Performance Analysis of IEEE 802.15.4 Contention Free Period through Real-Time Industrial Maintenance Applications

Nicolas Salles,

$22^{\rm nd}$ IAR Workshop, Grenoble, France $$15^{\rm th}$$ November, 2007

Outline

1 Context

- Industrial environment
- Wireless networks

2 IEEE 802.15.4

- Overview
- Channel access methods
- Performances
- Performances Analysis
 - Automation of industrial processes
 - Superframe usage
 - Configuration example
 - Performances comparison

Outline

1 Context

- Industrial environment
- Wireless networks

2 IEEE 802.15.4

- Overview
- Channel access methods
- Performances

Performances Analysis

- Automation of industrial processes
- Superframe usage
- Configuration example
- Performances comparison

Outline

1 Context

- Industrial environment
- Wireless networks

2 IEEE 802.15.4

- Overview
- Channel access methods
- Performances
- **3** Performances Analysis
 - Automation of industrial processes
 - Superframe usage
 - Configuration example
 - Performances comparison

Context

IEEE 802.15.4 Performances Analysis Conclusion Industrial environment Wireless networks

1 Context

- Industrial environment
- Wireless networks

2 IEEE 802.15.4

- Overview
- Channel access methods
- Performances
- 3 Performances Analysis
 - Automation of industrial processes
 - Superframe usage
 - Configuration example
 - Performances comparison

Industrial environment Wireless networks

Industrial environment

Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 4/19

Industrial environment Wireless networks

Industrial environment

Nicolas Salles

Industrial environment Wireless networks

Industrial environment

Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 4/19

Industrial environment Wireless networks

Industrial wireless networks

What for ?

• Advantages :

• Drawbacks :

Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 5/19

Industrial environment Wireless networks

Industrial wireless networks

What for ?

• Advantages :

- industrial expectation
- cost-reduction
- architecture management
- new services mobility
- standardization

• Drawbacks :

Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 5/19

Industrial environment Wireless networks

Industrial wireless networks

What for ?

- Advantages :
 - industrial expectation
 - cost-reduction
 - architecture management
 - new services \rightarrow mobility
 - standardization

• Drawbacks :

- interferences
- performances (bandwidth, connected devices, ...

Industrial environment Wireless networks

Industrial wireless networks

What for ?

- Advantages :
 - industrial expectation
 - cost-reduction
 - architecture management
 - new services \rightarrow mobility
 - standardization

• Drawbacks :

- interferences
- performances (bandwidth, connected devices, ...)

Industrial environment Wireless networks

Industrial wireless networks

What for ?

- Advantages :
 - industrial expectation
 - cost-reduction
 - architecture management
 - new services \rightarrow mobility
 - standardization
- Drawbacks :
 - interferences
 - performances (bandwidth, connected devices, ...)

Context IEEE 802.15.4

Performances Analysis Conclusion Industrial environment Wireless networks

Wireless networks

	WiFi	Bluetooth 💕	ZigBee
IEEE Standard	802.11a/b/g	802.15.1	802.15.4
	(1999)	(2002)	(2003)
Transmission rate	11-54 Mb/s	$1 { m Mb/s}$	250 Kb/s
Network Type	WLAN	WPAN	WPAN
Range	300 m	10–100 m	10–100 m
Devices	32	7	65000
Memory size	1 Mb +	$250 { m ~Kb} +$	4–64 Kb
Battery life	hours	days	years

Nicolas Salles

Context IEEE 802.15.4

Performances Analysis Conclusion Industrial environment Wireless networks

Wireless networks

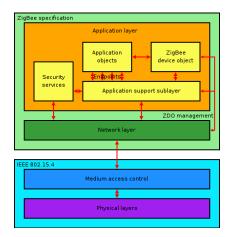
	WiFi	Bluetooth 💕	ZigBee
IEEE Standard	802.11a/b/g	802.15.1	802.15.4
	(1999)	(2002)	(2003)
Transmission rate	11-54 Mb/s	1 Mb/s	250 Kb/s
Network Type	WLAN	WPAN	WPAN
Range	300 m	10–100 m	10–100 m
Devices	32	7	65000
Memory size	1 Mb +	$250 { m ~Kb} +$	4–64 Kb
Battery life	hours	days	years

Nicolas Salles

Overview Channel access methods Performances

1 Context

- Industrial environment
- Wireless networks

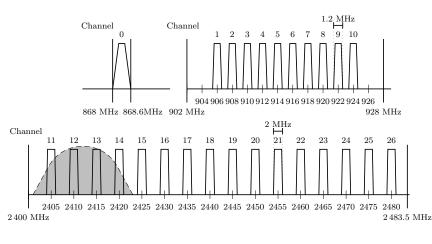

2 IEEE 802.15.4

- Overview
- Channel access methods
- Performances
- 3 Performances Analysis
 - Automation of industrial processes
 - Superframe usage
 - Configuration example
 - Performances comparison

Overview Channel access methods Performances

IEEE 802.15.4 vs ZigBee

IEEE 802.15.4 \neq ZigBee


Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 8/19

Overview Channel access methods Performances

Frequency bands

Overview Channel access methods Performances

Modulations

Frequency bands	Modulation	Transmission Rate
	BPSK	20 kb/s
868–868.6 MHz	BPSK+ASK	250 kb/s
	O-QPSK	250 kb/s
902–918 MHz	BPSK	40 kb/s
	BPSK+ASK	$250 \mathrm{~kb/s}$
	O-QPSK	$250 \mathrm{~kb/s}$
2400 - 2483.5 MHz	O-QPSK	250 kb/s

Nicolas Salles

Overview Channel access methods Performances

Modulations

Frequency bands	Modulation	Transmission Rate
	BPSK	20 kb/s
868–868.6 MHz	BPSK+ASK	$250 \mathrm{~kb/s}$
	O-QPSK	250 kb/s
	BPSK	40 kb/s
902–918 MHz	BPSK+ASK	$250 \mathrm{~kb/s}$
	O-QPSK	$250 \mathrm{~kb/s}$
2400 - 2483.5 MHz	O-QPSK	250 kb/s

Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 10/19

Overview Channel access methods Performances

Channel access methods

There are two medium access modes :

Non-Synchronized

Medium access relies on $CSMA/CA^a$.

 $^a\mathrm{Carrier}$ Sense Multiple Access with Collision Avoidance

Synchronized

Network coordinator sends regularly beacon frames.

Between beacon frames, medium access is part in two phases :

- CSMA/CA
- Reserved time slots (Guaranteed Time Slots or GTS)

It may be followed by a period of inactivity \rightarrow power saving.

Overview Channel access methods Performances

Channel access methods

There are two medium access modes :

Non-Synchronized

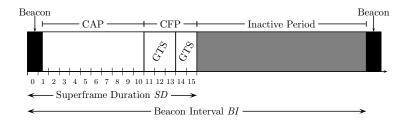
Medium access relies on $CSMA/CA^a$.

 a Carrier Sense Multiple Access with Collision Avoidance

Synchronized

Network coordinator sends regularly beacon frames.

Between beacon frames, medium access is part in two phases :


- CSMA/CA
- Reserved time slots (Guaranteed Time Slots or GTS)

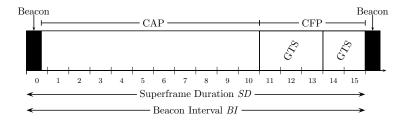
It may be followed by a period of inactivity \rightarrow power saving.

Overview Channel access methods Performances

Synchronized mode

$$SD = aBaseSuperframeDuration \cdot 2^{SO}$$
 (1)

$$BI = aBaseSuperframeDuration \cdot 2^{BO}$$
(2)


$$0 \le SO \le BO \le 14 \tag{3}$$

 ${\it Superframe \ Order} \quad \leq \quad {\it Beacon \ Order}$

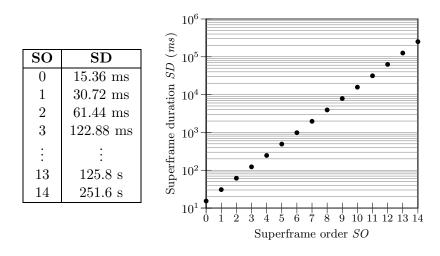
Overview Channel access methods Performances

Synchronized mode

 $SD = aBaseSuperframeDuration \cdot 2^{SO}$ (1)

$$BI = aBaseSuperframeDuration \cdot 2^{BO}$$
(2)

$$0 \le SO = BO \le 14 \tag{3}$$


 ${\it Superframe \ Order} \quad = \quad {\it Beacon \ Order}$

As we are looking for performances, we don't consider inactive period.

Nicolas Salles

Overview Channel access methods **Performances**

Supertrame Duration SD

 Context
 Automation of industrial processes

 IEEE 802.15.4
 Superframe usage

 Performances Analysis
 Configuration example

 Conclusion
 Performances comparison

1 Context

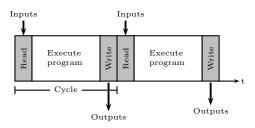
- Industrial environment
- Wireless networks

2 IEEE 802.15.4

- Overview
- Channel access methods
- Performances

3 Performances Analysis

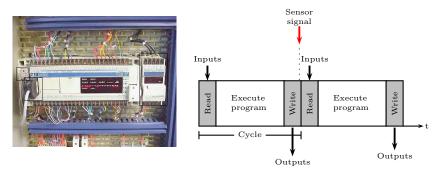
- Automation of industrial processes
- Superframe usage
- Configuration example
- Performances comparison



Automation of industrial processes Superframe usage Configuration example Performances comparison

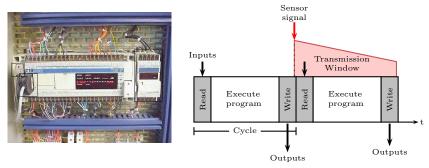
Programmable Logic Controller (PLC)

Cyclic mechanism :



Automation of industrial processes Superframe usage Configuration example Performances comparison

Programmable Logic Controller (PLC)

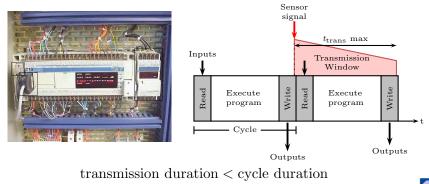

ransmission duration < cycle duration

Nicolas Salles

Automation of industrial processes Superframe usage Configuration example Performances comparison

Programmable Logic Controller (PLC)

transmission duration < cycle duration

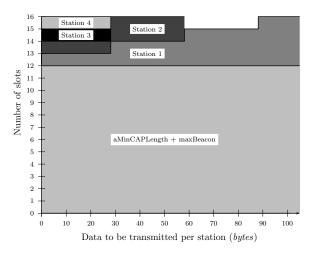


2007/11/15 15/19

Nicolas Salles

Automation of industrial processes Superframe usage Configuration example Performances comparison

Programmable Logic Controller (PLC)



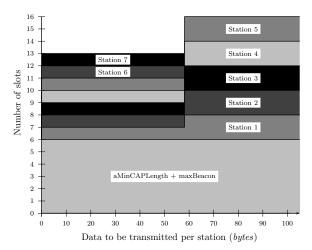
Nicolas Salles

Automation of industrial processe Superframe usage Configuration example Performances comparison

Superframe usage

SO = 0

 Context
 Automation of industrial processes

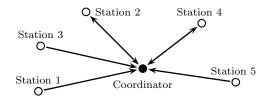

 IEEE 802.15.4
 Superframe usage

 Performances Analysis
 Configuration example

 Conclusion
 Performances comparison

Superframe usage

SO = 1



Automation of industrial processes Superframe usage **Configuration example** Performances comparison

Configuration example

A network composed by a coordinator and 5 related devices.

Station	Sent data	Received data	Period
nº 1	1 byte	-	40 ms
nº 2	8 byte	-	40 ms
nº 2	-	16 bytes	$100 \mathrm{ms}$
nº 3	4 bytes	-	$60 \mathrm{ms}$
nº 4	8 bytes	4 bytes	$60 \mathrm{ms}$
n ^o 5	16 bytes	-	$100 \mathrm{ms}$

Nicolas Salles

Configuration example

A network composed by a coordinator and 5 related devices.

Station	Sent data	Received data	Period
nº 1	1 byte	-	$40 \mathrm{ms}$
nº 2	8 byte	-	$40 \mathrm{ms}$
nº 2	-	16 bytes	$100 \mathrm{ms}$
nº 3	4 bytes	-	$60 \mathrm{ms}$
nº 4	8 bytes	4 bytes	60 ms
nº 5	16 bytes	-	$100 \mathrm{ms}$

- SO = 1 satisfies example's requirements as Superframe Duration equals 30.72 ms (only if transmission is not acknowledged).
- In case of acknowledgement, Superframe Order must at least satisfy SO > 2. Then SD > 61.44 ms \rightarrow it doesn't fulfil requirements.

Configuration example

A network composed by a coordinator and 5 related devices.

Station	Sent data	Received data	Period
nº 1	1 byte	-	$40 \mathrm{ms}$
nº 2	8 byte	-	$40 \mathrm{ms}$
nº 2	-	16 bytes	$100 \mathrm{ms}$
nº 3	4 bytes	-	60 ms
nº 4	8 bytes	4 bytes	60 ms
$n^{o} 5$	16 bytes	-	$100 \mathrm{ms}$

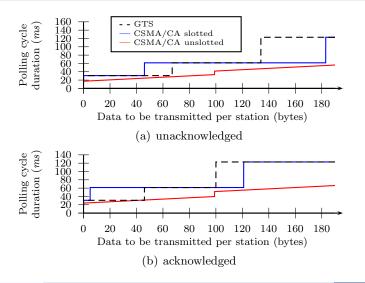
- SO = 1 satisfies example's requirements as Superframe Duration equals 30.72 ms (only if transmission is not acknowledged).
- In case of acknowledgement, Superframe Order must at least satisfy SO > 2. Then SD > 61.44 ms \rightarrow it doesn't fulfil requirements.

Nicolas Salles

Configuration example

A network composed by a coordinator and 5 related devices.

Station	Sent data	Received data	Period
nº 1	1 byte	-	$40 \mathrm{ms}$
nº 2	8 byte	-	$40 \mathrm{ms}$
nº 2	-	16 bytes	$100 \mathrm{ms}$
nº 3	4 bytes	-	60 ms
nº 4	8 bytes	4 bytes	60 ms
$n^{o} 5$	16 bytes	-	$100 \mathrm{ms}$


- SO = 1 satisfies example's requirements as Superframe Duration equals 30.72 ms (only if transmission is not acknowledged).
- In case of acknowledgement, Superframe Order must at least satisfy SO > 2. Then SD > 61.44 ms \rightarrow it doesn't fulfil requirements.

Nicolas Salles

Automation of industrial processes Superframe usage Configuration example Performances comparison

Comparison : GTS vs CSMA/CA

Performances of IEEE 802.15.4 for Industrial Applications

PAN

Conclusion

Conclusions

- IEEE 802.15.4 may satisfy some industrial real-time requirements (monitoring, maintenance, ...) as long they support some limitations :
 - Number of devices $\leq 7 \ (\ll 65000)$
 - PLC response time < 15, 36 ms

Prospects

- Examine different industrial wireless technologies (Wireless HART, ISA SP100, ...)
- Advise some adaptations of wireless networks in order to satisfy indutrial requirements in terms of response time, reliability, fiability,

Conclusion

Conclusions

- IEEE 802.15.4 may satisfy some industrial real-time requirements (monitoring, maintenance, ...) as long they support some limitations :
 - Number of devices $\leq 7 \ (\ll 65000)$
 - PLC response time < 15, 36 ms

Prospects

- Examine different industrial wireless technologies (Wireless HART, ISA SP100, ...)
- Advise some adaptations of wireless networks in order to satisfy indutrial requirements in terms of response time, reliability, fiability,

Questions?

Nicolas Salles

Performances of IEEE 802.15.4 for Industrial Applications

2007/11/15 19/19