
Deterministic Strategies in Concurrent Games
and their Relation with Semantics and Logic
M1 Internship Defense

Samuel Debray
August 30, 2021

École Normale Supérieure Paris-Saclay



Table of contents

From sequential games to concurrent games

Concurrent strategies

The framework of purely positive games

1



How did it go?

Remote internship under the supervision of Prof. Glynn Winskel
(University of Strathclyde) and Dr. Simon Castellan (INRIA
Rennes-Bretagne-Atlantique).

Remote work has quite a lot of drawbacks such as schedule,
motivation and communication.

Worked on concurrent interactive processes represented as
strategies.

Approximative timeline:

Feb.-Mar. Bibliographic work
Apr.-May Equivalence between Berry-stable maps and

deterministic strategies
June Equivalence between dialectica maps and winning

deterministic strategies in dialectica games
July-Aug. Report and defense

2



Concurrent games are ubiquitous.

Aim: providing equivalences between
concurrent games and some known objects in

theoretical CS.

2



From sequential games to
concurrent games



Usual games

Games are often represented sequentially.

Games are represented by a forest and strategies are sub-forests.

Nodes of even height have same polarity (e.g. Player) and those of
odd height have the opposite polarity (e.g. Opponent).

Tic Tac Toe

× - 1 × - 9× - 1 × - 9

◦ - 1◦ - 1◦ - 1 ◦ - 8◦ - 9◦ - 9◦ - 9◦ - 2 ◦ - 8◦ - 2 ◦ - 8◦ - 2

× - 8× - 8× - 2× - 9

· · ·· · ·

· · ·· · ·× - 3× - 3 × - 2× - 2 · · · × - 8

· · ·

× - 1 · · · × - 7× - 1 × - 7

receptivity

Player

Opponent

Player

3



Parallel games

TicTacToe⊥ ‖ TicTacToe where Player plays × and Opponent ◦.

◦ - 1◦ - 1 ◦ - 9

× - 1 × - 8× - 9× - 2× - 2

◦ - 8◦ - 2◦ - 9◦ - 9

· · ·· · ·

· · ·· · ·◦ - 3 ◦ - 2 · · · ◦ - 8

· · ·

◦ - 1 · · · ◦ - 7

copycat strategy

× - 1× - 1 × - 9

◦ - 1 ◦ - 8◦ - 9◦ - 2◦ - 2

× - 8× - 2× - 9× - 9

· · ·· · ·

· · ·· · ·× - 3 × - 2 · · · × - 8

· · ·

× - 1 · · · × - 7

4



A bunch of drawbacks

Trace representation of a play

×− 1 · ◦ − 2 · × − 3 · · ·

which leads to the representation

TicTacToe = {ε,×− 1, · · · ,×− 9,×− 1 · ◦ − 2, · · · ,×− 1 · ◦ − 9, · · · }

paths of the tree.

Drawbacks

• Combinatorial explosion: TicTacToe⊥ ‖ TicTacToe has
exponentially more states that TicTacToe

• Causal dependencies
• Consistency
• Very rigid: moves alternate, etc.

5



A solution: event structures

A way to describe events with causality: concurrent representation of
trees.

Event structure
Tuple 〈E,≤E, ConE〉 with E set of events, ≤E causal dependency
relation on E and ConE ⊆ 2E set of consistent subsets of E.

Such that (roughly) ≤E is well-founded and conflicts are inherited.

Vending machine

PrepareTea PrepareCoffee

InsertCoin SelectTea SelectCoffee

6



Concurrent games

Main ingredient: event structures.

Polarity to account for the two players: pol : E ! {+,−}.

A play of the game is a configuration of E: downward-closed and
consistent.

Vending machine

PrepareTea+ PrepareCoffee+

InsertCoin− SelectTea− SelectCoffee−

A possible play:

{InsertCoin−
, SelectTea−

, PrepareTea+}

impossible plays:

{InsertCoin−
, SelectTea−

, SelectCoffee−} {InsertCoin−
, PrepareTea+}.

7



Concurrent strategies



A first idea

A sub-event structure, like for trees.

PrepareTea+

InsertCoin− SelectTea−

Drawbacks

• Might want additionnal dependencies, e.g. hardcode that user
must pay

PrepareTea+

InsertCoin− SelectTea−

innocence

• Conjunctive causality.

8



Disjunctive vs conjunctive causality

A vending machine with which we can pay cash or card.

PrepareTea+ PrepareTea+

InsertCoin− SelectTea− InsertCard−

We need to be able to add additionnal events to account for
disjunctive causality.

9



Strategies

Intuition: a strategy is a ”sub-event structure” with additionnal
causality and possibly duplicated events.

Concurrent strategy
A strategy on E is the data of an event structure S and a labeling
function σ : S! E such that:

• σ preserves polarity,
• σ preserves configurations,
• σ is injective over configurations.

In addition, we add the following constraints:

• receptivity: σ disallows no Opponent moves,
• innocence: we can add dependencies 	 ≤ ⊕ but not ⊕ ≤ 	.

10



Example strategy

Vending machine 1

PrepareTea+ PrepareTea+

InsertCoin− SelectTea−

• The above is not a strategy on the vending machine: it is not
receptive since Opponent cannot select coffee.

• It is a strategy on vending machines that only sell tea.

Vending machine 2

PrepareTea+ PrepareCoffee+

InsertCoin− SelectTea− SelectCoffee−

11



Determinism

A strategy is deterministic when consistency depends only on
Opponent’s moves.

Deterministic strategy
A strategy σ : S! E is deterministic iff for every X ⊆ S, X ∈ ConS iff
the set Neg[X] := {s′ ∈ S | pol(s) = − ∧ ∃s ∈ S · s′ ≤ s} of
Opponent’s moves on which moves in X depend is consistent.

Examples

• Not deterministic:
PrepareTea+ PrepareTea+

InsertCoin− SelectTea−

• Deterministic:

PrepareTea+ PrepareCoffee+

InsertCoin− SelectTea− SelectCoffee−

12



The framework of purely positive
games



From strategies to functions

A, B purely +-ve and σ : S! A⊥ ‖ B deterministic strat. from A to B.

Lazy left-first ”and” evaluation σleft

Event structure Bool of booleans: False+ True+ .

False+3 False+3 True+3

False−1 True−1 False−2 True−2

where A = Bool ‖ Bool and B = Bool.

An input x ∈ C∞(Bool ‖ Bool) induces a unique +-max configuration
z ∈ S. (existence: receptivity; uniqueness: determinism)

σ[z] = x ‖ y for some y ∈ C∞(Bool), thus we can consider y to be the
output σ̃(x) of σ on x.

σ̃(False1 ‖ False2) = False3
13



The converse transformation?

Turns out that not all functions are can be transformed into a strat.

Berry-stable map
A Berry-stable map f : 〈C∞(A),⊆〉 ! 〈C∞(B),⊆〉 is a map s.t.:

• f is Scott-continuous,
• f (x ∩ y) = f (x) ∩ f (y) if x, y ⊆ z ∈ C∞(A).

(Almost) represent sequential programs.

The domain of booleans C∞(Bool)
Three ”and” evaluation strategies:

∧left :


⊥, b 7! ⊥
False, b 7! False
True, b 7! b

∧right :


b,⊥ 7! ⊥
b, False 7! False
b, True 7! b

∧par :


⊥,⊥ 7! ⊥
False, b 7! False
b, False 7! False
True, True 7! True

but ∧par isn’t stable: take x := {False} ‖ ⊥ and y := ⊥ ‖ {False}.

The function associated with σleft is ∧left. 14



From stable maps to strategies

The thorny part of the work…

f : C∞(A) ! C∞(B) Berry-stable.

Aim Finding σ whose +-max configurations are of the form
x ‖ f (x).

Solution Take the configurations of S to be

F := {x ‖ y ∈ C∞(A⊥ ‖ B) | y ⊆B f (x)} .

Main issue Build an event structure with prescribed
configurations.

15



Sketch of proof

Stable families and functor Pr
C∞ takes an event structure to a domain of configuration.

Stable family F = right notion of domain of configuration.

Event structures Stable families
C∞

Pr

We also have a map topF : C∞(Pr(F)) ! F .

We take f̃ : Pr(F) ! A⊥ ‖ B to be topF .

Remark
This construction solves the pb. of disjunctive causal dependency.
Vending machine with cash or card gives two events PrepareTea,
{PrepareTea+,InsertCoin−

,SelectTea−} and
{PrepareTea+,InsertCard−

,SelectTea−}.
16



Example

Lazy left-first ”and” ∧left

1. Compute the (complicated) stable family Fleft,
2. Compute Pr(F),
3. Get the associated strategy:

False+3 False+3 True+3

False−1 True−1 False−2 True−2

This example illustrates that the correspondence is one-to-one.

17



Conclusion

We have shown that Berry-stable maps, which are central in
semantics, can be emulated in concurrent games.

Continuation? Two games in parallel Ap ‖ An with Ap purely +-ve and
An purely −-ve. A little trickier.

These games are connected to logic, and more specifically to
dialectica maps.

18



Questions?

18



Winning conditions

Aim: defining what it means for a player to win.

Winning conditions and winning strategies
A game with winning condition is basically a game A with winning
conditions (configurations) WA ⊆ C∞(A).
Similarily, losing conditions LA, by default LA = C∞(A) \WA.

• Winning in A⊥ is for the other player to lose in A.
• Winning in A ‖ B is winning either in A or B.

A winning strategy ensures that Player wins whenever he plays
optimally.

Winning strategy (cheaty) in Rock-Paper-Scissors

Rock+
1 Rock−

2

Paper+
1 Scissors+

1 Paper−
2 Scissors−

2



Imperfect information

Cheaty strategy in Rock-Paper-Scissors

Rock+
1 Rock−

2

Paper+
1 Scissors+

1 Paper−
2 Scissors−

2

A kind of one-way mirror for games.

Assign to all events a level in l : E ! N. An event e′ is visible by e
(w.r.t. causal dependency) iff l(e′) ≤ l(e).

Strategies cannot allow dependencies on maske moves:
∀s, s′ ∈ S · s ≤S s′ =⇒ l(σ(s)) ≤ l(σ(s′)).

How to fix Rock-Paper-Scissors?
+-ve events have level 1 and −-ve have level 2.

• 	 ≤ ⊕ dependencies disabled by imperfect info.
• ⊕ ≤ 	 dependencies disallowed by innocence.



Dialectica games

Dialectica game = a game Ap ‖ An with winning conditions and
imperfect info s.t. Opponent can see Player but not the opposite.

Dialectica maps
A and B dialectica games. A dialectica map is a pair of Berry-stable
maps f : C∞(Ap) ! C∞(Bp) and g : C∞(Ap ‖ Bn) ! C∞(An) s.t.

x ‖ g(x ‖ y) ∈ WA =⇒ f (x) ‖ y ∈ WB.

Wait, where does this come from?



Gödel’s dialectica interpretation

Coined by Kurt Gödel in 1958.

Computational world Dialectica world
λ-calculus T-theory

Curry-Howard isomorphism Dialectica interpretation
Cartesian closed category Dialectica category

1991, Valeria de Paiva and Martin Hyland showed connexion between
Girard’s linear logic and Dialectica Categories. A kind of Lambek’s
correspondence.

The category of dialectica games is the dialectica category
associated with the category of games with imperfect information

and winning conditions.



The equivalence

Dialectica maps are exactly deterministic winning strategies
between dialectica games.

I From dialectica maps to strategies 〈f ,g〉

f ′ :
{

C∞(Ap ‖ Bn) −! C∞(Bp)
x ‖ y 7−! f (x)

h :
{

C∞(Ap ‖ Bn) −! C∞(An)× C∞(Bp)
x ‖ y 7−! (f (x), g(x ‖ y))

h is (almost) a Berry-stable map h : C∞(Ap ‖ Bn⊥) ! C∞(An⊥ ‖ Bp) so
it induces a strategy.

I From strategies to dialectica maps σ : S! A⊥ ‖ B
σ induces a Berry-stable map σ̃ : C∞(Ap ‖ Bn⊥) ! C∞(An⊥ ‖ Bp) which
we can project (up to iso.) into f : C∞(Ap ‖ Bn) ! C∞(An) and
g : C∞(Ap ‖ Bn⊥) ! C∞(Bp). By innocence and imperfect info, f
doesn’t depend on its second argument so 〈f ,g〉 suits.

Here again, the correspondence is one-to-one.


	From sequential games to concurrent games
	Concurrent strategies
	The framework of purely positive games
	Appendix

