉 =

1√
N !

[
1√
Ns

∑
i

b†i

]N
|0〉 (0.48)

In the limit of large N,Ns, the ground-state wavefunction for the non-interacting case
can alternatively be formulated (by letting N fluctuate) as a product of coherent states
on each site:
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ΨU=0
0 =

∏
i

|α〉i , |α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (0.49)

with |α|2 = 〈n〉 = N/Ns. In this limit, the local density obeys Poisonnian statistics

p(n) = e−|α|
2 |α|2n/n! = e−〈n〉〈n〉n/n!.

We note that in both limits, the ground-state wave-function is a product of in-
dividual wave-functions over the different lattice sites. The individual wave-functions
have a very different nature however in each limit: they are number state for t = 0
while they are a phase-coherent superposition of number states in the U = 0 limit.

A natural variational ansatz is then to assume that the wave-functions remains an
uncorrelated product over sites for arbitrary U/t, namely:

Ψvar
0 =

∏
i

[∑
n

cn|n〉i

]
(0.50)

The variational principle then leads to equation for the coefficients cn which are identi-
cal to the mean-field equations above. The trial wave-function interpolates between the
Poissonian statistics cn = αn/

√
n! for U = 0 and the zero-fluctuation limit cn = δn,n0

as the insulator is reached. The fact that n has no fluctuations throughout the Mott
phase is of course an artefact of the mean-field.

The derivation of the above results rest heavily on the fact that one can build a
mean-field theory, and in particular that a well defined superfluid phase, with perfect
order of the phase exists. It is thus interesting to see how the above physics and
competition between the superfluid and Mott insulating phase would be modified
in situation where phase fluctuations are very strong and the mean-field theory is
invalid. This is clearly the case if the dimension of the system is getting smaller, since
in low enough dimensions is it impossible to break a continuous symmetry (the so
call Mermin-Wagner theorem (Mermin, 1968)), and thus no true superfluid phase –
which would correspond to a breaking of the phase symmetry of the wavefunction –
can exist. Since cold atoms systems allow an excellent control on the dimensionality
of the problem by changing the strength of the optical lattice, they allow in particular
to tackle these questions in the one dimensional situation for which one can expect
novel effects to occur. We will thus examine in Section 0.4 the case of one dimensional
quantum systems.

0.3.4 Probing Mott insulators: shaking of the optical lattice

In order to probe the above physics it is important to have good probes. The time of
flight measurements, which give access to the single particle correlations is of course
one of them and we will examine several others in these notes. In this section we want
to discuss a relatively simple probe, but which gives extremely useful information for
such systems and which consists in shaking of the optical lattices.

The idea is to modulate in a time dependent way the amplitude of the optical lattice
(Stöferle, Moritz, Schori, Köhl and Esslinger, 2004) for a given amount of time and
then to measure the energy deposited in the system by such a process, as a function
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(a)

(b)

(c)

E

(d)

Fig. 0.5 a) shaking of the optical lattice for a system of bosons. One sees marked differences

depending on the depth of the optical lattice. In the Mott insulating phase a peak structure

is observed. [After (Stöferle, Moritz, Schori, Köhl and Esslinger, 2004)]. b) Deep in the Mott

phase the structure can be explained by considering the creation of a doublon (doubly oc-

cupied site) and a holon (empty site) due to the modulation of the kinetic energy by the

shaking. c) structure of the peak depending on the dimension. This structure is located at an

energy around the Mott gap, and the width is reflecting the kinetic energy of the doublon and

holon. [After (Tokuno and Giamarchi, 2011)]. d) for fermions similar results can be obtained

by considering the creating of doubly occupied states which makes it a very sensitive probe.

Fitting to a slave boson theory gives excellent agreement with the data and can give some

access to the temperature of the system. [After (Tokuno, Demler and Giamarchi, 2011)]

of the modulation frequency. This corresponds to adding a term in the Hamiltonian
of the form

HL =

∫
dx[VL + δVL cos(ω0t)] cos(Qx)ρ(x) (0.51)

The results for such an operation are shown in Fig. 0.5. One sees marked differences
depending on the strength of the interactions. In particular in the Mott insulator one
can recognize a peak structure.

Interpreting such data is of course not easy since one deals with a full time de-
pendent Hamiltonian, making it difficult to deal with analytically and numerically.
Analytically it is possible to use linear response to study the effects of the shaking
(Iucci, Cazalilla, Ho and Giamarchi, 2006). The results crucially depend on whether
the lattice is weak or strong. We will concentrate here on the case of the strong lattice
and refer the reader to the literature for the other limit. In that case the main effect
of modulating the lattice is to change, in the resulting effective Bose-Hubbard model
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(0.24) the hopping t and the interaction U . Indeed as we saw in the Section 0.2 these
terms are directly determined by the shape of the wavefunctions and thus by the depth
of the lattice. One can even realize that the main effect will occur on the tunneling
term (Reischl, Schmidt and Uhrig, 2005) which depends exponentially on the lattice
depth. In the case of the strong lattice the main consequence is thus a modulation of
the kinetic energy in the Hubbard model

HK = H0
K + δHK(t) = [t0 + δt cos(ω0t)]

∑
〈i,j〉

(b†i bj + h.c.) (0.52)

It is thus possible to study the effects of the shaking by considering the linear response
in this term (Iucci, Cazalilla, Ho and Giamarchi, 2006; Kollath, Iucci, Giamarchi,
Hofstetter and Schollwöck, 2006a; Huber, Altman, Bchler and Blatter, 2007; Tokuno
and Giamarchi, 2011). We will enter in the detail of the analysis but give again the
main ideas. In linear response the energy absorbed is directly related to the imaginary
part of the Fourier transform of the equilibrium correlation function

χ(t) = −i〈[δHK(t), δHK(0)]〉 (0.53)

We thus see that the shaking of the lattice measures the kinetic energy-kinetic en-
ergy correlations. In other words we have to consider the processes that are shown
in Fig. 0.5. We transfer at time zero a particle from one site to the neighboring one,
then this excitation propagates and at a later time we undo it by applying the kinetic
energy operator again. Deep in the Mott phase we start with one particle per site.
The application of the kinetic energy term thus creates a doubly occupied site and an
empty site. The energy of this excitation is of the order of the Mott gap ∆M ∼ U . We
can thus expect that the system absorbs energy when the frequency of the modulation
matches the Mott gap ~ω0 = ∆M . The shaking of the lattice thus allows to directly
measure the Mott gap of the system. In addition the doublon and holon can propagate
and thus have their own kinetic energy of the order of t0. This will broaden the peak in
a way that reflects this propagation. Such a propagation can be computed by properly
taking into account the fact that the holon and doublon cannot be at the same site
without recombining and give the remarkable peak structure of Fig. 0.5. Not taking
such a constraint into account leads to incorrect results. Such a structure reflects the
van Hove singularities in the density of state. We refer the reader to the literature for
more details and references on the subject.

A variant of the shaking of the optical lattice, namely a modulation of the phase
of the lattice rather than its amplitude can be treated by similar methods. Quite
remarkably modulating the phase leads to the current-current correlation function
instead of the kinetic energy-kinetic energy one. It is thus giving a direct access to
the frequency dependent conductivity of the system (Tokuno and Giamarchi, 2011),
something that allows to make a direct connection with comparable experiments done
in the condensed matter context. It will be interesting to practically implement such
a probe.

The shaking is thus an extremely useful probe for Mott insulating physics. One
drawback for the bosons, is that measuring the energy absorbed is difficult. As a
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result, one needs to modulate with a relatively large intensity, which takes the system
out of the linear response regime. In order to describe the absorption in this limit it
is thus necessary to perform a numerical analysis of the system, something not trivial
given the out of equilibrium nature of the problem. In one dimension DMRG studies
using the possibility to tackle fully time dependent hamiltonian have been performed
(Kollath, Iucci, Giamarchi, Hofstetter and Schollwöck, 2006a) and have allowed to
elucidate the nature of the higher peaks in the experimental data shown in Fig. 0.5.
In order to circumvent the difficulty caused by the measure of the energy (and in
particular as we will see in Section 0.6.2 for the fermions this is extremely difficult)
it has been suggested (Kollath, Iucci, McCulloch and Giamarchi, 2006b) to measure
instead the production of the doubly occupied states as a function of time. This allows
for much more precise measurements. We will come back to this point in Section 0.6.2.

0.4 One-dimensional bosons and bosonization

Let us now turn to one dimensional systems, for which very special effects arise. In-
deed as we discussed already for the case of bosons, and will see in Section 0.5 for
fermions, the effects of interactions are crucial. For bosons, interactions lead both to
the superfluid state and to the Mott insulating one. As one can naively expect in one
dimension the effects of interactions will be maximum since the particles cannot avoid
each other, while in three dimensions one can naively expect that particles will see
each other much less. In addition, as we already mentioned it is impossible to break a
continuous symmetry, so even at T = 0 a true ordered superfluid ground state cannot
exist. On the other hand a bosonic system will still retain strong superfluid tenden-
cies. One can thus expect that quantum system in one dimension exhibit a radically
different physics than for their higher dimensional counterparts. Cold atomic systems
have been remarkable in showing such a physics given the remarkable control over
dimension and interactions.

We will examine some of the aspects of this novel physics in this section. Of course
there is much too much to be examined in these few pages. This sections will thus
simply be a general presentation, and will not pretend to be exhaustive. The interested
reader can find much more details in a whole book on the subject of one dimensional
systems (Giamarchi, 2004) where a complete description of the various one dimensional
systems and physical effects and methods is given. In addition, for the specific case
of bosons in cold atoms several lecture notes also contain complementary material
(Giamarchi, 2006; Giamarchi, 2011). Finally these notes will not make attempts in
giving a comprehensive list of references since an extensive review on the subject of
one-dimensional bosons exists (Cazalilla, Citro, Giamarchi, Orignac and Rigol, 2011).

0.4.1 Peculiarities of one dimension

Before we embark on the one dimensional world, let us briefly recall some of the
points of the typical solution for a bosonic system in higher dimension. As discussed
in Section 0.3 for a high (meaning d ≥ 1) dimensional system one can expect that
there is a well defined superfluid order. As a result the wavefunction can be written as

ψ(x) =
√
ρ(x)eiθ(x) (0.54)
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where ρ(x) is the density of particles at point x and θ(x) the phase of the wavefunction
at the same point. The present of superfluid order implies that we can use ρ(x)→ ρ0

and θ(x) acquires a finite expectation value θ(x) → θ0 so that the wavefunction has
a coherent phase through the whole sample. Fluctuations above this ground state can
be described by the Bogoliubov theory (Pitaevskii and Stringari, 2003). We will not
recall the theory here but just give the results. The Bogoliubov spectrum is linear at
small k with a velocity u of the excitations which represent the Goldstone mode of the
superfluid. The velocity u depends on the interactions among the particles. This linear
modes is the hallmark of the superfluidity in the system. At larger k the dispersion
gives back the k2 dispersion of free particles.

E(k) =
√
u2k2 + (k2/(2m))2 (0.55)

An important point is that the mode is a well defined dispersive mode, which char-
acterize excitations that have a well defined relation between their momentum and
energy.

Given the superfluid order the single particle correlation function tends to a con-
stant

g1(r) = lim
r→0
〈ψ(r)ψ†(0)〉 → Cste (0.56)

and as a result the occupation factor n(k) which is the fourier transform of the above
correlation function

n(k) =

∫
drg1(r) (0.57)

has a δ-function divergence at k = 0.
These results are summarized in the Fig. 0.6. We will contrast them with the results

in one dimension in the subsequent sections.

0.4.2 Realization of one dimensional systems

The possibility to obtain “one dimensional” systems is deeply rooted in the quantum
nature of the problem. Indeed the objects themselves are much smaller than the pos-
sibility to confine them, so one could naively think that it is always possible for them
to avoid each other. The answer comes from the quantization of wavefunction. In the
presence of an optical lattice one has the wavefunction (0.9) with one frequency ω0

in the longitudinal direction and ω⊥ in the two other directions (see Fig. 0.7). If the
confinement along the longitudinal direction is very weak, one can consider that the
wavefunction is essentially a plane wave in the longitudinal direction, leading to a
wavefunction of the form

ψ(x, r⊥) = eikxφ(r⊥) (0.58)

where φ depends on the precise form of the confining potential For an infinite well,
as show in Fig. 0.7, φ is φ(y) = sin((2ny + 1)πy/l), whereas it would be a gaussian
function (0.9) for an harmonic confinement. The energy is of the form

E =
~2k2

2m
+ ~ω⊥(n⊥ +

1

2
) (0.59)

Due to the narrowness of the transverse channel l, the transverse quantization energy
is sizeable while the energy along the longitudinal direction is nearly continuous. This
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d > 1 d = 1
E E

k k

Fig. 0.6 (left) behavior in high dimension (d ≥ 1). One expects an ordered superfluid state

for which the phase of the wavefunction is well defined (see text). The excitation spectrum

is made of Bogoliubov excitations with a linear dispersion at small k. The single particle

correlation g1(k) (see text) has a divergent δ-peak at k = 0. (right) in d = 1 no state will a

fully ordered phase can exist and correlation functions are usually decaying as powerlaws at

T = 0 and exponentially at finite T . The spectrum has a continuum of excitations and low

energy modes at k = 2πρ0 where ρ0 is the average density. The single particle correlation

has (at T = 0) a powerlaw divergence that characterize the quasi-long range order of the

superfluid. At finite temperatures this turns into an exponential decay and thus a lorentzian

like behavior for n(k)

leads to minibands as shown in Fig. 0.7. If the distance between the minibands is
larger than the temperature or interactions energy one is in a situation where only one
miniband can be excited. The transverse degrees of freedom are thus frozen and only
kx matters. The system is a one-dimensional quantum system.

This is quite similar to the conditions established at the end of Section 0.2 for the
use of a single band model. In addition to the cold atom situation similar conditions
have been met in condensed matter systems in a variety of problems such as spin chains
and ladders, organic superconductors, nanotubes, edge states in the quantum hall
effect, quantum wires in semiconducting structures, Josephson junction arrays, Helium
in nanopores. For more details on these systems we refer the reader to (Giamarchi,
2004). Quantum systems thus allow to realize situations where, although of course the
physical system is three dimensional, all the important properties can be described
purely from a one-dimensional description. Solving one dimensional problems is thus
not jut a theorist game but has deep consequences for a large number of physical
systems. Let us note that in addition to realizing purely one dimensional systems
one can have by including a larger and larger number of minibands an intermediate
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x

l

E(kx)

kx

n=0

n=1

Fig. 0.7 (left) Confinement of the electron gas in a one-dimensional tube of transverse size

l. x is the direction of the tube. Only one transverse direction of confinement has been shown

for clarity. Due to the transverse confining potential the transverse degrees of freedom are

strongly quantized. (right) Dispersion relation E(k). Only half of the dispersion relation is

shown for clarity. k is the momentum parallel to the tube direction. The degrees of freedom

transverse to the tube direction lead to the formation of minibands, labeled by a quantum

number n. If only one miniband is populated, as represented by the gray box, the system is

equivalent to a one dimensional system where only longitudinal degrees of freedom can vary.

between the one dimensional world the two dimensional one.

0.4.3 1D techniques

Treating interacting particle in one dimension is a quite difficult task, since we loose
most of the techniques (mean field theory for example) that we used to have to handle
higher dimensional systems. Fortunately there are some techniques that have proved
very efficient, and which combined together allowed to make significant progress in
our understanding of such systems. We will of course not detail these techniques and
refer the reader to (Giamarchi, 2004; Cazalilla, Citro, Giamarchi, Orignac and Rigol,
2011) for details and references. Here is a brief summary

1. Exact solutions: Some models in one dimension are exactly solvable by a tech-
nique known as Bethe-Ansatz (BA). This technique is limited to special models.
For example the fermionic Hubbard model or the t − V model are BA solvable,
but the bosonic Hubbard model is not. These exact solutions allow to extract
relatively easily the spectrum of excitations, and thus with some effort the ther-
modynamics properties of the system. It is an herculean task to go beyond this
and in particular to compute the correlation functions. Fortunately significant
progress could be accomplished in this domain and some correlation functions
have been obtained by BA in the recent years. This technique can be potentially
extended to out of equilibrium situations as well.

2. Numerical techniques: Numerical techniques to deal with quantum interacting
particles suffer from notorious convergence problems (specially for fermions) or
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have a hard time to deal with real-time dynamics. Fortunately in one dimension,
a special technique, the Density Matrix Renormalization Group technique, intro-
duced by S. White in the 90’s, allows extremely precise results without suffering
from essential convergence problems. Recently this technique has been extended
to deal with dynamical correlation functions as well. It is thus a method of choice
to tackle one dimensional systems. As with any numerical techniques, it is well
adapted to give short and intermediate range physics, but has the advantage to be
able to deal with additional complications such as the trap or other modifications
of the model without too much problems.

3. Low energy techniques: As for high dimensional materials (see in particular
the next section Section 0.5 for the Fermi liquid theory) there is in one dimension
a way to extract a universal description of the physical properties of the problem
at low energy. This technique, resting on something called bosonization, is thus
complementary of the two above mentioned techniques. It allows from the start to
obtain the asymptotic properties of the system, as a function of space, time at zero
or finite temperature. It also provided a nice framework to understand the new
physical properties of one dimensional systems. It depends on parameters that
can be efficiently determined by the two above techniques or extracted directly
from experiments.

These three lines of approach are directly complementary. In this section we will
mostly discuss the bosonization technique since it is the one that gives the most direct
physical representation of the physics of the problem.

The idea behind the bosonization technique is to reexpress the excitations of the
system in a basis of collective excitations. Indeed in one dimension it is easy to realize
that single particle excitations cannot really exit. One particle when moving will push
its neighbors and so on, which means that any individual motion is converted into a
collective one. Collective excitations should thus be a good basis to represent a one
dimensional system.

To exploit this idea, let us start with the density operator

ρ(x) =
∑
i

δ(x− xi) (0.60)

where xi is the position operator of the ith particle. We label the position of the ith
particle by an ‘equilibrium’ position R0

i that the particle would occupy if the particles
were forming a perfect crystalline lattice, and the displacement ui relative to this
equilibrium position. Thus,

xi = R0
i + ui (0.61)

If ρ0 is the average density of particles, d = ρ−1
0 is the distance between the particles.

Then, the equilibrium position of the ith particle is

R0
i = di (0.62)

Note that at that stage it is not important whether we are dealing with fermions or
bosons. The density operator written as (0.60) is not very convenient. To rewrite it in
a more pleasant form we introduce a labeling field φl(x) (Haldane, 1981a). This field,
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Fig. 0.8 Some examples of the labeling field φl(x). If the particles form a perfect lattice of

lattice spacing d, then φ0
l (x) = 2πx/d, and is just a straight line. Different functions φl(x)

allow to put the particles at any position in space. Note that φ(x) is always an increasing

function regardless of the position of the particles. [From (Giamarchi, 2004)]

which is a continuous function of the position, takes the value φl(xi) = 2πi at the
position of the ith particle. It can thus be viewed as a way to number the particles.
Since in one dimension, contrary to higher dimensions, one can always number the
particles in an unique way (e.g. starting at x = −∞ and processing from left to
right), this field is always well-defined. Some examples are shown in Fig. 0.8. Using
this labeling field one can rewrite the density as

ρ(x) =
∑
i

δ(x− xi)

=
∑
n

|∇φl(x)|δ(φl(x)− 2πn) (0.63)

It is easy to see from Fig. 0.8 that φl(x) can always be taken as an increasing function
of x, which allows to drop the absolute value in (0.63). Using the Poisson summation
formula this can be rewritten

ρ(x) =
∇φl(x)

2π

∑
p

eipφl(x) (0.64)

where p is an integer. It is convenient to define a field φ relative to the perfect crystalline
solution and to introduce

φl(x) = 2πρ0x− 2φ(x) (0.65)

The density becomes

ρ(x) =

[
ρ0 −

1

π
∇φ(x)

]∑
p

ei2p(πρ0x−φ(x)) (0.66)

Since the density operators at two different sites commute it is normal to expect that
the field φ(x) commutes with itself. Note that if one averages the density over distances
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large compared to the interparticle distance d all oscillating terms in (0.66) vanish.
Thus, only p = 0 remains and this smeared density is

ρq∼0(x) ' ρ0 −
1

π
∇φ(x) (0.67)

The formula (0.66) has the following semiclassical interpretation: the field φ(x) is es-
sentially the displacements of the particles compared to a perfect crystalline order with
a distance a = ρ−1

0 . The p = 0 term is essentially the standard elastic representation
of the density of particles. In addition the density is composed of density waves with
wavevectors 2πρ0p (the lowest one is simply the one corresponding to a maximum on
each particle). The field φ(x) give the phase of these density waves.

We can now write the single-particle creation operator ψ†(x). Such an operator
can always be written (note the similarity with (0.54) as

ψ†(x) = [ρ(x)]1/2e−iθ(x) (0.68)

where θ(x) is some operator. In the case where one would have Bose condensation, θ
would just be the superfluid phase of the system. The commutation relations between
the ψ impose some commutation relations between the density operators and the θ(x).
For bosons, the condition is

[ψB(x), ψ†B(x′)] = δ(x− x′) (0.69)

If we assume quite reasonably that the field θ commutes with itself ([θ(x), θ(x′)] = 0)
a sufficient condition to satisfy (0.69) is thus

[ρ(x), e−iθ(x
′)] = δ(x− x′)e−iθ(x

′) (0.70)

It is easy to check that if the density were only the smeared density (0.67) then (0.70)
is obviously satisfied if

[
1

π
∇φ(x), θ(x′)] = −iδ(x− x′) (0.71)

One can show that this is indeed the correct condition to use (Giamarchi, 2004).
Equation (0.71) proves that θ and 1

π∇φ are canonically conjugate. Note that for the
moment this results from totally general considerations and does not rest on a given
microscopic model. Such commutation relations are also physically very reasonable
since they encode the well known duality relation between the superfluid phase and
the total number of particles. Integrating by part (0.71) shows that

πΠ(x) = ~∇θ(x) (0.72)

where Π(x) is the canonically conjugate momentum to φ(x). To obtain the single-
particle operator one can substitute (0.66) into (0.68). Since the square root of a delta
function is also a delta function up to a normalization factor the square root of ρ is
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identical to ρ up to a normalization factor that depends on the ultraviolet structure
of the theory. Thus,

ψ†B(x) = [ρ0 −
1

π
∇φ(x)]1/2

∑
p

ei2p(πρ0x−φ(x))e−iθ(x) (0.73)

where the index B emphasizes that this is the representation of a bosonic creation
operator.

The fact that all operators are now expressed in terms of variables describing collec-
tive excitations is at the heart of the use of such representation, since as already pointed
out, in one dimension excitations are necessarily collective as soon as interactions are
present. In addition the fields φ and θ have a very simple physical interpretation. If one
forgets their canonical commutation relations, order in θ indicates that the system has
a coherent phase as indicated by (0.73), which is the signature of superfluidity. On the
other hand order in φ means that the density is a perfectly periodic pattern as can be
seen from (0.66). This means that the system has “crystallized”. The representation
(0.66) and (0.73) and the commutation relation (0.71) is thus a dictionary allowing to
reexpress every term in any interacting one-dimensional bosonic problem in terms of
the new collective variables θ and φ. Although this does not solve the problem, but
simply reexpress it, because these are the good excitations of the system we can expect
the theory to be much simpler in these variables. We will see that this is indeed the
case, and that we can extract some universal physical behavior.

0.4.4 Universal physics: Luttinger liquids

To determine the Hamiltonian in the bosonization representation we use (0.73) in the
kinetic energy of bosons. It becomes

HK '
∫
dx

~2ρ0

2m
(∇eiθ)(∇e−iθ) +

~2(∇ρ(x))2)

2mρ(x)

=

∫
dx

~2ρ0

2m
(∇θ)2 +

~2

2mπ2ρ0
(∇2φ(x))2

(0.74)

the first part is the part coming from the single-particle operator containing less powers
of ∇φ and thus the most relevant. We have also kept here the second (less relevant
term) which allows to make the connection with Bogoliubov’s theory. Using (0.66) the
interaction term becomes

Hint =

∫
dxV0

1

2π2
(∇φ)2 (0.75)

plus higher order operators. Keeping only the above lowest order shows that the Hamil-
tonian of the interacting bosonic system can be rewritten as

H =
~

2π

∫
dx[

uK

~2
(πΠ(x))2 +

u

K
(∇φ(x))2] (0.76)

where we have put back the ~ for completeness. This leads to the action

S/~ =
1

2πK

∫
dx dτ [

1

u
(∂τφ)2 + u(∂xφ(x))2] (0.77)



One-dimensional bosons and bosonization 29

This hamiltonian is a standard sound wave one. The fluctuation of the phase φ repre-
sent the “phonon” modes of the density wave as given by (0.66). One immediately sees
that this action leads to a dispersion relation, ω2 = u2k2, i.e. to a linear spectrum. u
is the velocity of the excitations. Note that keeping the second term in (0.74) gives
the dispersion

ω2 = u2k2 +Ak4 (0.78)

which is exactly similar to the Bogoliubov dispersion relation. Note however that the
theory is quite different from the Bogoliubov one given the highly non-linear represen-
tation of the operators in terms of the fields θ and φ.

K is a dimensionless parameter whose role will be apparent below. The parameters
u and K are used to parameterize the two coefficients in front of the two operators.
In the above expressions they are given by

uK =
π~ρ0

m
u

K
=
V0

~π

(0.79)

This shows that for weak interactions u ∝ (ρ0V0)1/2 while K ∝ (ρ0/V0)1/2. In estab-
lishing the above expressions we have thrown away the higher order operators, that
are less relevant. The important point is that these higher order terms will not change
the form of the Hamiltonian (like making cross terms between φ and θ appears etc.)
but only renormalize the coefficients u and K (for more details see (Giamarchi, 2004)).

The low-energy properties of interacting quantum fluids are thus described by an
Hamiltonian of the form (0.76) provided the proper u and K are used. These two
coefficients totally characterize the low-energy properties of massless one-dimensional
systems. The bosonic representation and Hamiltonian (0.76) play the same role for one-
dimensional systems than the Fermi liquid theory that will be discussed in Section 0.5
plays for higher-dimensional systems. It is an effective low-energy theory that is the
fixed point of any massless phase, regardless of the precise form of the microscopic
Hamiltonian. This theory, which is known as Luttinger liquid theory (Haldane, 1981b;
Haldane, 1981a), depends only on the two parameters u and K. Provided that the
correct value of these parameters are used, all asymptotic properties of the correlation
functions of the system then can be obtained exactly using (0.66) and (0.73) or (0.113).

Computing the Luttinger liquid coefficient can be done very efficiently. For small
interaction, perturbation theory such as (0.79) can be used. More generally one just
needs two relations involving these coefficients to obtain them. These could be for
example two thermodynamic quantities, which makes it easy to extract from either
Bethe-ansatz solutions if the model is integrable or numerical solutions. The Luttinger
liquid theory thus provides, coupled with the numerics, an incredibly accurate way
to compute correlations and physical properties of a system (see e.g. (Klanjsek et
al., 2008) for a remarkable example). For more details on the various procedures and
models see (Giamarchi, 2004; Cazalilla, Citro, Giamarchi, Orignac and Rigol, 2011).
But, of course, the most important use of Luttinger liquid theory is to justify the
use of the boson Hamiltonian and fermion–boson relations as starting points for any
microscopic model. The Luttinger parameters then become some effective parameters.
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They can be taken as input, based on general rules (e.g. for bosons K = ∞ for non
interacting bosons and K decreases as the repulsion increases, for other general rules
see (Giamarchi, 2004)), without any reference to a particular microscopic model. This
removes part of the caricatural aspects of any modelization of a true experimental
system. The Luttinger liquid theory is thus an invaluable tool to tackle the effects
of perturbations on an interacting one-dimensional electron gas (such as the effect of
lattice, impurities, coupling between chains, etc.). We refer the reader to (Giamarchi,
2004) for more on those points.

Let us now examine in details the physical properties of such a Luttinger liquid.
For this we need the correlation functions. We just give the results here. More detailed
calculations and functional integral methods are given in (Giamarchi, 2004).

The density-density and the single particle correlations are given by

〈Tτψ(r)ψ†(0)〉 = A1

(α
r

) 1
2K

+ · · ·

〈Tτρ(r)ρ(0)〉 = ρ2
0 +

K

2π2

y2
α − x2

(y2
α + x2)2

+A3 cos(2πρ0x)

(
1

r

)2K

+ · · ·
(0.80)

where r =
√
x2 + y2 and y = uτ and τ the standard imaginary time. Here, the low-

est distance in the theory is α ∼ ρ−1
0 . The amplitudes Ai are non-universal objects.

They depend on the precise microscopic model, and even on the parameters of the
model. These amplitudes can be computed either by BA or by the DMRG calcula-
tions. Contrary to the amplitudes An, which depend on the precise microscopic model,
the power-law decay of the various terms are universal. They all depend on the unique
Luttinger coefficient K. The fluctuations of long wavelength decay with a universal
power law. These fluctuations correspond to the hydrodynamic modes of the interact-
ing quantum fluid. The fact that their fluctuation decay very slowly is the signature
that there are massless modes present. This corresponds to the sound waves of density
described by (0.76). However the density of particles has also higher fourier harmonics.
The corresponding fluctuations also decay very slowly but this time with an interac-
tion dependent exponent that is controlled by the LL parameter K. This is also the
signature of the presence of a continuum of gapless modes, that exists for Fourier com-
ponents around Q = 2nπρ0. For bosons K goes to infinity when the interaction goes to
zero which means that the correlations in the density decays increasingly faster with
smaller interactions. This is consistent with the idea that the system becoming more
and more superfluid smears more and more its density fluctuations. This is shown in
Fig. 0.6.

The single particle correlation function decays with distance. This reflects that no
true superfluid order exists. For the non-interacting system K = ∞ and we recover
that the system possesses off-diagonal long-range order since the single-particle Green’s
function does not decay with distance. The system has condensed in the k = 0 state.
As the repulsion increases (K decreases), the correlation function decays faster and the
system has less and less tendency towards superconductivity. The occupation factor
n(k) has thus no delta function divergence but a power law one, as shown in Fig. 0.6.
Note that the presence of the condensate or not is not directly linked to the question
of superfluidity. The fact that the system is a Luttinger liquid with a finite velocity
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u, implies that in one dimension an interacting boson system has always a linear
spectrum ω = uk, contrary to a free boson system where ω ∝ k2. Such a system is
thus a true superfluid at T = 0 since superfluidity is the consequence of the linear
spectrum (Mikeska and Schmidt, 1970). Of course when the interaction tends to zero
u→ 0 as it should to give back the quadratic dispersion of free bosons.

Correlation functions can be computed as easily at finite temperatures using either
standard methods or a conformal mapping. We refer the reader to (Giamarchi, 2004)
for these calculations. Essentially the correlation functions now decrease exponentially
as e−Cβx where β is the inverse temperature and C some constant related to the
velocity u and the LL parameter K. This will transform the occupation factor into a
Lorentzian one as shown in Fig. 0.6.

Note that one finds very often an approximation called “quasi-condensates” used.
This approximation consists in assuming that the density is essentially ρ(x) = ρ0 but
that the phase can fluctuate. As is obvious from the representations of Section 0.4.3
this is an approximation compared to the true LL representation. It is a very accurate
one in the limit where K is large (small interactions) since in that case the density-
density correlation decay extremely fast with distance. However for larger interactions
the fluctuations of density affect the decay of the correlation functions as described by
(0.80) and the full theory must be retained.

One specially interesting limit to investigate is the so called Tonks-Girardeau limit
(Girardeau, 1960; Lieb and Liniger, 1963) for which the repulsion between bosons is
going to infinity. In that case the repulsion of between the bosons acts as constraint
forbidding two fermions to be at the same point. The wavefunction of one particle
has thus a node at the position of each other. We can thus imagine to replace the
repulsion by the Pauli principle of a fake spinless fermion problem and thus map the
infinitely repulsive boson problem into a free fermion one. The price to pay, as show
in Fig. 0.9 is that the wavefunction of the first problem is totally symmetric while the
one of the second is totally antisymmetric. Thus the sign of the wavefunction differs
between each particles. It means that properties which only depends on the square of
the wavefunction – such as the thermodynamics, and the density correlations – are the
same, while the ones directly depending on the wavefunction (such as the single particle
correlations) will be of course more complicated to compute. There are direct methods
to exploit this limit. Let us see here how the LL theory allows simply to have the
correlations. We see that choosing K = 1 ensures that the density-density correlations
decay as 1/r2 and have oscillations at 2πρ0. This is exactly what one expects for a free
fermion system (Ashcroft and Mermin, 1976; Ziman, 1972). The mapping on the free
fermion problem allows here to unambiguously fix the LL parameter K to K = 1. Of
course a direct determination as a function of the interaction also shows that this is the
good limit for this parameter when the interaction becomes infinite. The single particle
correlation function is not easy to obtain even in the Tonks-Girardeau limit given the
change of signs of the wavefunction and one must need to use rather sophisticated
techniques (see e.g. (Cazalilla, Citro, Giamarchi, Orignac and Rigol, 2011) for more
details). However the LL directly gives that the single particle correlation decays as
1/
√
r. We see on this particularly clear example the universal features that one can

extract for the physics of one dimensional interacting systems.
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Fig. 0.9 If the repulsion between bosons is infinite, one can replace this problem by a free

fermion problem, since the Pauli principle will impose a node at the position of each particle.

However the two problems differ by the sign of the wavefunction across each particle. The

properties depending on the square of the wavefunctions are thus identical between the two

problems, while single particle properties are quite different.

The Luttinger liquid theory has been checked in various context both in condensed
matter and in the cold atom systems. In condensed matter, the first evidence of a
LL powerlaw was obtained for organic superconductors (Schwartz, Dressel, Grüner,
Vescoli, Degiorgi and Giamarchi, 1998), followed by experiments on nanotubes (Yao,
Postma, Balents and Dekker, 1999). Many additional tests have been made in other
systems, see (Giamarchi, 2004; Cazalilla, Citro, Giamarchi, Orignac and Rigol, 2011)
for more systems and references. Recently spin-ladder systems have provided remark-
able systems in which a quantitative test of the exponents could be performed (Klan-
jsek et al., 2008). In cold atomic systems beautiful experiments could probe of one-
dimensional interacting bosonic systems. Coupled one dimensional tubes could be
obtained (Stöferle, Moritz, Schori, Köhl and Esslinger, 2004) where the role of the
superfluid-Mott transition was investigated and the single particle correlation function
measured. The existence of the Tonks-Girardeau limit could be checked by investigat-
ing the thermodynamics of the system on a single tube (Kinoshita, Wenger and Weiss,
2004). In such a system the interaction was raised by using the transverse confine-
ment (Olshanii, 1998). The Tonks-Girardeau limit was also observed in systems with
optical lattices (Paredes, Widera, Murg, Mandel, Fölling, Cirac, Shlyapnikov, Hänsch
and Bloch, 2004). In such systems the ratio between kinetic energy and interactions
was controlled by the optical lattice. The single particle correlation functions were
measured and the data is roughly compatible with the n(k) ∼ 1/

√
k that one would

expect. However the inhomogeneities of density, both in a single tube and between the
tubes makes the comparison more complicated. For the particular case of U =∞ the
mapping to free fermions allows this averaging to be done allowing a reasonable fit
to the experiment. It would however be very interesting to have local measurements
of single tube ones, to also check the intermediate interactions regimes for which no
comparison with the LL theory has yet been done. Finally a remarkable system to test
such predictions is provided by atom chips. Indeed in such systems the homogeneity
is very good, and one can do measurements on a single tube. Interference experiments
(Gritsev, Altman, Demler and Polkovnikov, 2006; Hofferberth, Lesanovsky, Schumm,
Imambekov, Gritsev, Demler and Schmiedmayer, 2008) on condensates have shown
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excellent agreements with the LL theory, both for the correlation functions and even
the full counting statistics. Unfortunately the interactions are small so that K re-
mains very large and it is difficult to make the difference between LL and simple
quasi-condensates. Clearly further experiments will be interesting in this remarkable
experimental systems.

0.4.5 Mott insulators in one dimension

Let us finally examine how the Mott transition can take place in one dimension, and
compare with the results of Section 0.3. Although we have already shown that the
superfluid phase is quite different in one and in higher dimensions, we can certainly
expect the basic arguments in favor of the Mott transition of Section 0.3 to still be
valid. We can thus expect the existence of a Mott transition in one dimension as well.
One would then go from a quasi-long range order of the phase (powerlaw decay of the
superfluid correlations) to a system with one (or an integer number of) bosons per site
which would be an insulator. The LL formalism provides a remarkable way to study
such transition. As in the previous section we only sketch the solution and refer the
reader to (Giamarchi, 2004; Cazalilla, Citro, Giamarchi, Orignac and Rigol, 2011) for
the gist of the calculations and for references.

In the absence of a lattice, the interacting one dimensional system is described by
the quadratic action (0.77). In order to determine the effect of a lattice we just have
to add to this action the interaction with a lattice. If we represent the lattice by the
potential V (x) = V0 cos(Qx), then such a term is

HV = −V0

∫
dx cos(Qx)ρ(x) (0.81)

We can then use the representation of the density (0.66) to see that terms of the form

V0

∫
dxei(Q−2pπρ0)xe−i2pφ(x) (0.82)

appear from (0.81). We thus see that there are two possibilities. A first possibility
the wavevector Q of the periodic potential is not commensurate with the density of
particles Q 6= 2πρ0. In that case one does not have exactly one particle per site. In
that case the terms in the integral (0.82) oscillate fast and essentially kill the extra
term in the action. In that case, the lattice potential is irrelevant and one recovers a
LL (superfluid) phase with renormalized parameters u and K. This is exactly similar
to the case described in the Section 0.3, where the Mott phase could only occur for
one particle per site. The Mott phase can potentially appear if Q is commensurate
with the particle density. If Q = 2πρ0, this means, as shown in Fig. 0.10, that there is
exactly one particle per site. In that case the oscillations go away and (0.81) becomes

HV = −V0

∫
dx cos(2φ(x)) (0.83)

There are potentially terms with higher p which correspond to higher commensurabil-
ities (one particle every two sites etc.). We will not deal with them here and refer the
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Fig. 0.10 (left) If the periodic potential V0 cos(Qx) is commensurate with the particle

density Q = 2πρ0 then a Mott phase can appear. This problem is equivalent to the localization

of elastic lines in a periodic potential or to the Berezinskii-Kosterlitz-Thouless transition in a

two dimensional XY model. It occurs for sufficiently repulsive interactions K ≤ 2. (right) the

phase diagram showing the universal value taken by the LL parameter at the transition. Note

the presence of two transitions: the Mott-U transition at constant density upon variation of

the interactions; the Mott-δ transition where the interactions are fixed and the system is

doped. These corresponds to different universality classes. [After (Giamarchi, 2004)]

reader to (Giamarchi, 2004; Cazalilla, Citro, Giamarchi, Orignac and Rigol, 2011) for
these cases.

The effect of the term (0.83) is quite remarkable. There is one one hand the
quadratic action (0.77) which allows the field φ to fluctuate. These fluctuations are
responsible for the decay of the density correlations. On the other hand (0.83) wants
to pin the field φ in one of the minima of the cosine. If the field φ is pinned it means: a)
that the density does not fluctuate any more. We have thus a phase with one particle
per site, this is the Mott phase; b) that the field θ which is conjugate will fluctuate
wildly and thus that the superfluid correlations are killed exponentially fast. We thus
see that the combination of (0.77) and (0.83), known as the sine-Gordon model is the
model giving the description of the Mott transition in one dimension. This model has
connections with several other models (Giamarchi, 2004; Cazalilla, Citro, Giamarchi,
Orignac and Rigol, 2011). As shown in Fig. 0.10, it is connected to the fluctuations
of classical lines, in a tin-roof potential. It is also connected, in a less obvious way, to
the classical Beresinskii-Kosterlitz-Thouless transition in the XY modelm the opera-
tor cos(2φ) being the vortex creation operator in such a model. We will not detail the
connection between these models and refer the reader to (Giamarchi, 2004; Cazalilla,
Citro, Giamarchi, Orignac and Rigol, 2011). The transition can occur if the strength
of the potential V0 increases beyond a certain value or if the interaction becomes large
enough. In particular one can show that if the fluctuations small enough, i.e. if K ≤ 2
even an infinitesimal V0 is able to pin the field φ and one goes in the Mott phase. This
is a quite remarkable feature since it shows that large enough repulsion between the
particle can lead to a Mott phase even if the lattice is very weak. This can be viewed
as the pinning of the charge-density wave of the bosons by the periodic potential of
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the lattice and is a true quantum effect. Of course if the lattice is deep, we also recover
our usual intuition of the Mott transition.

We thus see that the Mott transition is one dimension is quite similar to its higher
dimensional counterpart. One important difference it that it can also occur for weak
lattices provided that the repulsion is large enough. At the transition, as indicated
in Fig. 0.10, K takes the universal value K = 2. At the transition the transition is
in the universality class of the two dimensional XY model. This feature persists even
to higher dimensions (Fisher, Weichman, Grinstein and Fisher, 1989). The fact that
in one dimension we have the bosonized representation of the Hamiltonian allows to
compute all the correlation functions, both in the superfluid and in the Mott phase.
We refer the reader to (Giamarchi, 2004; Cazalilla, Citro, Giamarchi, Orignac and
Rigol, 2011) for further informations on that point. An important point to note is that
there are in fact two types of Mott transitions (Giamarchi, 1997) (see also Fig. 0.4)

1. One can stay at commensurate values for the density, and vary the interactions.
This Mott-U transition is in the universality class of the d-dimensional XY model.
In one dimension it is described by the sine-Gordon theory and lead to the uni-
versal values shown in Fig. 0.10.

2. One can have interactions corresponding to being inside the Mott phase, but
dope the system, i.e. vary the density. This Mott-δ transition is in a different uni-
versality class. In one dimension it corresponds to a universality class known as
the commensurate-incommensurate phase transition (Giamarchi, 2004; Cazalilla,
Citro, Giamarchi, Orignac and Rigol, 2011) and leads to different critical expo-
nents indicated in Fig. 0.10

In one dimension these two universality classes have been confirmed by DMRG calcu-
lations where the phase diagram and the LL exponents have been obtained (Kühner,
White and Monien, 2000). In the cold atom context, the existence of the Mott tran-
sition in one dimension for arbitrarily small lattice but repulsive enough interactions
has been checked in a remarkable experiment (Haller, Hart, Mark, Danzl, Reichsöllner,
Gustavsson, Dalmonte, Pupillo and Nägerl, 2010). The gap of the Mott phase, probed
by the shaking method described in Section 0.3.4, is shown in Fig. 0.11.

The term (0.83) has another remarkable consequence. The object that is ordered
is not simply the density but the field φ itself. Given the relation (0.67) in a way
the field φ is the integral of the density, and the changes in density (δ-function peaks
at the particle positions) correspond to kinks in the field φ. The fact that φ itself is
ordered means that any function of the form eiαφ is tending to a constant. This is
a much stronger statement than just imposing the density fixed on each site. In fact
the order of φ and be traced to the existence of non-local string order parameters
(Berg, Dalla Torre, Giamarchi and Altman, 2009). Such string order, being non local
are of course notoriously difficult to measure. However the recent possibilities of local
addressability in cold atomic systems has allowed to directly probe such string orders,
and a recent experiment has shown for the Mott transition the existence of such an
order parameter (Endres, Cheneau, Fukuhara, Weitenberg, Schauss, Gross, Mazza,
Banuls, Pollet, Bloch and Kuhr, 2011).



36 Contents

Fig. 0.11 Phase diagram of a one dimensional system gap as a function of the interaction

parameter γ (relative to the kinetic energy) and the strength of the optical lattice V , as

probed by a shaking of the optical lattice. The finite gap indicates the existence of a Mott

phase. One sees that regardless of the strength of the lattice, a Mott transition can occur

provided that the repulsion is large enough, in agreement with the LL predictions. After

(Haller, Hart, Mark, Danzl, Reichsöllner, Gustavsson, Dalmonte, Pupillo and Nägerl, 2010).

0.5 From free fermions to Fermi liquids

This section is based on graduate courses given in Geneva (together with C. Berthod,
A. Iucci, P. Chudzinski) and in Paris (together with O.Parcollet). For more details,
see the course notes:
http://http://dpmc.unige.ch/gr_giamarchi/Solides/solides.html

and
http://www.cpht.polytechnique.fr/cpht/correl/teaching/teaching.htm

0.5.1 Non-interacting fermions

Let us start by recalling some well-known but important facts about non-interacting
fermion systems. We shall state these facts without detailing the calculations, since
they can be found in every textbook on solid-state physics (Ashcroft and Mermin,
1976; Ziman, 1972).

We consider independent electrons described by the Hamiltonian

Hkin =
∑
~kνσ

ε~kνc
†
~kνσ

c~kνσ (0.84)
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When considering fermions in a lattice, the sum over ~k runs over the first Brillouin
zone, and ν is a band index (that we shall sometimes omit when focusing on a single
band). It is important to keep in mind that the creation/destruction operators in this
expression refer to single-particle wave-functions. In a lattice, those wave-functions

are of the form (Bloch’s theorem): φ~kν(~r) = u~kν(~r)ei
~k·~r with u~kν a Bloch function

having the periodicity of the lattice, while in the continuum φ~k = ei
~k·~r/
√

Ω. The
fermion-creation field operator at point ~r is expanded onto these wave-functions as
ψ†σ(~r) =

∑
~kν φ

∗
~kν

(~r)c†~kνσ
.

The eigenstates of (0.84) are Slater determinants of single-particle wave functions,
of the form: det{φ~kiνi(~rj)}, which can conveniently be represented in occupation num-
ber basis (Fock representation) as |{n~kνσ}〉 with n~kνσ = 0, 1 when the single-particle
state is empty or occupied, respectively. The ground-state for N fermions corresponds
to filling all single-particle states with those fermions, starting from the lowest possible
single-particle energy and placing two fermions with opposite spin per state. Hence,
the ground-state is the ‘Fermi-sea’:

|FS〉 =
∏

~kν,ε~kν<εF

c†~kν↑
c†~kν↓
|∅〉 (0.85)

In this expression, εF is the Fermi energy: the largest single-particle energy correspond-
ing to an occupied state. It is also the zero-temperature limit of the chemical potential
(assuming a metallic, or liquid, state): µ(T → 0) = εF . One often incorporates the
chemical potential in the energy and define ξ0

~kν
= ε~kν − µ.

In momentum-space, the condition ε~kν = εF (ξ0
~kν

= 0) defines the Fermi surface.
It has important physical significance, since it defines the loci in momentum-space of
zero-energy excitations. Hence, the presence of a Fermi-surface (FS) is a distinctive
aspect of a metallic (or liquid) state, in which excitations with arbitrarily low energy
are present, in contrast to an insulating state, in which the ground-state is separated
from excited states by an energy gap.

In the context of cold fermionic atoms in optical lattices, a direct imaging of
the Fermi surface is possible, as first demonstrated in a remarkable experiment by
M. Köhl and coworkers (Köhl, Moritz, Stöferle, Günter and Esslinger, 2005) for a
two-dimensional lattice. The idea is to switch-off the lattice potential adiabatically, so
that the quasimomentum of a fermion in a given quasi-momentum state in the lattice
is transferred to the corresponding momentum in the continuum (i.e quasimomen-
tum is conserved to a good approximation) (Fig. 0.12). A time-of-flight expansion and
absorption imaging are performed in order to obtain the starting quasi-momentum
distribution of the atoms inside the lattice (Fig. 0.13). By changing the lattice depth,
a gradual increase of the size of the FS was observed, resulting at some point into a
transition from a metal to a band-insulator when the FS coincides exactly with the
first Brillouin zone of the lattice. Note that this effect is a consequence of the presence
of a confining potential. Indeed, in a homogeneous system, the FS is entirely deter-
mined by the number of particles present in the system, and for a given N will remain
unchanged if the depth of the lattice (hopping amplitude t) is varied. In contrast, in the
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Fig. 0.12 “Unfolding” the bandstructure, from a deep lattice to continuum space, while

conserving quasi-momentum. Fig. adapted from (Bloch, 2005)

Fig. 0.13 Three Fermi-surface images corresponding to low (a), intermediate (b) and higher

(c) density of particles per site. In the latter case, the FS extends beyond the first (square)

Brillouin zone. From (Esslinger, 2010) and (Köhl, Moritz, Stöferle, Günter and Esslinger,

2005).

presence of a harmonic potential of frequency ω0, the effective density is ρ = N(a/l)3

with l =
√
t/mω3

0 (see below), and ρ can be changed by changing t.
It is important, at this stage, to have in mind the order of magnitude of key phys-

ical parameters (such as density and mass of particles) relevant to different physical
systems of interest, namely: liquid Helium 3 (for which Landau Fermi-liquid theory
was first developed historically), electrons in solids, and cold atomic gases. Those are
summarized in Table 0.1. This table illustrates the fact that the study of degenerate
quantum Fermi gases can be undertaken in physical systems with widely different val-
ues of the key energy scale: the Fermi energy. While the Fermi temperature (= εF /kB)
is a few degrees Kelvin in 3He, it is several tens of thousands of Kelvin for electrons
in solids (εF is a few eV’s) and in the range of a micro- to a nano-Kelvin for cold
atomic gases in optical lattices ! The natural unit in the latter case is the recoil energy
of the atoms in the lattice laser beams ~2k2

L/2m, typically of order a µK. By those
standards it is considerably more difficult to reach the low-temperature (quantum de-
generate) regime T � TF for “ultra-cold” atomic gases than for electrons in solids,
for which T/TF is always of order 10−2 or less in usual conditions ! This remark can
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Mass Lattice spacing Density TF = εF /kB
Liquid 3He 5.10−27kg ∼ 2. 1022 cm−3 A few K

Electrons in solids 9.1 10−31kg A few Å ∼ 10−10m 1021 − 1023cm−3 A few×104K
Cold atoms m(40K) ∼ 66 10−27kg ∼ µm ∼ 1011 − 1012cm−3 ∼ nK− µK

Table 0.1 Typical values of physical parameters for three physical systems. Note that, in

the absence of a lattice, εF ∝ n2/3/m.

f(ξ) f(ξ)f(ξ)
T

f(ξ)
UT

ξ
E

ξ
EEF EF

Fig. 0.14 Broadening of the Fermi distribution due to the temperature T . Left: when

T � TF , only a tiny fraction of particles close to the Fermi level can be excited. These

low-energy particle-hole excitations control all the physical properties of the system. Right:

in the regime T � TF , the Fermi factor is broad and high-energy excitations become relevant.

also be turned into an advantage: while the high-temperature crossover between a
quantum degenerate and a classical gas cannot be observed easily in solids, it is easily
observed with atomic gases. The theoretical description of this crossover (and of the
‘incoherent’ regime T & TF requires to handle not only very low-energy excitations
but also higher-energy excited states, which as explained below, are outside the scope
of low-energy effective theories such as Landau Fermi-liquid theory.

At finite temperature, single-particle states of a non-interacting Fermi gas are oc-
cupied with a probability given by the Fermi factor (Fig. 0.14):

f(ξ0
~k
) = 〈FS|c†~kc~k|FS〉 =

1

eβξ
0
~k + 1

(0.86)

In the quantum degenerate regime T � TF , the broadening of the Fermi distribution is
extremely small. The important states are thus the ones in which particles are excited
in a tiny shell close to the Fermi level, as shown in Fig. 0.14. The other excitations are
completely blocked by the Pauli principle. This strong constraint on available excited
states is of course what confers to fermionic systems their unique properties, and make
them so different from a classical system, or from a bosonic quantum system. As a
consequence, the specific heat C = dU/dT = TdS/dT is linear with temperature
(contrarily to the case of a classical gas for which it would be a constant)

C(T ) ∝ k2
BN (εF )T , (T � TF ) (0.87)
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where N (εF ) is the density of states at the Fermi level. The compressibility of the
fermion gas:

κ ∝ ∂n

∂µ
∝ N (εF ) , (T � TF ) (0.88)

reaches a constant value in the limit T → 0 (in contrast to a band insulator for which
εF lies within a gap and is hence incompressible κ ∝ N (εF ) = 0). Similarly, the spin
susceptibility which measures the magnetization M of the electron gas in response to
an applied magnetic field H, reaches a constant value (Pauli behaviour):

χ =

(
∂M

∂H

)
T

∝ N (εF ) , (T � TF ) (0.89)

Note that a system made of independent spins would have instead a divergent spin
susceptibility χ ∝ 1/T when T → 0 (Curie behaviour) instead of a constant one. In a
non-interacting Fermi gas, the slope of the specific heat, the compressibility and the
spin susceptibility are all controlled by the same quantity, namely the density of states
at the Fermi level.

0.5.2 Quasiparticles and the (N ± 1)-particle problem

We now consider the effect of interactions between fermions. We focus on a system
which is in a compressible liquid (or metallic) state, with no symmetry breaking of
any sort (apart from the translational symmetry breaking due to the lattice). Possible
transitions into a (Mott) insulating state induced by interactions, as well as magnetic
ordering, will be discussed in Sec. 0.6.

The first important observation is that the ground-state wave-function, which was
simple in the absence of interactions (the Fermi sea), now becomes exceedingly com-
plex. There are very few cases in which this ground-state wave-function can be found
exactly (one such example is the one-dimensional Hubbard model, thanks to Bethe
ansatz). Even numerically, the problem is very difficult. The size of the Hilbert space
grows exponentially with the size of the system (for example, for a single-band Hub-
bard model, it has dimension 4Ns with Ns the number of lattice sites). Hence, exact
diagonalization (e.g. Lanczos) methods can only handle small systems (say, Ns . 12).
As to quantum Monte-Carlo simulations, they are faced with the infamous ‘minus-sign
problem’ which severely limit their use, at least when doing direct simulations without
further approximations.

The second important observation is that we may not care so much, after all,
about the detailed form of the ground-state wave-function. What most experiments
actually probe are the excitations above the ground-state(Nozieres, 1961). Further-
more, if the system is at low temperature (T � TF ) and probed in a gentle-enough
manner, only low-energy excitations matter. So what we really want is a description
of these low-energy excitations. This is fortunate, since general wisdom (backed up by
renormalization-group ideas) teaches us that low-energy phenomena (or, equivalently,
phenomena involving long time scales) have a large degree of universality. Hence, the
nature of the low-energy excitations may not depend on all the microscopic details
of the specific problem at hand, and a universal effective theory of those low-energy
excitations may be in sight. For interacting fermions in more than one dimension, this
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universal theory is Landau’s Fermi-liquid theory(Landau, 1957a; Landau, 1957b). For
one-dimensional systems, it is Luttinger liquid theory (Secs. 0.4,0.7).

A word of warning, however: being effective theories of low-energy excitations, their
applicability is limited to... low-energy. Hence, these descriptions come with a charac-
teristic scale above which they are no longer valid and a more detailed quantitative
description is required. This scale is associated, as we shall see, with the lifetime of
quasiparticles: for energies above a certain coherence scale, long-lived quasiparticles
no longer make sense and Landau Fermi liquid theory does not apply. In strongly
correlated systems, this coherence scale may be quite low, making the range of va-
lidity of effective theories too limited to explain all experimental observations. Also,
experiments that perturb the system too strongly (e.g. in a pump-probe experiment)
require tools beyond low-energy effective theories.

Quasiparticles: qualitative picture. The basic idea behing Landau Fermi liquid the-
ory is that the low-energy excited states can be constructed by combining together
elementary excitations, with combination rules and quantum numbers identical to that
of free particles.

For free fermions, this is clearly the case: the simplest low-energy excitation (at
constant particle number N) is obtained by considering a single Slater determinant
which is obtained from the Fermi sea by exciting an electron from a state just below
the FS to a state just above. Hence, a ‘particle-hole’ excitation has been created,
which is a combination of a hole-like excitation (removing a particle) and a particle-
like excitation (adding a particle). In a free system, adding a particle in an empty
state yields an eigenstate: such an excitation does not care about the presence of all
the other electrons in the ground state (otherwise than via the Pauli principle which
prevents from creating it in an already occupied state).

In the presence of interactions this will not be the case and the added particle
interacts with the existing particles in the ground state. For example for repulsive
interactions one can expect that this excitation repels other electrons in its vicinity.
This is schematically represented in Fig. 0.15. On the other hand if one is at low
temperature (compared to the Fermi energy) there are very few such excitations and
one can thus neglect their mutual interactions (or rather treat them in a mean-field
manner). This defines a new composite object (fermion or hole surrounded by its own
polarization cloud). This complex object essentially behaves as a particle, with the
same quantum numbers (charge, spin) than the original fermion, albeit with renor-
malized parameters, for example its mass. This image thus strongly suggests that even
in the presence of interactions good elementary excitations looking like free particles,
still exists. These particle resemble free fermions but with a renormalized excitation
energy ξ~k, different from ξ0

~k
.

Since our system is gapless, the excitation energy ξ~k must vanish on a certain sur-
face in momentum-space. This defines the Fermi surface of the interacting system.
Note that, in contrast to the free system, we have established no connection between
the FS and the ground-state wave-function: we have been referring only to excitation
energies. Under quite general assumptions, a remarkable property does hold however
(even when quasiparticles do not exist in the Landau sense) : the momentum-space vol-
ume encompassed by the FS is identical to that of the free system (Luttinger theorem),
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ρ QP scattering
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QP QP

Fig. 0.15 Top: Lev Landau, the man behind the Fermi liquid theory (and many other

things). Bottom: In a Fermi liquid, the few excitations above the ground state can interact

strongly with all the other electrons present in the ground state. The effect of such interactions

is strong and lead to a strong change of the parameters entering the low-energy effective the-

ory, compared to free electrons. The combined object behaves as a long-lived particle, named

a quasiparticle: its characteristics depend strongly on interactions. However the scattering of

the quasiparticles is blocked by the Pauli principle leaving a very small phase space for scat-

tering. The lifetime of the quasiparticles is thus extremely large. Furthermore, a low-energy

excited state involves a low-density of excited quasiparticles. This is the essence of the Fermi

liquid theory.

and hence entirely fixed by the number of particles. The shape of the FS, however,
can be changed by interactions (except in the continuum, where it is a sphere specified
only by its radius kF given by 2× 4

3πk
3
F /h

3 = N
Ω ).

The dispersion relation ξ~k specifying the quasiparticles excitation energy can be

expanded around a given point ~kF of the FS as:

ξ~k = ∇~kξ|~kF · (
~k − ~kF ) + · · · (0.90)

which defines a renormalized Fermi velocity of the quasiparticles at this point: ~v∗(~kF ) =
∇~kξ|~kF /~. In the continuum, the Fermi velocity is identical on all points of the spher-
ical FS (by isotropy) and it is customary to define the effective mass of quasiparti-
cles by analogy to the free-particle dispersion relation ξ0

~k
= ~2k2/2m − ~2k2

F /2m ∼
~kF (k − kF )/m+ · · · :

ξ~k =
~kF
m∗

(k − kF ) + · · · (0.91)
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(x τ)(x,τ)

(0 0)(0,0)

Fig. 0.16 A gedanken experiment probing the excitations of an interacting system. A par-

ticle is injected from outside at point ~r and time t = 0. It propagates through the system and

partially decays by creating excitations. The particle is removed at position ~r′ and time t. The

amplitude of this process contains a wealth of information about single-particle excitations

of the system, encapsulated in the spectral function A(~k, ω). “Resemblance” of the final state

with the original bare particle signals the existence of long-lived quasiparticle excitations.

The effective mass controls the low-temperature behavior of the specific heat of a
Landau Fermi-liquid, which has the same linear-temperature dependence than a free
fermion gas:

(C/T )

(C/T )0
=
NQP

N
|FS =

m∗

m
(0.92)

While the low-temperature compressibility and susceptibility are again constant:

κ

κ0
=
m∗/m

1 + F s0
,
χ

χ0
=

m∗/m

1 + F a0
(0.93)

but involve distinct renormalizations, which parametrize the effective interaction be-
tween quasiparticles in the low-energy effective theory (Landau parameters F s0 and
F a0 ). Note that expressions (0.92,0.93) have been written for the isotropic case (con-
tinuum). In a anisotropic lattice case, the Landau parameters acquire a more complex
angular dependence and these expressions have less predictive power.

The N ± 1-particle problem: Green’s function, spectral function and self-energy. Of
course, the above are qualitative ideas. Let us now turn to a more formal treatment.
To this aim, we imagine probing the excitations of the N -particle system by removing
a fermion from the system (at, say, point ~r and time 0) and sending it to the outside
vacuum, or by injecting a fermion from the outside (Fig. 0.16). Starting from the
(complicated) ground-state |Ψ0〉 of the N -particle system, we thus prepare the wave-
function (for simplicity, we consider a one-band system and one spin component, so
that we omit both indices ν, σ):

|Ψ(~r, 0)〉 ≡ ψ†(~r, t)|Ψ0〉 =
∑
~k

φ∗~k(~r) c†~k
|Ψ0〉 (0.94)
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In a non-interacting system, the wave functions on the right-hand side are eigenstates of
the system with N+1 particles. But this is not the case in the presence of interactions.
Hence, in order to understand the time-evolution of this wave-function, we expand it
onto the exact eigenstates of the N + 1-particle system:

|Ψ(~r, 0)〉 =
∑
~k

φ∗~k(~r)
∑
A

〈ΨA|c†~k|Ψ0〉|ΨA〉 (0.95)

We then time-evolve this state with the evolution operator exp− i
~ (Ĥ − µN̂), with Ĥ

the full (interacting) many-body hamiltonian, yielding the state |Ψ(~r, t)〉. We com-
pare this state with the state obtained by injecting a fermion into the ground-state
directly at time t, and point ~r′, ψ†(~r′)|Ψ0(t)〉, by forming the overlap of the two states

〈Ψ0(t)ψ(~r′)|Ψ(~r, t)〉. This overlap can also be viewed as the amplitude for injecting a

particle at ~r at time 0 and removing it at ~r′ at time t (Fig. 0.16). It reads:

〈Ψ0|ψ(~r′, t)ψ†(~r, 0)|Ψ0〉 =
∑
~k

φ~k(~r′)φ∗~k(~r)
∑
A

|〈ΨA|c†~k|Ψ0〉|2 e−
i
~ [EA−(E0+µ)]t (0.96)

Note that µ = ∂E0/∂N and thus the ground-state energy of the N +1-particle system
is (for a large gapless system) EN+1

0 ' E0 + µ. Hence, the frequencies appearing in
the time-evolution on the r.h.s involve the excitation energies ~ω = EA−EN+1

0 > 0 of
the N+1-particle system. We see that this gedanken experiment provides information
on the excitation of the system, more precisely on the excited states to which |Ψ0〉
couples by injecting a particle. It is very useful to introduce the one-particle spectral
function, which condenses all this information, and is defined (at T = 0) as:

A(~k, ω) ≡
∑

A(N+1)

|〈ΨA|c†~k|Ψ0〉|2 δ
[
ω − 1

~
(EA − E0 − µ)

]
, (ω > 0)

≡
∑

B(N−1)

|〈ΨB |c~k|Ψ0〉|2 δ
[
ω − 1

~
(E0 − µ− EB)

]
, (ω < 0) (0.97)

It is easily checked that the spectral function is normalized over frequencies for each
value of the momentum:

∫ +∞
−∞ A(~k, ω)dω = 1 and that the quasi-momentum distribu-

tion of particles in the ground-state is given by:N(~k) ≡ 〈Ψ0|c†~kc~k|Ψ0〉 =
∫ 0

−∞A(~k, ω)dω.
The spectral function can also be related to the Fourier transform of the retarded
Green’s function, defined as:

G(~k, t) = −i θ(t)〈Ψ0|[c~k(t), c†~k
(0)]+|Ψ0〉 (0.98)

by:

A(~k, ω) = − 1

π
ImG(~k, ω) (0.99)

In Fig. 0.17, we display a cartoon of the spectral function of a Fermi liquid. For
momenta not too far from the Fermi surface, it can be decomposed into two spectral
features: a narrow peak corresponding to quasiparticle excitations, and a broad con-
tinuum corresponding to incoherent excitations. The narrow peak is centered at the
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excitation frequency ω = E~k − µ = ξ~k corresponding to the quasiparticle dispersion.
It has a spectral weight Z~k ≤ 1 and its width γ~k = ~/τ~k corresponds to the inverse
lifetime of quasiparticle excitations and can be approximated by a Lorentzian:

AQP(~k, ω) ' Z~k
γ~k/π

(ω − ξ~k)2 + γ2
~k

(0.100)

Correspondingly, the Green’s functions can be separated into two components, involv-
ing very different time-scales:

G(~k, ω) ' Z~k e
−t/τ~k e−iξ~k t/~ + Ginc(~k, t) (0.101)

The notion of quasiparticle excitations makes sense because their lifetime τ~k becomes

very large as ~k approaches the Fermi surface, for phase-space reasons detailed in the
next section. As a result, the first term decays very slowly, while the second “incoher-
ent” one decays fast (corresponding to a broad frequency spectrum).

A very useful quantity is the self-energy, which is a measure of the difference
between the Green’s function of the interacting system and that of the free system. It
is defined by (with ξ0

~k
= ε~k − µ):

G(~k, ω) =
1

ω − ξ0
~k
− Σ(~k, ω)

(0.102)

By expanding this expression close to the FS ~k ' ~kF and at low-frequency ω ' 0,
we find that the key quantities characterizing quasiparticles can be read-off from the
self-energy. The FS of the interacting system are formed by the quasi-momenta which
satisfy:

ε~kF + Σ(~kF, 0) = µ (0.103)

in which µ in the r.h.s should be viewed as a function of the particle density n, and
of course of the interaction strength. The quasiparticle spectral weight, dispersion
ξ~k = ~v∗(~kF) · (~k − ~kF), and inverse lifetime are given by:

Z~k =

[
1− ∂Σ′

∂ω
|ω=0

]−1

~v∗(~kF) = Z~kF

[
∇~kξ

0
~k

+∇~kΣ′
]
ω=0,~k=~kF

γ~k = Z~k Σ′′(~k, ω = ξ~k) (0.104)

In these expressions, Σ′ and Σ′′ stand for the real and imaginary parts of the retarded
self-energy, respectively. As expected, the inverse quasiparticle lifetime is related to
the latter (but also involves the weight Z, which in contrast would not appear in
the scattering rate measured from transport or optical conductivity). For an isotropic
system this leads to the following expression for the effective mass:

m

m∗
= Z

[
1 +

m

~kF
∂Σ′

∂k
|ω=0,k=kF

]
(0.105)

Note that the quasiparticle weight is related only to the frequency-dependence of
the self-energy, while the effective mass involves both the frequency and momentum



46 Contents

A(k ω)
Quasiparticle

τ
A(k,ω)

Quasiparticle
peak 

( i h Z ) 1/(weight Zk) 1/τ

I h t b k d ( i ht 1 Z )Incoherent background (weight 1‐Zk)

ωω E ωω = Ek

Fig. 0.17 A cartoon of the spectral function for interacting particles. One can recognize

several features. There is a continuous background of excitations of total weight 1−Z~k. This

part of the spectrum corresponds to incoherent excitations which are not associated with

quasiparticles. In addition to this continuous background, there is a quasiparticle peak. The

total weight of the peak Z~k is determined by the real part of the self energy. The center of

the peak is at a frequency ξ~k, the renormalized quasiparticle dispersion. The quasiparticle

peak has a lorentzian lineshape that reflects the finite lifetime of the quasiparticles, inversely

proportional to the imaginary part of the self energy.

dependence. Only when the self-energy is momentum-independent (as e.g. in the limit
of large dimensionality, or within the dynamical mean-field theory approximation) do
we have m∗/m = 1/Z.

On general grounds, the following phenomena are clear signatures of strong corre-
lations (and need not necessarily occur together):

• A small quasiparticle weight Z

• A large effective mass (low ~v∗F )

• A short quasiparticle lifetime (large γ~k).

Lifetime of quasiparticles:phase-space constraints. In order to estimate the lifetime
of a quasiparticle let us look at the scattering of a particle from a state ~k to another
state. Let us start from the non interacting ground state in the spirit of a perturbative
calculation in the interactions. As shown in Fig. 0.18 a particle coming in the system
with an energy ω and a momentum ~k can excite a particle-hole excitation, taking a
particle below the Fermi surface with an energy ω1 and putting it above the Fermi
level with an energy ω2. The process is possible if the initial state is occupied and the
final state is empty. One can estimate the probability of transition using the Fermi
golden-rule. The probability of the transition gives directly the inverse lifetime of the
particle, and thus the imaginary part of the self energy. We will not care here about the
matrix elements of the transition, assuming that all possible transitions will effectively
happen with some matrix element. The probability of transition is thus the sum over all
possible initial states and final states that respect the constraints (energy conservation
and initial state occupied, final state empty). Since the external particle has an energy
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Fig. 0.18 Cartoon of the process giving the lifetime of a particle with energy ω. The

ground-state of the free system has all single-particle states filled below the Fermi energy εF .

The excitations are thus particle-hole excitations where a particle is promoted from below

the Fermi level to above the Fermi level. Due to the presence of the sharp Fermi level, the

phase space available for making such a particle-hole excitations is severely restricted.

ω it can give at most ω in the transition. Thus ω2−ω1 ≤ ω. This implies also directly
that the initial state cannot go deeper below the Fermi level than ω otherwise the final
state would also be below the Fermi level and the transition would be forbidden. The
probability of transition is thus

P ∝
∫ 0

−ω
dω1

∫ ω+ω1

0

dω2 =
1

2
ω2 (0.106)

One has thus the remarkable result that because of the discontinuity due to the Fermi
surface and the Pauli principle that only allows the transitions from below to above the
Fermi surface, the inverse lifetime behaves as ω2. This has drastic consequences since it
means that contrarily to the naive expectations, when one considers a quasiparticle at
the energy ω, the lifetime grows much faster than the period τω = 2π/ω characterizing
the oscillations of the wavefunction (Fig. 0.19). In fact

τQP

τω
∝ 1

ω
→∞ (0.107)

when one approaches the Fermi level. In other words the Landau quasiparticles become
better and better defined as one gets closer to the Fermi level. This is a remarkable
result since it confirms that we can view the system as composed of single particle
excitations that resemble the original electrons, but with renormalized parameters
(effective mass m∗, quasiparticle weight Zk, etc.).

Probing quasiparticles: photoemission and outcoupling spectroscopies. Experimen-
tal spectroscopic techniques are available, which to a good approximation realize in
practice the gedanken experiment of Fig. 0.16, and hence allow for a direct imaging of
quasiparticle excitations.

In the solid-state context, angular-resolved photoemission spectroscopy (ARPES)
is a remarkable experimental method which has undergone considerable development
over the past two decades (stimulated to a large extent by the study of high-Tc su-
perconductors) see e.g. (Damascelli, Hussain and Shen, 2003; Damascelli, 2004). The
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Fig. 0.19 For particles with an energy Ek and a finite lifetime τ , the energy controls the

oscillations in time of the wavefunction. (Left:) In order to properly identify an excitation as

a particle it is mandatory that the wavefunction oscillates several time before being damped

by the lifetime. (Right:) In contrast, if the damping is too fast, it is impossible to define

precisely the frequency of the oscillations, and thus a precise excitation energy associated

with a long-lived quasiparticle.

Fig. 0.20 Basic principle of photoemission spectroscopy. A photon beam is sent onto the

(carefully cleaved) surface of the sample. An electron is extracted (photoelectric effect) and

its energy and momentum is recorded from the electron analyzer. (Adapted from (Damascelli,

2004)).

basic principle of this method is illustrated on Fig. 0.20. Under certain conditions and
approximations, the measured photoemission intensity is given by:

I(~k, ω) = M(~k, ω)A(~k, ω) f(ω) (0.108)

In this expression, M is a matrix element, A(~k, ω) is the one-particle spectral function
introduced above, and f(ω) is the Fermi distribution. In addition, because of the finite
energy resolution, the measured signal is a convolution of (0.108) with a Gaussian of
a certain width. Currently available energy resolutions depend a lot on the incident
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photon energy: it is typically of order 50 − 100 meV when using X-rays with ener-
gies of several hundred eV’s at the synchrotron, of order 5 − 10 meV for laboratory
sources such as a Helium lamp (∼ 21 eV), and as low as a fraction of a meV for the
recently developed laser-based photoemission (hν ∼ 6 eV). These different sources
provide complementary information, since there is a trade-off between bulk vs. surface
sensitivity, energy resolution, and the momentum-space constraints limiting the area
of the Brillouin zone that can be probed.

The Fermi function appears in expression (0.108) because this spectroscopy mea-
sures the probability for extracting an electron from the system, and hence mostly
probes hole-like excitations. Momentum-resolved spectroscopies of particle-like exci-
tations have unfortunately a much poorer resolution. Scanning tunneling microscopy
(STM), in contrast, does probe both ω < 0 and ω > 0, but in a momentum-integrated
way.

As an example, Fig. 0.21 displays ARPES measurements on Sr2RuO4, a two-
dimensional transition-metal oxide with strong electronic correlations. This material
has a three-sheeted FS, which can be beautifully imaged with ARPES (as well as with
other techniques, such as quantum oscillations in a magnetic field, with good agreement
between these two determinations of the FS). On Fig. 0.21 (right side), the photoe-
mission signal is displayed along a certain cut (M − Γ) in momentum-space which

reveals quasiparticle peaks corresponding to two of these FS sheets. For momenta ~k
far from the FS, only a broad incoherent signal is seen. With ~k approaching ~kF , a peak
develops revealing the quasiparticles. When ~k crosses the FS into empty states, the
signal disappears because of the Fermi factor. Careful examination of these spectra
show that the quasiparticle peak becomes more narrow as the FS is approached, as
expected from the (Landau) phase-space arguments above.

In the context of cold atomic gases, an analogue of photoemission spectroscopy can
also be performed (Dao, Georges, Dalibard, Salomon and Carusotto, 2007; Stewart,
Gaebler and Jin, 2008), see also (Dao, Carusotto and Georges, 2009; Chen, He, Chien
and Levin, 2009) and references therein. The idea there is to trigger the conversion of
one of the hyperfine state (say, |1〉) present in the system of interest into an out-coupled
state |3〉. This can be achieved either by exciting the system with radio-frequencies
(rf spectroscopy) or by inducing a stimulated Raman transition using two laser beams
(Fig. 0.22). A time-of-flight measurement can then be performed which allows for a

determination of the initial momentum ~k of the outcoupled atom. When studying for
example an interacting mixture of two hyperfine species |1〉, |1′〉, one would ideally like
to pick the out-coupled state |3〉 such that it has only very weak interactions with
either |1〉 or |1′〉. Under such conditions, the production rate of outcoupled atoms is
obtained from Fermi’s golden-rule as:

R~q(~k, ω) =
2π

~
∑
r

W ~q
~k
|Ω(~r)|2 f(ε~r

3,~k
− ~ω − µ0)

×A(~k − ~q, ε~r
3,~k
− µ0 − ~ω;µ~r). (0.109)

In this expression, ~q = ~k1 − ~k2 is the momentum difference between the two laser
beams in a Raman setup (the case of rf-spectroscopy amounts simply to set ~q = ~0). ~r
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Fig. 0.21 ARPES spectroscopy of Sr2RuO4. Left: ARPES intensity map providing a deter-

mination of the Fermi surface, which has three sheets (α, β, γ). Right: Energy-dependence of

the photoemission signal (energy-distribution curves, or EDCs) for several momenta along

the Γ-M -Γ direction in the Brillouin zone. Clear quasiparticle peaks are seen when approach-

ing the FS crossing of the β- and γ-sheets. After (Damascelli, Lu, Shen, Armitage, Ronning,

Feng, Kim, Shen, Kimura, Tokura, Mao and Maeno, 2000).

denotes a given point in the trap, with µ~r = µ0 − V1(~r) the local chemical potential
(using the LDA approximation) and µ0 the chemical potential at the center of the

trap. Ω(~r) is the Rabi frequency of the transition and ω = ω12 − ω23 (Fig. 0.22). W ~q
~k

is a matrix element involving Wannier functions in the lattice and ε~r
3,~k

= ε3,~k + V3(~r)

is the dispersion of the outcoupled atom corrected by its trapping potential.
The main message of this expression is that, as in photoemission spectroscopy,

measuring the outcoupling rate provides access to the spectral function (provided cer-
tain conditions are met). On Fig. 0.22, we display theoretical results for the fermionic
Hubbard model in a strongly correlated regime, which demonstrate that the key fea-
tures seen in the spectral function (quasiparticle peak and incoherent lower Hubbard
band) can be detected by rf or Raman outcoupling spectroscopy.

Recently, the JILA group performed a beautiful experiment (Stewart, Gaebler and
Jin, 2008) in which the single-particle excitations of a trapped fermionic gas were
measured using energy- and momentum- resolved rf-spectroscopy, hence demonstrating
the usefulness of such spectroscopic probes. Some of their results are reproduced on
Fig. 0.23.

0.6 Mott transition of fermions: three dimensions

In this section, we consider again the physics of Mott localization, this time in the
context of a two-component gas of fermions in an optical lattice with a repulsive inter-
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Fig. 0.22 Left: Raman outcoupling process. Atoms in hyperfine state |1〉 are transferred

to state |3〉 using two laser beams with frequencies ω12, ω23. Right: Theoretical spectra for

a homogenous Hubbard model in a strongly-correlated regime U/W = 1.75 (with W the

bandwidth) and total density per site n = 0.85, as obtained from dynamical mean-field the-

ory. (a-b): momentum-resolved rf-spectra (a) and spectral function (b). (c-d): momentum

integrated rf-spectrum (c) and spectral function (d). Three main features are seen on the

spectral function: upper and lower Hubbard bands corresponding to incoherent, high-en-

ergy, quasi-local excitations, and a sharp dispersing quasi-particle peak near the Fermi level.

Both the quasiparticle peak and lower Hubbard band are seen in the outcoupled spectra.

From (Bernier, Dao, Kollath, Georges and Cornaglia, 2010).

action. In comparison to the bosonic case considered in Sec.0.3, a major novelty here
is the existence of an internal degree of freedom (the two hyperfine states, or the spin
in the case of electrons in a solid). This leads to the possibility of long-range “mag-
netic” ordering. Even so, it is important to keep in mind that the basic physics behind
the Mott localization of fermions is identical to the bosonic case, at least at strong
coupling U � t. Namely, the repulsive interaction makes it unfavorable for particles
to hop, resulting in an incompressible state with suppressed density fluctuations.

0.6.1 Homogeneous system: the half-filled Hubbard model

On Fig. 0.24, we display the phase diagram of the fermionic Hubbard model for a
three-dimensional cubic lattice and a homogeneous density of one particle per site on
average (“half-filled band”). From the point of view of symmetry breaking and long-
range order, there are only two phases. Below the Néel temperature TN (U) (plain/red
line), antiferromagnetic long-range order occurs, in which spin and translational sym-
metries are broken. At T = 0 this phase has a gap and is an insulator. The phase
T > TN is a paramagnet (no long-range spin ordering). However, physically important
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Fig. 0.23 “Photoemission” spectroscopy of a two-component trapped gas of 40K fermionic

atoms. Displayed are intensity maps obtained by energy- and momentum- resolved rf-spec-

troscopy. (a): Data for a very weakly interacting gas, showing the expected parabolic disper-

sion of excitations. (b): Data close to unitarity 1/kF a ∼ 0. From (Stewart, Gaebler and Jin,

2008).

crossovers take place within this phase. The short-dashed line in Fig. 0.24 denotes the
coherence scale of quasiparticles T ∗F (U). For T < T ∗F (i.e. low-enough temperature and
weak-enough coupling) one has an itinerant fermionic liquid, with long-lived quasipar-
ticles (essentially a Fermi liquid, apart from possible subtleties associated with perfect
nesting). Another key energy scale is the Mott gap (long-dashed line), which is of order
∆g ∼ U at large U . For T < ∆g, one has an essentially incompressible Mott insulator
(up to very rare thermal excitations), with frozen density fluctuations and a high spin
entropy, i.e. a localized paramagnet.

Hence, when increasing the strength of the repulsive coupling U/t, one crosses
over from a fermionic liquid to an incompressible localized paramagnet (through an
intermediate incoherent state which is a “bad metal” or a poor insulator). In a situation
where magnetic long-range order is suppressed (e.g. due to geometrical frustration of
the lattice), this crossover may be replaced by a true phase transition. Because no
symmetry breaking distinguishes a metal from an insulator at finite temperature, this
transition is expected to be first-order at T 6= 0, similar to a liquid-gas transition.
The precise description of this crossover or transition is not so easy theoretically.
Indeed, in contrast to the phase transition between a superfluid and a Mott insulator of
bosons, there is no evident order parameter associated with a static correlation function
which discriminates between a metal and a paramagnetic Mott insulator of fermions.
Possible order parameters are all related to frequency-dependent (dynamical) response
functions: for example the Drude weight associated with the ω → 0 component of the
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Fig. 0.24 Phase diagram of the homogeneous Hubbard model, for a three-dimensional cubic

lattice with one-particle per site on average. The plain line (red) denotes the phase transition

into a long-range ordered antiferromagnet (Néel temperature). The long-dashed line (black)

denotes the Mott gap: to the right of this line the paramagnetic phase behaves as an incom-

pressible Mott insulator. The short-dashed line (blue) denotes the quasiparticle coherence

scale. To the right of this line, the paramagnetic phase behaves as an itinerant fermionic

liquid with long-lived quasiparticles. Typical snapshots of the wave-function in real space are

displayed for each regime.

ac-conductivity, or the quasiparticle weight Z introduced above and associated with
the low-frequency behavior of the one-particle Green’s function. For this reason, a
mean-field theory of this crossover or transition must focus on one- or two-particle
response functions. Currently, the most complete approach of this kind is dynamical
mean-field theory (DMFT), which has allowed for many successes in understanding
strongly-correlated fermion systems. For brevity, we refer the reader to review articles
for a presentation of this theoretical approach.

From Mott to Slater. The transition into the antiferromagnetic state deserves some
further remarks. At strong coupling U/t & u∗, there is a clear separation of energy
scales: the gap ∆g (∼ U at large U) is much larger than the antiferromagnetic su-
perexchange JAF ∼ t2/U which also controls TN ∝ JAF. Hence for T � ∆g, density
fluctuations are frozen out, particles are localized into a Mott insulating state and only
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the spin degrees of freedom are active which are described by an effective Heisenberg
model. In this Mott regime, localization precedes spin ordering which is a low-energy
instability of the insulating paramagnet. In contrast, at weak coupling U/t � u∗,
long-range magnetic order and the blocking of translational degrees of freedom can-
not be distinguished: in this regime the opening of a gap is intimately connected to
spin ordering and can be described using a simple spin-density wave mean-field theory
(Slater regime). The characteristic coupling u∗ separating these two regimes is also the
one at which the crossover from a liquid to an insulating state takes place in the para-
magnetic state. The Slater and Mott-Heisenberg regimes are connected by a smooth
crossover.

From repulsion to attraction. There is actually a direct formal analogy between this
physics and that of the BCS-BEC crossover in the Hubbard model with an attractive
interaction. Indeed, on a bipartite lattice (i.e. a lattice made of two sublattice A and
B) with nearest-neighbor hopping, one can perform the following symmetry operation:

ci↑ → c̃i↑ , ci↓ → (−1)i c̃†i↓ (0.110)

with (−1)i = +1 on the A-sublattice and = −1 on the B-sublattice. At half-filling,
this symmetry simply changes the sign of the coupling U , hence establishing an exact
connection between the two cases. Long-range AF order along the x- or y-axis is
mapped onto superconducting long-range order, while AF order along the z-axis is
mapped onto a charge-density wave state in which pairs reside preferentially on one
sublattice. The two types of ordering are degenerate at half-filling in the attractive case.
The BCS regime of the attractive case maps onto the Slater regime of the repulsive
one, and the BEC regime onto the Mott-Heisenberg one. In fact, the symmetry also
maps the attractive model away from half-filling onto the repulsive model at half-filling
in a uniform magnetic field (Ho, Cazalilla and Giamarchi, 2009).

0.6.2 Trapped system

In the presence of a trapping potential V (~r) = Vt (r/a)2, the local density changes as
one moves away from the trap center, so that different phases can coexist in the system.
When the trap potential varies slowly, the density profile is accurately predicted within
the local density approximation (LDA), which relates the local state of the system to
that of the homogeneous system with a chemical potential µ(~r) = µ0 − V (~r), so that
the local density reads: n(~r) = nhom[µ = µ0 − V (~r)]. Furthermore, for a large system,
one can replace the summation over lattice sites by an integral over the chemical
potential, so that the relation between the total particle number N and the chemical
potential at the center of the trap reads:

ρ ≡ N

(
Vt
6t

)3/2

= 2π

∫ µ∗0

−∞
dµ∗(µ∗0 − µ∗)1/2 nhom[µ∗] (0.111)

where µ∗ is the chemical potential normalized to the half-bandwidth of the lattice
µ∗ = µ/(6t). From this expression, we see that the state diagram of the system can
be discussed in terms of the scaled particle number ρ = N (Vt/6t)

3/2: increasing the
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Fig. 0.25 State diagram of two-component repulsive fermions in a cubic optical lattice with

parabolic confinement, for different temperatures β = 1/kBT (DMFT). The four character-

istic regimes (see text) are labeled by: B (band insulator in the center of the trap), Mc (Mott

insulator in the center of the trap, shaded areas), Ms (shell of Mott insulator away from the

center) and L (liquid state). For each temperature the (crossover) lines indicate, from bottom

to top, the ρ values at which the central density takes the values 0.995, 1.005 and 1.995.

The gray dashed line marks the crossover from the liquid to the Mott state with increasing

interaction. The crosses indicate points at which the density profiles are plotted (right). After

(De Leo, Kollath, Georges, Ferrero and Parcollet, 2008; De Leo, Bernier, Kollath, Georges

and Scarola, 2011).

number of particles or compressing the system by increasing Vt accordingly has the
same effect.

On Fig. 0.25, we display the state diagram of a two-component fermionic gas con-
fined to a cubic optical lattice in a harmonic trap, as a function of ρ and interaction
strength u = U/6t. This state diagram was obtained (De Leo, Kollath, Georges, Fer-
rero and Parcollet, 2008; De Leo, Bernier, Kollath, Georges and Scarola, 2011) using
DMFT calculations for the homogeneous Hubbard model. Different temperatures in
the currently accessible range are considered. At still lower temperature (not dis-
played on Fig. 0.25), antiferromagnetic long-range order will occur in the regimes with
a commensurate Mott plateau, as also discussed below. The state diagram displays
four characteristic regimes (labeled L, B, Mc and Ms). Three of them are illustrated
by the corresponding density profiles n(r) calculated at representative points. For low
interaction strength (regime ‘L’) the density profile adjusts to the trapping profile and
the system remains a Fermi liquid everywhere in the trap. For very large values of
the scaled particle number ρ, a band insulator with n = 2 forms in the center of the
trap (regime ‘B’). The pinning to n = 2, and hence the band insulator, is destroyed
by increasing the temperature. For larger interaction strength (regime ‘Mc’) a Mott-
insulating region appears in the center of the trap, in which the density is pinned to
n = 1 particle per site. Close to the boundary of the trap, the Mott insulating region
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is surrounded by a liquid region. Increasing the number of atoms in the trap at large
interaction strength can increase the pressure exerted on the atoms, and can cause the
occurrence of a liquid region with filling larger than one in the center, surrounded by
a shell of Mott insulator with n = 1 (regime ‘Ms’).

Recently, as displayed on Fig. 0.26, experiments have reported the observation of
the Mott insulating region for fermionic atoms (Jördens, Strohmaier, Günter, Moritz
and Esslinger, 2008; Schneider, Hackermüller, Will, Best, Bloch, Costi, Helmes, Rasch
and Rosch, 2008). Fig. 0.26 displays a comparison between experimental data and theo-
retical calculations. In the left panel (Jördens, Tarruell, Greif, Uehlinger, Strohmaier,
Moritz, Esslinger, De Leo, Kollath, Georges, Scarola, Pollet, Burovski, Kozik and
Troyer, 2010), the measured double occupancy as a function of atom number (Jördens,
Strohmaier, Günter, Moritz and Esslinger, 2008) is compared to theoretical calcula-
tions performed at constant entropy (assuming that turning on the optical lattice
corresponds to an adiabatic process). High-temperature series expansions were ac-
tually sufficient for this comparison, with DMFT yielding identical results. Fitting
theory to experiment allows for a determination of the actual value of the entropy,
and ultimately of the temperature attained after the lattice is turned on, for a given
particle number. This analysis reveals that the lowest temperature that was reached
in this experiment (at small atom number) is comparable to the hopping amplitude
(T ∼ t). The regime with very small double occupancy at the two largest values of
U/6t actually corresponds to the formation of a Mott plateau in the center of the
trap. This is more clearly revealed in the measurement of the cloud size as a function
of trap compression (right panel) (Schneider, Hackermüller, Will, Best, Bloch, Costi,
Helmes, Rasch and Rosch, 2008), see also (Scarola, Pollet, Oitmaa and Troyer, 2009))
as a plateau signalling the onset of an incompressible regime for the largest value
of U displayed. Those experiments provide us with an ‘analog quantum simulator’
validation of theoretical methods for strongly correlated fermions (such as DMFT or
high-temperature series), admittedly still in a rather high-temperature regime.

Shaking of the lattice. For the case of bosons (see Section 0.3.4) one can also probe
the physics of the fermionic Mott insulator using the shaking of the optical lattice. This
probe is complementary with the other spectroscopy probes discussed in this section.
For fermions the major difficulty compared to the scheme exposed in Section 0.3.4 is
to measure the energy absorbed. Indeed for the bosons this could be done by releasing
the trap and looking at the width of the central peak. For the fermions the n(k) is
a step and looking at how the step is broadened by the absorbed energy is a diffi-
cult proposition given the other sources of broadening. Fortunately one can proceed
differently and it was shown (Kollath, Iucci, McCulloch and Giamarchi, 2006b) that
a measure of the rate of creation of doubly occupied sites (doublon production rate
DPR) would give essentially the same information than the measure of the absorbed
energy. Furthermore the total weight of the peak at the Mott gap U was shown to
be directly related to the degree of short range antiferromagnetic correlations in the
system, making the shaking probe a useful probe for antiferromagnetic correlations
as well. This last property can be easily understood by the same arguments than the
ones leading to the superexchange (see Fig. 0.2). If two neighbors have parallel spins
then the kinetic energy term is blocked and thus the perturbation cannot lead to any
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Fig. 0.26 Experiments on cold fermionic atoms with repulsive interactions in a three-di-

mensional optical lattice, revealing the crossover into a Mott insulating regime. Left) Dou-

ble occupancy: experiment versus theory. Points and error bars are the mean and standard

deviation of at least three experimental runs. The solid curve in each panel is the best

fit of the second order high-temperature series to the experimental data and yields spe-

cific entropies of s = 2.2(2), 2.0(5), 1.9(4), 1.6(4) for the different interactions strengths of

U/6t = 1.4(2), 2.4(4), 3.2(5), 4.1(7). Curves for s = 1.3 (dashed curve) and 2.5 (dotted curve)

represent the interval of specific entropy measured before and after the ramping of the lat-

tice. Reproduced from (Jördens, Tarruell, Greif, Uehlinger, Strohmaier, Moritz, Esslinger,

De Leo, Kollath, Georges, Scarola, Pollet, Burovski, Kozik and Troyer, 2010). Right) Cloud

sizes versus compression. Measured cloud size Rsc in a Vlat = 8Er deep lattice as a function

of the external trapping potential for various interactions U/12t = 0 (black), U/12t = 0.5

(green), U/12t = 1 (blue), U/12t = 1.5 (red) - in this figure the hopping is designated by

J . Dots denote single experimental shots, lines the theoretical expectation from DMFT for

T/TF = 0.15 prior to loading. The insets (A-E) show the quasi-momentum distribution of

the non-interacting clouds (averaged over several shots). (F) Resulting cloud size for different

lattice ramp times at Et/12t = 0.4 for a non-interacting and an interacting Fermi gas. The

arrow marks the ramp time of 50 ms used in the experiment. Reproduced from (Schneider,

Hackermüller, Will, Best, Bloch, Costi, Helmes, Rasch and Rosch, 2008).

absorption or DPR. On the contrary if two neighbors have opposite spins, and thus
short range antiferromagnetic order, the transition can take place and absorption of
energy of DPR occurs.

The proposal of this new way to probe the system by measuring the DPR was very
successful since the the counting of the doubly occupied sites can be done with a great
accuracy. This allowed to implement this probe and keep the modulation amplitude
to small enough rates that the response stayed in the linear response regime (Greif,
Tarruell, Uehlinger, Jördens and Esslinger, 2011), greatly simplifying the theoretical
analysis of this probe and allowing a much simpler and efficient comparison between
theory and experiments. Although the position of the peak is clearly at the Mott gap
∆M (Kollath, Iucci, McCulloch and Giamarchi, 2006b) computing the shape of the
peak is much more complicated than for the bosons. Indeed as shown in Fig. 0.5 for
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the bosons the doublon and holon were moving in a featureless environment of singly
occupied sites. On the contrary for the fermions, these two excitations propagate in
an antiferromagnetic background, scrambling the spin environment in the process.
In order to compute their propagation it was thus necessary to use approximations of
such an antiferromagnetic background. Fortunately such approximations existed in the
condensed matter context, and made more efficient by the relatively high temperature
present in the cold atomic systems. The simplest version is the so-called retraceable
approximation where the holon and doublon simply retrace their steps to go back to
their point of origin (Sensarma, Pekker, Lukin and Demler, 2009). More recently a
more sophisticated approximation using slave boson techniques allowed to treat both
the effects of temperature and the trapping and to provide a very good comparison
with the experimental data as shown in Fig. 0.5. Since the shaking amplitude depends
on the temperature, this allows to use the shaking as a thermometer as well.

Reaching the antiferromagnetic state. While these experiments have evidenced the
crossover into a paramagnetic Mott insulator, reaching the phase with antiferromag-
netic long-range order (Fig. 0.24) requires further cooling. In order to estimate how
much further effort is needed, and assuming an adiabatic process, an analysis of the
entropy of that phase in the trap is needed. As pointed out in (Werner, Parcollet,
Georges and Hassan, 2005), an important consideration in this respect is the entropy
per site of the homogeneous half-filled Hubbard model on the Néel critical line. This
quantity is very small at small U/t, passes through a shallow maximum for U/t ' u∗
(due to additional density fluctuations) and reaches a finite value ' ln 2/2 in the
strong-coupling Heisenberg limit (Werner, Parcollet, Georges and Hassan, 2005; Wes-
sel, 2010; Fuchs, Gull, Pollet, Burovski, Kozik, Pruschke and Troyer, 2011). Note that,
in contrast, the Néel temperature becomes very small at large U/t, illustrating the
importance of thinking rather in terms of entropy. In the trap, the entropy of liquid
wings (in the Mc regime above) need to be taken into account as well. Theoretical
studies (De Leo, Kollath, Georges, Ferrero and Parcollet, 2008; Fuchs, Gull, Pollet,
Burovski, Kozik, Pruschke and Troyer, 2011) indicate that, in the favorable case of
intermediate coupling, the trapped system must be cooled down to an entropy per
atom of order s = S/N ' 0.66 in order to reach the antiferromagnetic state in the
center of the trap, about three times smaller than the entropy that was reached in the
experiments above.

Obviously, cooling further fermionic atoms trapped in an optical lattice is a key
current challenge. Several proposals have been put forward to this effect, e.g. in (Ho
and Zhou, 2009) , (Bernier, Kollath, Georges, Leo, Gerbier, Salomon and Köhl, 2009)
A discussion and a number of relevant references on the issue of cooling can be found
in those articles, as well as in (De Leo, Bernier, Kollath, Georges and Scarola, 2011).
In Fig. 0.27, we display the basic idea behind the proposal for cooling by shaping the
trap potential made in (Bernier, Kollath, Georges, Leo, Gerbier, Salomon and Köhl,
2009).
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Fig. 0.27 Cooling scheme by trap shaping, following (Bernier, Kollath, Georges, Leo, Ger-

bier, Salomon and Köhl, 2009). (a) The atoms trapped in a parabolic profile are loaded into

an optical lattice. (b) A band insulator (hence with a very low entropy) is created in a dimple

at the center of the trap. This core region is isolated from the rest of the system, the storage

region, by rising potential barriers. (c) If needed, the storage region is removed from the

system. (d) The band insulator is relaxed adiabatically (hence preserving the low entropy)

to the desired quantum phase, e.g. a Mott insulator by flattening the dimple and turning off

or pushing outwards the barriers.

0.7 One dimensional Fermions

In a similar was than for the bosons, let us examine the case of one-dimensional
Fermions.

As one can easily guess, there will be no Fermi liquid in one dimension. Indeed
the Fermi liquid theory rests on the fact that individual excitations very similar to
the ones for free fermions exist. Clearly this cannot be the case in 1D where only
collective excitations can live. One again only the general idea will be given and the
reader referred to (Giamarchi, 2004) for more details and references.

0.7.1 Luttinger liquid and Mott insulators

The bosonization formulas of Section 0.4.3 can be easily modified to deal with bosons.
The density is strictly identical and can obviously be expressed in the same way in
terms of the field φ. For the the single-particle operator one has to satisfy an anticom-
mutation relation instead of (0.69). We thus have to introduce in representation (0.68)
something that introduces the proper minus sign when the two fermions operators are
commuted. This is known as a Jordan–Wigner transformation. Here, the operator to
add is easy to guess. Since the field φl has been constructed to be a multiple of 2π at
each particle, ei

1
2φl(x) oscillates between ±1 at the location of consecutive particles.

The Fermi field can thus be easily constructed from the boson field (0.68) by

ψ†F (x) = ψ†B(x)ei
1
2φl(x) (0.112)

This can be rewritten in a form similar to (0.68) as

ψ†F (x) = [ρ0 −
1

π
∇φ(x)]1/2

∑
p

ei(2p+1)(πρ0x−φ(x))e−iθ(x) (0.113)
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For fermions note that the least oscillating term in (0.113) corresponds to p = ±1.
This leads to two terms oscillating with a period ±πρ0 which is nothing but ±kF.
These two terms thus represent the Fermions leaving around their respective Fermi
points ±kF, also known as right movers and left movers.

The action keeps exactly the same form than (0.77). The important difference is
that since the single particle operator contains already φ and θ at the lowest order
(see (0.113)) the kinetic energy alone leads to K = 1 and interactions perturb around
this value, while for bosons non-interacting bosons correspond to K =∞. Attraction
corresponds to K > 1 while repulsion leads to K < 1. The correlation functions
can thus easily be obtained. For the density-density correlations we have exactly the
same form than for the bosons (0.80), the only difference being the different potential
values for the LL parameter K. In particular for the non-interacting fermions K = 1
and one recovers the universal 1/r2 decay of the Friedel oscillations in a free electron
gas. For repulsive interactions K < 1 and density correlations decay more slowly,
while for attractive interactions K > 1 they will decay faster, being smeared by the
superconducting pairing.

The situation is different for the single particle correlations. Contrarily to the case
of bosons, for fermions the correlation contains the terms p = ±1, corresponding to
fermions close to ±kF respectively. If we compute the correlation for the right movers
we get

GR(x, τ) = −eikFx〈Tτei(θ(x,τ)−φ(x,τ)e−i(θ(0,0)−φ(0,0))〉

= eikFxe−[K+K−1

2 log(r/α)−iArg(y+ix)]
(0.114)

The single particle correlation thus decays as a non-universal power law whose ex-
ponent depends on the Luttinger liquid parameter. For free particles (K = 1) one
recovers

GR(r) = −eikFxe− log[(yα−ix)/α] = −ieikFx 1

x+ i(vF τ + α Sign(τ))
(0.115)

which is the normal function for ballistic particles with velocity u. For interacting
systems K 6= 1 the decay of the correlation is always faster, which shows that single
particle excitations do not exist in the one dimensional world, and thus of course that
no Fermi liquid can exist.

One important consequence is the occupation factor n(k) which is given by the
Fourier transform of the equal time Green’s function

n(k) =

∫
dx e−ikxGR(x, 0−) = −

∫
dx ei(kF−k)x

(
α√

x2 + α2

)K+K−1

2

ei Arg(−α+ix)

(0.116)
The integral can be easily determined by simple dimensional analysis. It is the Fourier
transform of a power law and thus

n(k) ∝ |k − kF|
K+K−1

2 −1 (0.117)

The occupation factor is shown in Fig. 0.28. Instead of the discontinuity at kF that
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n(k)

1

0

|k - k
F
|[K+K 

−1]/2 − 1

kk
F

Fig. 0.28 The occupation factor n(k). Instead of the usual discontinuity at kF for a Fermi

liquid, it has a power law essential singularity. This is the signature that fermionic quasipar-

ticles do not exist in one dimension. Note that the position of the singularity is still at kF.

This is a consequence of Luttinger’s theorem stating that the volume of the Fermi surface

cannot be changed by interactions.

signals in a Fermi liquid that fermionic quasiparticles are sharp excitations, one thus
finds in one dimension an essential power law singularity. Formally, this corresponds
to Z = 0, another signature that all excitations are converted to collective excitations
and that new physics emerges compared to the Fermi liquid case.

In practice this difference on n(k) is relatively difficult to see unless the interaction
is quite large, since the discontinuity of n(k) is smeared by the temperature. There
are thus better ways to check for the LL properties for fermions (Giamarchi, 2004).

In a similar way that for bosons, one can add to the problem a lattice and check
for the presence of a Mott insulator. The problem and properties are essentially the
same than for bosons and we will not repeat the analysis here, but refer the reader
to (Giamarchi, 1997; Giamarchi, 2004). The essential difference comes again from the
different values of the LL parameter K for the two systems. So for example for the
Hubbard model, the Mott insulator can be obtained for any values of K < 1, i.e. for
any repulsive interactions. This is very similar to what happens in higher dimensions
(see Fig. 0.24. The perfect antiferromagnetic order is replaced by a powerlaw decay
of the antiferromagnetic correlation functions. As for the case of bosons string order
parameters can exist.

0.7.2 Two component fermions: spin-charge separation

A very interesting properties of one dimensional systems can be seen on two compo-
nent systems (such as e.g. the Hubbard model). In that case one can represent the
excitations by introducing collective variables for each component of the spins. One has
thus four collective variables (φ↑, θ↑) and (φ↓, θ↓). However one can see that something
remarkable happens. If one introduces the variables
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φρ(x) =
1√
2

[φ↑(x) + φ↓(x)]

φσ(x) =
1√
2

[φ↑(x)− φ↓(x)]

(0.118)

the first variable represents fluctuations of the total density ρ↑(x) + ρ↓(x) while the
second represents fluctuations of the spin density ρ↑(x) + ρ↓(x). In terms of these
variables the interaction in the Hubbard model completely decouples. Indeed

H = U
∑
i

n̂i↑n̂i↓ →
U

π2

∫
dx(∇φ↑(x))(∇φ↓(x))

=
U

2π2

∫
dx[(∇φρ(x))2 − (∇φσ(x))2]

(0.119)

A similar decoupling occurs for the kinetic energy (Giamarchi, 2004). This means
that the full Hilbert space of the problem decouples into two sectors, one sector only
involving charge excitations, and another involving spin excitations. It immediately
shows that a single particle excitation such as the Fermi liquid quasiparticle, which
carries charge and spin cannot exist. It shows that in one dimension what we could
naively think as of an elementary excitation, namely an electron which carries both a
charge and a spin, is in fact not the most elementary one. The electron fractionalize
into two more elementary excitations: a) a holon which carries a charge but no spin;
b) a spinon which carries a spin but no charge. These excitations are directly linked to
the fields φρ and φσ. Such a fractionalization is thus one of the important hallmark of
the one dimensional world. It occurs in a variety of systems and context (Giamarchi,
2004). For the case of fermions with spin, one can make a cartoon to visualize it. Such
a cartoon is indicated in Fig. 0.29. We also see that such a mechanism does not occur
naturally in higher dimensions. One of the important consequences of the spin-charge
separation would be the occurrence in photoemission of a double singularity structure
at the energies of holon and the spinon and not the single one that one expects in a
Fermi liquid (see Fig. 0.17). Probing for such effect is thus an extremely interesting and
challenging question. In the condensed matter context only one experiment performing
tunneling between two quantum wires could observe such a spin-charge separation
(Auslaender, Steinberg, Yacoby, Tserkovnyak, Halperin, Baldwin, Pfeiffer and West,
2005; Tserkovnyak, Halperin, Auslaender and Yacoby, 2002). Cold atoms could thus
be a very nice system to observe this effect. For fermions the temperature is still
an issue, thus proposals to use two components bosonic systems instead have been
put forward (Kleine, Kollath, McCulloch, Giamarchi and Schollwoeck, 2007; Kleine,
Kollath, McCulloch, Giamarchi and Schollwoeck, 2008) and remain to be tested.

0.8 Conclusion

This concludes our brief tour of interacting quantum fluids. We have presented the
basic concepts that underlay our understanding of quantum interacting systems, both
fermionic and bosonic. Two major cornerstones are the Fermi liquid and the Luttinger
liquid theories, which are effective theories of the low-energy excitations of the sys-
tem. They apply in two and higher dimensions, and in one dimension, respectively.
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(a)

(b)

(c)

Fig. 0.29 A cartoon of the spin-charge separation (fractionalization of excitations) that

naturally occurs in one dimension; a) one removes a particle which carries a spin and a

charge; b) after the excitations have propagated we see that there is a place in the system

where two parallel spins exist but no charge is missing. This is the spinon which carries spin

but no charge. There is also a hole but with no distortion of the surrounding antiferromagnetic

environment. This is the holon with a charge but no spin. The particle has thus fractionalized

into to more elementary (collective) excitations. c) on the contrary to what happens in 1D in

higher dimensions the holon and the spinon are held together by a series of frustrated bonds.

They are thus bound and form the Fermi liquid quasiparticle.

They constitute references to which any novel properties or novel system must be com-
pared. Important effects of the interactions, such as the superfluid, Mott insulating
and antiferromagnetic phases have been discussed, and are at the forefront of current
research.

A full solution or complete understanding of interacting quantum models beyond
these low-energy effective models is still a tremendously difficult task today, although
recent years have witnessed significant progress in the field. Indeed, the arsenal of tools
at our disposal to tackle such questions, both on the analytic and on the numerical side,
has increased considerably and those tools have undergone considerable development.
Notwithstanding, the physics of such a simple model as the Hubbard model is still
a formidable challenge, especially in two dimensions. Cold atomic systems in optical
lattices have provided a remarkable realization of such models and it is certain that
the “quantum simulators” realised in this novel experimental setup will help driving
the field forward.

Of course many more challenges remain and these notes cannot even list all the
exciting new subjects that are connected to this physics. It is clear that questions
such as cooling, thermometry and new experimental probes or spectroscopies are of
central interest in order to make progress. Cold atoms, by the control one can exert
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on the dimensionality of the lattice, have also opened the way to the study of di-
mensional crossovers between low and higher dimensional situations. For example the
passage from a one dimensional situation to a two- or three- dimensional one remains
a challenge which is of course of direct interest to many systems in condensed matter
physics. In a similar way, cold atomic systems have opened the possibility to tackle
much richer situations involving several internal degrees of freedom, e.g. bosons with
two “spin” components, Bose-Fermi mixtures, multi-component pairing states, etc...
All these systems potentially display a very rich and novel physics. Cold atoms have
also provided remarkable isolated quantum systems allowing to tackle in a different
way than in condensed matter the question of the out of equilibrium behavior of in-
teracting quantum systems. They also open the possibility of dealing in a controlled
manner with the influence of an external dissipative bath. Last but not least, and
because of the extreme control on the properties of the system they have allowed to
study in a controlled way the influence of disorder and the combined effects of disorder
and interactions.

All these subjects go far beyond, but build upon the material exposed in these notes
and constitute the heart of the research on strongly correlated quantum systems. Cold
atoms have opened all these avenues and new frontiers for us, we are only at the
beginning of the trip, and we can surely expect beautiful surprises and discoveries in
the years to come.
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