Exercices colle nº 8

Samuel Debray

Mercredi 25 et jeudi 26 novembre 2020

Questions de cours

Question de cours 1. Étudier les limites de $f: x \mapsto xe^{\frac{1}{x}}$ aux bornes de son domaine.

Question de cours 2. Soit f une fonction deux fois dérivable sur \mathbb{R} . Étudier la dérivabilité et établir l'expression de h'(x) et h''(x) pour $h: x \mapsto f(\ln(x))$.

Question de cours 3. Calculer $\lim_{x\to +\infty} \frac{\sin(x)}{x}$. Que vaut $\lim_{x\to 0} \frac{\sin(x)}{x}$? Donner une allure du graphe de $x\mapsto \frac{\sin(x)}{x}$.

Question de cours 4. Donner les asymptotes de la courbe représentative de la fonction $f: x \mapsto x + \frac{1}{x-5}$. En déduire une allure approximative de C_f .

Exercices

Difficulté faible

Exercice 1. Étudier et représenter $f: x \mapsto e^{-\frac{1}{x}}$.

Exercice 2. Étudier et représenter $f: x \mapsto \ln\left(\frac{e^x - 2}{2e^x - 1}\right)$.

Exercice 3. Déterminer les limites suivantes :

$$\lim_{x \to +\infty} \frac{e^{2x} \ln^3(x)}{x^4} \quad , \quad \lim_{x \to 0^+} x^2 \ln^3(x^3) \quad , \quad \lim_{x \to -\infty} x^2 e^x \ln^3(-x).$$

Exercice 4. Déterminer les limites suivantes :

$$\lim_{x \to +\infty} x \ln(x^2 + 1) - 2x \ln(x) \quad , \quad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} \quad , \quad \lim_{x \to \alpha} \frac{x^{n+1} - \alpha^{n+1}}{x - \alpha}.$$

Difficulté moyenne

Exercice 5. Rechercher les asymptotes à la C_f courbe représentative de f: $\frac{(x+1)\ln(x+1)}{\ln(x)}$ et en déduire l'allure de C_f .

Exercice 6. Déterminer des réels a et b tels que $\lim_{x\to+\infty} ax + b - \sqrt{x^2 + 4x} = 0$. Qu'en déduire sur la courbe représentative de la fonction $x\mapsto \sqrt{x^4 + 4x}$?

1

Exercice 7. Étudier et représenter $f: x \mapsto \sqrt{\frac{x^3}{x-2}}$.

Exercice 8. Étudier et représenter $f: x \mapsto \sqrt{x^2 + 4} - 3x$.

Exercice 9. Étudier et représenter $f: x \mapsto \frac{x}{4} + \frac{1}{x^2}$.

Exercice 10. Étudier et représenter $f: x \mapsto \frac{x^2 + x + 4}{x + 1}$.

Exercice 11. Étudier et représenter $f: x \mapsto \ln(2x^3 - 3x^2 + 1)$.

Plus difficile

Exercice 12. Soit $f: x \mapsto \frac{ax^2 + bx + c}{x - 2}$ avec $a, b, c \in \mathbb{R}$. On note C_f sa courbe représentative dans un repère orthonormé.

- 1. Déterminer a, b et c pour que C_f vérifie les propriétés suivantes :
 - C_f passe par le point A(0;5),
 - la tangente à C_f en A est parallèle à Ox,
 - la tangente à C_f au point B d'abcisse 1 a pour pente -3.
- 2. Étudier et représenter la fonction f ainsi obtenue.

Exercice 13. À tout réél a on associe la fonction $f_a : x \mapsto \ln(x^2 - a)$. On note \mathcal{C}_a la courbe représentative de f_a dans un repère orthonormé.

- 1. Étudier f_a et déterminer les solutions l'équation $f_a(x) = 0$.
- 2. Montrer que la courbe C_0 est asymptote à C_a en $+\infty$ et $-\infty$ pour tout $a \in \mathbb{R}$.
- 3. Montrer que par tout point du plan il passe une et une seule courbe C_a .