

| cole ———        |
|-----------------|
| normale ———     |
| upérieure ———   |
| oaris—saclay —— |

# Deterministic Strategies in Concurrent Games and their Relation with Semantics and Logic

M1 Internship Defense

Samuel Debray August 30, 2021

École Normale Supérieure Paris-Saclay

From sequential games to concurrent games

Concurrent strategies

The framework of purely positive games

# How did it go?

Remote internship under the supervision of Prof. Glynn Winskel (University of Strathclyde) and Dr. Simon Castellan (INRIA Rennes-Bretagne-Atlantique).

Remote work has quite a lot of drawbacks such as schedule, motivation and communication.

Worked on concurrent interactive processes represented as strategies.

Approximative timeline:

| FebMar.   | Bibliographic work                                |  |  |
|-----------|---------------------------------------------------|--|--|
| AprMay    | Equivalence between Berry-stable maps and         |  |  |
|           | deterministic strategies                          |  |  |
| June      | e Equivalence between dialectica maps and winning |  |  |
|           | deterministic strategies in dialectica games      |  |  |
| July-Aug. | Report and defense                                |  |  |

Concurrent games are ubiquitous.

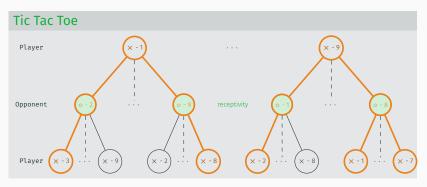
Aim: providing equivalences between concurrent games and some known objects in theoretical CS. From sequential games to concurrent games

### Usual games

Games are often represented sequentially.

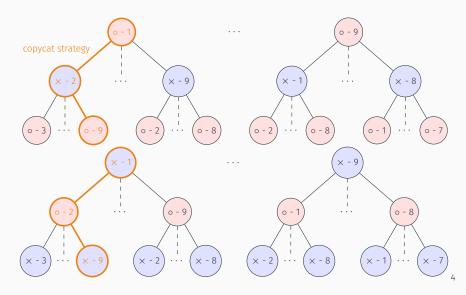
Games are represented by a forest and strategies are sub-forests.

Nodes of even height have same polarity (e.g. Player) and those of odd height have the opposite polarity (e.g. Opponent).



### Parallel games

TicTacToe<sup> $\perp$ </sup> || TicTacToe where **Player** plays  $\times$  and **Opponent**  $\circ$ .



# A bunch of drawbacks

Trace representation of a play

 $\times -1 \cdot \circ -2 \cdot \times -3 \cdots$ 

which leads to the representation

 $\mathsf{TicTacToe} = \{\varepsilon, \times -1, \cdots, \times -9, \times -1 \cdot \circ -2, \cdots, \times -1 \cdot \circ -9, \cdots\}$ 

paths of the tree.

#### Drawbacks

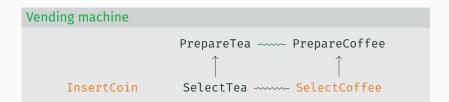
- **Combinatorial explosion**: TicTacToe<sup>⊥</sup> || TicTacToe has exponentially more states that TicTacToe
- Causal dependencies
- Consistency
- Very rigid: moves alternate, etc.

A way to describe events with causality: concurrent representation of trees.

#### Event structure

Tuple  $\langle E, \leq_E, \text{Con}_E \rangle$  with *E* set of events,  $\leq_E$  causal dependency relation on *E* and  $\text{Con}_E \subseteq 2^E$  set of consistent subsets of *E*.

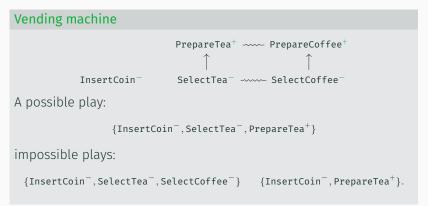
Such that (roughly)  $\leq_E$  is well-founded and conflicts are inherited.



Main ingredient: event structures.

Polarity to account for the two players: pol:  $E \rightarrow \{+, -\}$ .

A play of the game is a configuration of *E*: downward-closed and consistent.



# Concurrent strategies



#### Drawbacks

• Might want additionnal dependencies, e.g. hardcode that user must pay



• Conjunctive causality.

#### A vending machine with which we can pay cash or card.



We need to be able to add additionnal events to account for disjunctive causality.

# Strategies

Intuition: a strategy is a "sub-event structure" with additionnal causality and possibly duplicated events.

#### Concurrent strategy

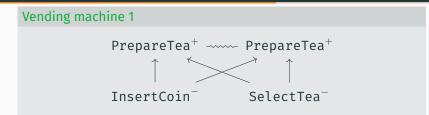
A strategy on *E* is the data of an event structure *S* and a labeling function  $\sigma: S \rightarrow E$  such that:

- +  $\sigma$  preserves polarity,
- $\cdot \sigma$  preserves configurations,
- $\cdot \sigma$  is injective over configurations.

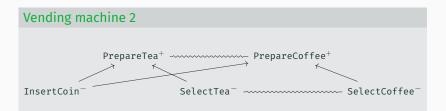
In addition, we add the following constraints:

- + receptivity:  $\sigma$  disallows no <code>Opponent</code> moves,
- **innocence**: we can add dependencies  $\ominus \leq \oplus$  but not  $\oplus \leq \ominus$ .

# Example strategy



- The above **is not** a strategy on the vending machine: it is not receptive since **Opponent** cannot select coffee.
- It is a strategy on vending machines that only sell tea.

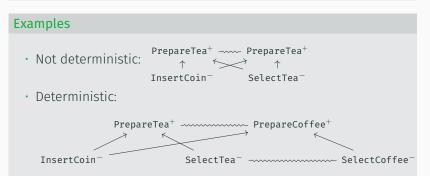


# Determinism

A strategy is deterministic when consistency depends only on **Opponent**'s moves.

#### Deterministic strategy

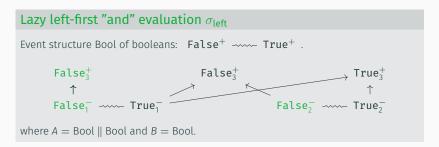
A strategy  $\sigma: S \to E$  is deterministic iff for every  $X \subseteq S$ ,  $X \in Con_S$  iff the set  $Neg[X] := \{s' \in S \mid pol(s) = - \land \exists s \in S \cdot s' \leq s\}$  of **Opponent's moves on which moves in** X **depend** is consistent.



# The framework of purely positive games

# From strategies to functions

A, B purely +-ve and  $\sigma: S \rightarrow A^{\perp} \parallel B$  deterministic strat. from A to B.



An input  $x \in C^{\infty}$  (Bool || Bool) induces a unique +-max configuration  $z \in S$ . (existence: receptivity; uniqueness: determinism)

 $\sigma[z] = \overline{x} \parallel y$  for some  $y \in C^{\infty}$  (Bool), thus we can consider y to be the output  $\tilde{\sigma}(x)$  of  $\sigma$  on x.

 $\tilde{\sigma}(\mathsf{False}_1 \parallel \mathsf{False}_2) = \mathsf{False}_3$ 

# The converse transformation?

Turns out that not all functions are can be transformed into a strat.

Berry-stable map

A Berry-stable map  $f: \langle \mathcal{C}^{\infty}(A), \subseteq \rangle \to \langle \mathcal{C}^{\infty}(B), \subseteq \rangle$  is a map s.t.:

- *f* is Scott-continuous,
- $f(x \cap y) = f(x) \cap f(y)$  if  $x, y \subseteq z \in C^{\infty}(A)$ .

(Almost) represent sequential programs.

#### The domain of booleans $C^{\infty}(Bool)$

Three "and" evaluation strategies:

$$\wedge_{\text{left}} : \left\{ \begin{array}{l} \bot, b \mapsto \bot \\ \text{False}, b \mapsto \text{False} \\ \text{True}, b \mapsto b \end{array} \right. \wedge_{\text{right}} : \left\{ \begin{array}{l} b, \bot \mapsto \bot \\ b, \text{False} \mapsto \text{False} \\ b, \text{False} \mapsto \text{False} \\ b, \text{True} \mapsto b \end{array} \right. \wedge_{\text{par}} : \left\{ \begin{array}{l} \bot, \bot \mapsto \bot \\ \text{False}, b \mapsto \text{False} \\ b, \text{False} \mapsto \text{False} \\ \text{True}, \text{True} \mapsto \text{True} \end{array} \right\}$$

but  $\wedge_{par}$  isn't stable: take  $x := \{False\} \parallel \bot$  and  $y := \bot \parallel \{False\}$ .

The function associated with  $\sigma_{\text{left}}$  is  $\wedge_{\text{left}}$ .

The thorny part of the work...

 $f: \mathcal{C}^{\infty}(A) \to \mathcal{C}^{\infty}(B)$  Berry-stable.

Aim Finding  $\sigma$  whose +-max configurations are of the form  $\overline{x} \parallel f(x)$ .

Solution Take the configurations of S to be

 $\mathcal{F} := \{ \overline{x} \parallel y \in \mathcal{C}^{\infty}(A^{\perp} \parallel B) \mid y \subseteq_{B} f(x) \} .$ 

Main issue Build an event structure with prescribed configurations.

# Sketch of proof

#### Stable families and functor Pr

 $\mathcal{C}^{\infty}$  takes an event structure to a domain of configuration.

Stable family  $\mathcal{F}$  = right notion of domain of configuration.

Event structures 
$$\overbrace{Pr}^{C^{\infty}}$$
 Stable families

We also have a map  $\operatorname{top}_{\mathcal{F}} \colon \mathcal{C}^{\infty}(\operatorname{Pr}(\mathcal{F})) \to \mathcal{F}$ .

We take 
$$\tilde{f}$$
:  $Pr(\mathcal{F}) \rightarrow A^{\perp} \parallel B$  to be  $top_{\mathcal{F}}$ .

#### Remark

This construction solves the pb. of **disjunctive causal dependency**. Vending machine with cash or card gives two events **PrepareTea**, {**PrepareTea**<sup>+</sup>, **InsertCoin**<sup>-</sup>, **SelectTea**<sup>-</sup>} and {**PrepareTea**<sup>+</sup>, **InsertCard**<sup>-</sup>, **SelectTea**<sup>-</sup>}.

#### Lazy left-first "and" $\wedge_{left}$

- 1. Compute the (complicated) stable family  $\mathcal{F}_{\text{left}}$ ,
- 2. Compute  $Pr(\mathcal{F})$ ,
- 3. Get the associated strategy:



This example illustrates that the correspondence is one-to-one.

We have shown that Berry-stable maps, which are central in semantics, can be emulated in concurrent games.

*Continuation?* Two games in parallel  $A_p \parallel A_n$  with  $A_p$  purely +-ve and  $A_n$  purely --ve. A little trickier.

These games are connected to logic, and more specifically to dialectica maps.

# **Questions?**

# Winning conditions

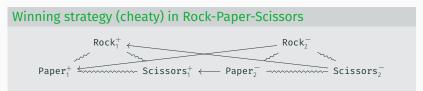
#### Aim: defining what it means for a player to win.

#### Winning conditions and winning strategies

A game with winning condition is basically a game A with winning conditions (configurations)  $W_A \subseteq C^{\infty}(A)$ . Similarily, losing conditions  $L_A$ , by default  $L_A = C^{\infty}(A) \setminus W_A$ .

- Winning in  $A^{\perp}$  is for the other player to lose in A.
- Winning in  $A \parallel B$  is winning either in A or B.

A winning strategy ensures that **Player** wins whenever he plays optimally.



# Imperfect information

#### Cheaty strategy in Rock-Paper-Scissors



A kind of one-way mirror for games.

Assign to all events a level in  $l: E \to \mathbb{N}$ . An event e' is visible by e (w.r.t. causal dependency) iff  $l(e') \leq l(e)$ .

Strategies cannot allow dependencies on maske moves:  $\forall s, s' \in S \cdot s \leq_S s' \implies l(\sigma(s)) \leq l(\sigma(s')).$ 

#### How to fix Rock-Paper-Scissors?

+-ve events have level 1 and --ve have level 2.

- $\cdot \ \ominus \leq \oplus$  dependencies disabled by imperfect info.
- $\cdot \ \oplus \leq \ominus$  dependencies disallowed by innocence.

Dialectica game = a game  $A_p \parallel A_n$  with winning conditions and imperfect info s.t. **Opponent** can see **Player** but not the opposite.

#### Dialectica maps

A and B dialectica games. A dialectica map is a pair of Berry-stable maps  $f : C^{\infty}(A_p) \to C^{\infty}(B_p)$  and  $g : C^{\infty}(A_p \parallel B_n) \to C^{\infty}(A_n)$  s.t.

$$x \parallel g(x \parallel y) \in W_A \implies f(x) \parallel y \in W_B.$$

Wait, where does this come from?

Coined by Kurt Gödel in 1958.

| Computational world       | Dialectica world          |
|---------------------------|---------------------------|
| $\lambda$ -calculus       | <i>T</i> -theory          |
| Curry-Howard isomorphism  | Dialectica interpretation |
| Cartesian closed category | Dialectica category       |

1991, Valeria de Paiva and Martin Hyland showed connexion between Girard's linear logic and Dialectica Categories. A kind of Lambek's correspondence.

The category of dialectica games is the dialectica category associated with the category of games with imperfect information and winning conditions.

# Dialectica maps are exactly deterministic winning strategies between dialectica games.

► From dialectica maps to strategies  $\langle f, g \rangle$   $f': \begin{cases} \mathcal{C}^{\infty}(A_p || B_n) & \longrightarrow & \mathcal{C}^{\infty}(B_p) \\ x || y & \longmapsto & f(x) \end{cases} h: \begin{cases} \mathcal{C}^{\infty}(A_p || B_n) & \longrightarrow & \mathcal{C}^{\infty}(A_n) \times \mathcal{C}^{\infty}(B_p) \\ x || y & \longmapsto & (f(x), g(x || y)) \end{cases}$  $h \text{ is (almost) a Berry-stable map } h: \mathcal{C}^{\infty}(A_p || B_n^{\perp}) \to \mathcal{C}^{\infty}(A_n^{\perp} || B_p) \text{ so it induces a strategy.}$ 

► From strategies to dialectica maps  $\sigma: S \to A^{\perp} \parallel B$  $\sigma$  induces a Berry-stable map  $\tilde{\sigma}: C^{\infty}(A_p \parallel B_n^{\perp}) \to C^{\infty}(A_n^{\perp} \parallel B_p)$  which we can project (up to iso.) into  $f: C^{\infty}(A_p \parallel B_n) \to C^{\infty}(A_n)$  and  $g: C^{\infty}(A_p \parallel B_n^{\perp}) \to C^{\infty}(B_p)$ . By innocence and imperfect info, fdoesn't depend on its second argument so  $\langle f, g \rangle$  suits.

Here again, the correspondence is one-to-one.