
Sample Research Summary

Samuel Debray

November 23, 2022

Abstract

The progress of AI in the last few years has allowed great
progress to be made both in computer science and cogni-
tive sciences. Capitalising on techniques used to compare
AI and the brain on linguistic tasks, this project attempts to
use AI to understand the cognition of advanced mathematics.
We did so in three different ways. Firstly, we gathered a
mathematical corpus from Wikipedia to generate a mathe-
matical vocabulary and its semantic embeddings usingGloVe,
which computes distributional semantic representations. We
then found that the first principal component of the GloVe
embeddings of a global corpus made up of mathematical
and non-mathematical pages enables to retrieve the fMRI
activations in the brain’s mathematical network. Finally,
we used a pretrained model of the Transformer, a state-of-
the-art neural network, to analyse advanced mathematical
and general knowledge statements. We showed that the
model makes a distinction between meaningful and meaning-
less statements, and that its behaviour correlates with that
of non-mathematicians when presented with meaningless
mathematical statements.

1 Introduction

In the last few years, the field of Artificial Intelligence (AI) has
been the subject of great upheaval. The development of state-
of-the-art neural networks like the Transformer (Vaswani et
al., 2017) has made it possible to build bridges between algo-
rithms and the brain (Caucheteux and King, 2022; Pereira et
al., 2018; Schrimpf et al., 2021). Computer scientists have also
realised that AI models are endowed with great reasoning
abilities and are now able to automatically prove mathemati-
cal theorems (Polu et al., 2022; Polu and Sutskever, 2020) and
to solve non-trivial computational problems (Charton, 2021;
Charton et al., 2021; d’Ascoli et al., 2022; Kamienny et al.,
2022; Lample and Charton, 2019).

A fair amount of research has been conducted on the links
between AI and the brain’s treatment of language on the one
hand, and on AI’s mathematical abilities on the other hand.
Suprisingly, though, virtually nothing has been done on AI
and the cognition of advanced mathematics. This project
is a first step in this direction, capitalising on the recent
discoveries on mathematical cognition made by Amalric and
Dehaene, 2016, 2018. More precisely, there are two main
questions we seek to answer:
(i) Do distributional semantic representations actually cap-

ture mathematical semantics? And can they be used to
analyse fMRI data?

(ii) Do Transformer-class models, which proved to be gifted
in mathematics, process maths in the same way as hu-

mans?
By looking in this direction, we aim at understanding bet-

ter the way advanced mathematics are processed in the brain.
Ultimately, this could lead to the emergence of artifical scien-
tists, capable of performing scientific research on their own
or, at the very least, to help scientists in the most tedious
parts of their job; all by imitating the human brain. In short,
the mutual benefits of AI and neuroscience are potentially
immense.

2 Use of Distributed Semantic Rep-
resentations

2.1 A Vocabulary of Mathematics
We created a 1, 000-word mathematical vocabulary by re-
viewing manually the vocabulary computed by the GloVe
pipeline (Pennington et al., 2014) from the mathematical arti-
cles of French Wikipedia. For each word of the vocabulary,
we obtained a 500-dimensionalGloVe semantic vector, which
is supposed to encode semantic information obtained from
cooccurrences.

Fig. 1. Kernel density estimate plot of the twenty most fre-
quent words of each cluster in the planes PC1-PC2, PC1-PC3
and PC2-PC3. Levels encompass 30%, 50% and 80% of the
probability mass. PC1 accounts for 6.87% of the observed
variance, PC2 for 6.20% and PC3 for 5.67%.

We performed a PCA (Wold et al., 1987) of the vectors and
split them into ten clusters that we labelled by hand. We
then represented 10 vectors by cluster in the planes PC1-PC2,
PC1-PC3 and PC2-PC3 as depicted on figure 1.
No cluster seems to stand out, except maybe "hisory"

(which contains the names of famous mathematicians) on
PC1 and "numbers" on PC2. Overall, the features encoded by
the first principal components are not easily identifiable.
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Fig. 2. View of a region of the clustered two-dimensional
semantic map of mathematics.

We then obtained a 2D semantic map of mathematics by di-
viding the vectors into 100 clusters using spectral clustering
(von Luxburg, 2007) and by projecting them in two dimen-
sions with tSNE. A region of the map is presented on figure
2. The borders between clusters have been computed using
Voronoi tessellation and the colours were assigned by hand
to reflect the perceived mathematical tune of each cluster.
The spacial distribution of clusters does not allow to in-

dentify larger clusters dedicated to geometry or algebra for
instance. Interestingly, names of mathematicians are not
grouped with their field of interest but are all clustered to-
gether, thus creating "history of mathematics" clusters. More-
over, some basic parts of mathematics, like arithmetics and
numbers, are split into several clusters of increasing level of
elaboration (e.g. "very small numerals" < "larger numerals" <
"powers of ten" or "basic operations" < "modular arithmetic").

2.2 Modelling Brain Activations
We reanalysed the fMRI data fromAmalric andDehaene, 2016
using parametric GloVe embeddings instead of categorical
regressors. The embeddings were computed from all French
Wikipedia pages (not only the mathematical articles this
time).

Fig. 3. Projection of the stimuli’s embedding onto PC1, PC2
and PC3 as a function of their category and truth value (bars
show 95% confidence intervals).

We performed a PCA on the embeddings of stimuli and
found that the first PC encodes the mathematical or non-
mathematical nature of stimuli. The PCs stop to be inter-
pretable from PC2 however (see figure 3).
This approach allowed us to retrieve the mathematical

network in mathematicians highlighted by Amalric and De-
haene, 2016 (see figure 4). The other PCs, however, had no
significant effect.

Fig. 4. Effect of PC1 in mathematicians, FPR correction q <
10−3.

3 Use of Transformer-class models
We evaluated GPT-fr, a model of the Transformer trained on
a large dataset in French, on stimuli from two mathematical
experiments conducted at NeuroSpin (the one from Amalric
and Dehaene, 2016 and one that is not published yet).

Fig. 5. GPT-fr’s maximumnegative log likelihood by stimulus
as a function of stimuli’s category and truth value.

As shown on figure 5, GPT-fr is not able to distinguish
between true and false or even between mathematical and
non-mathematical stimuli, but only between sensical and
non-sensical ones.

Fig. 6. Percentage of subjects judging the stimulus is not
true against GPT-fr’s maximum negative log likelihood (one
point represents one stimulus).

We then probed whether GPT-fr’s prediction score corre-
lated with subjects’ estimation of the truthfulness of stimuli.
As shown on figure 6, the correlation is very poor except for
meaningless stimuli in non-mathematicians.

4 Discussion

4.1 General Discussion
Section 2.1 evaluates how well GloVe captures the mathe-
matical semantics of mathematical words. The clustering
shows that GloVe does capture a fair amount of mathemati-
cal semantics, as spectral clustering brings out an interest-
ing classification of mathematics. However, the variance of
the GloVe embedding of the vocabulary spans over many
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directions, which results in not very explanatory principal
components, that are poorly interpretable in addition.
Regarding the fMRI data, it seems that the GloVe embed-

dings do not provide more information than a mere cate-
gorical regressor. However, we showed that the first princi-
pal component of the embeddings makes a clear distinction
between mathematical and non-mathematical stimuli, and
enables to retrieve the mathematical network from Amalric
and Dehaene, 2016.
Finally, in section 3, we showed that GPT-fr is able to

make the distinction between meaningful and meaningless
statements, and that its behaviour correlates with that of
non-mathematicians when presented with meaningless state-
ments. However, it seems that the mathematical abilities of
the default GPT-fr model (i.e. with no additional training) of
the Transformer do not go beyond this distinction and are
thus very limited.

4.2 Future Work
First, the two-dimensional clustered map of mathematics
we obtained informs us about how GloVe represents mathe-
matical semantics, and especially how it connects concepts
together. Here, connections are represented by the clustering,
but they can also be quantified directly from the vectors by
cosine similarity:

cosine(u, v) := ⟨u, v⟩
∥u∥2 · ∥v∥2

.

It would be interesting to compare this representation with
that of humans, and especially to see (i) if humans predict
the same similarities as GloVe and (ii) if they produce the
same clustering. We would exepct the answer to these two
questions to depend on the mathematical training of subjects.
Second, we found that the principal components of the

GloVe embeddings of the global vocabulary do not enable a
more fine-grained analysis of fMRI data than a mere categor-
ical model. This might be due to the dimension reduction
performed by the PCA, as the principal components are no
longer interpretable from the second component. This prob-
lem might be solved by using other methods to lower the
dimensionality of the GloVe embeddings (e.g. tSNE or maybe
even asking for three-dimensional GloVe vectors directly), or
by performing PCA across voxels like Huth et al., 2016.

Finally, training a Transformer’s model (from scratch or by
fine-tuning) instead of using a pretrained model could help
improve performance both at classifying statements and at
predicting subjects’ behaviour. If so, the hidden states of the
model should better predict brain activity on mathematical
tasks. In the spirit of Pereira et al., 2018 the analysis of
fMRI data thanks to these hidden states could also enable to
train a decoder able to predict subjects’ behaviour (i.e. their
evaluation of a statement as true, false or meaningless) from
brain activation.
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