
Complexité avancée - TD 9

Rémy Poulain

20 novembre 2019

Exercise 0 : Complexity and complexity : RP∗

RP ∗ is the class of all languages L for which there exists a probabilistic Turing machine M
running in time polynomial, such that :

— If x ∈ L then Pr[M(x, r) = ⊥] < 1
— If x /∈ L then Pr[M(x, r) = >] = 0

Do you recognize this class ?

Solution:
It’s NP.

— RP∗ ⊆ NP : Exactly the same proof that RP ⊆ NP
— NP ⊆ RP∗ : Let M be the PTM that, on φ a formulae with p free variable, and r a

random tape (of length > p), evaluates φ on r. Then M is obviously polynomial and :
— If φ ∈ SAT then Pr[M(φ, r) = ⊥] = 1− eval(φ).

Where eval(φ) is the proportion of evaluations that satisfy φ. There is at list 1
evaluation that satisfies φ, then Pr[M(φ, r) = ⊥] < 1.

— If φ /∈ SAT then Pr[M(φ, r) = >] = 0
Then SAT ∈ RP∗ Obviously RP∗ is closed by polynomial reduction. Therefore NP ⊆
RP∗. �

Exercise 1 : Alternative definition of probabilistic TM

1. Show that, for K = 2, the notion of probabilistic Turing machines defined below is
equivalent to the one given in introduction.
A PTM is a non-deterministic Turing machine M with a fixed degree of non-determinism
K ≥ 2 (i.e. in each configuration, the machine has exactly K possible choices, not neces-
sarily all bringing to distinct configurations).
We associate a probability 1/K to each non-deterministic choice. In other words, in
each configuration the machine chooses with equal probability which transition to fol-
low, among the possible ones. The choices of the machine at any two different steps are
assumed independent.
To a run R of M , we assign the probability Pr[R] that the machine makes a sequence of
choices that produces the run R. The probability thatM accepts the input x is given by :

Pr[M(x) = >] =
∑

R accepting run of M on x

Pr[R]

and the probability that it rejects x is Pr[M(x) = ⊥] = 1− Pr[M(x) = >].
The class RTIME′(f(n), f(n), accerr(n), rejerr(n)) is defined as the class of languages
L for which there exists a PTM M running in time f(n), such that : if x ∈ L then
Pr[M(x) = ⊥] ≤ rejerr(n), and if x /∈ L then Pr[M(x) = >] ≤ accerr(n).

2. In the lecture, we have restricted our attention to probabilistic Turing machines with
random-tape alphabet Σ = {0, 1}. Show that in the simple case of RP, this is not a
restriction. Only describe the equivalence between a 2-symbol alphabet and a 3-symbol
alphabet : RP{0,1} = RP{0,1,2}.

1

3. bonus
One can also show that assuming uniform probability is not a restriction. More precisely,
consider the following third variant of probabilistic Turing machines :
Given ρ ∈]0, 1[, a ρ-PTM is a PTM of degree of non-determinism 2, but such that the first
choice is made with probability ρ and the second one with probability 1− ρ. Assuming ρ
is computable in polynomial time, that is one can compute the i-th bit of ρ in time ik for
some constant k, show that :

(a) A ρ-PTM can be simulated by a PTM in expected time O(1).
Hint : pick a number in]0,1[at random

(b) Conversely, a PTM can be simulated by a ρ-PTM in expected time O(1
ρ(1−ρ))

Hint : pick pairs (r1, r2) of random bits until r1 6= r2

Curiosity : if ρ is not computable, then a ρ-PTM can compute indecidable languages.

Solution:

Idea :

1. Simulate the choice of one transition by reading a letter and reciprocally.

2. The idea is to use the exercice 1 of the first TD, we don’t need to be in polynomial time
but just in expected running time. So to prove that RP{0,1} ⊆ RP{0,1,2} you just need to
read the next letter if the letter is 2.

Proof :

1. The idea is sufficient

2. RP {0,1} ⊆ RP {0,1,2} : Let L ∈ RP{0,1}, and M which decides L in time p, and let M ′

which simulates it on the alphabet {0, 1, 2}, for each step, if it reads a 2, it just read
the next letter.
For x an input and r in {0, 1, 2}∗, TM ′(x, r) = TM (x,w2(r)) + |r|2, where w2(r) is r
without 2 and |r|2 is the number of 2 in r. For all x, E[TM ′(x, r)] ≤ p(|x|)+ p(|x|)

3 , and
P [TM ′(x, r) =∞] = 0 (this is the probability of r to be in {0, 1, 2}∗2ω). So according
to the previous TD, L ∈ RP{0,1,2}. �

RP {0,1,2} ⊆ RP {0,1} : Reciprocally we do exactly the same thing, reading two letters
every step and if it’s 11 reading the next two letters.

Exercise 2 : BPP and oracle machines
Prove that PBPP = BPP.

Solution:

Idea : To show that PBPP ⊆ BPP we need to simulate all calls to the oracle BPP by our
language BPP, so the difficulty is in the duplication of random words. We have already seen
this in the exercice with the self-reduction. The main idea is to use error reduction on the oracle
and not on our built language.

Bad idea : Care if you say something like : BPPBPP ⊆ BPP that’s true here but that’s
not obvious, think about NPNP and NP.

Proof (scheme) :
BPP ⊆ PBPP : Obvious, cause you can just ask to the oracle the answer.

Page 2

BPP ⊆ PBPP : Let L ∈ PBPP, by definition ∃B ∈ BPP an oracle and M a TM (of execution
time lower than p a poly.) which decide together L. We know that for q a poly., we
can have Mq a PTM such that Mq decide B with an error lower than e−q(.). So, if we
simulate all calls to the oracle by BPP, the error is lower than p(.)e−q(.). Notice that
we can set q after that p is given, so we can set q to have a good error. Moreover, for
an input of length n, we have a number of random words polynomial (of n) and all are
of lenght polynomial (of p(n), so of n), then our big random word used to simulate all
random words have a length polynomial of n. Therefore L ∈ BPP �

Exercise 3 : Probabilistic Logarithmic Space
Propose a definition of RSPACE.

Let RL =
⋃
k∈N RSPACE(k · log(n),∞, 0, 1/2) be the class of languages that can be decided in

probabilistic logarithmic space (the machine does not necessarily halt).
Show that :

1. For L in RL and M a PTM which decides L , If x /∈ L, then ∀r, M(x, r) 6= >
2. RL ⊆ NL

3. RL ⊆ RP

Solution:

Idea : What’s difficult here is the possibility that the Machine doesn’t stop. Moreover (for
the same reason) we don’t have a boundary on our random word so we have a probability on an
infinite set (as in ZPP). For the definition we won’t use the usual definition by contraposition
because there is not two but three cases.

Proof : Definition : RSPACE(p(n),∞, reject(n), accept()) is the class of all languages L
such that there is a randomized Turing machine M, working in space O(p(n)), that terminates
with probability 1, and such that :

— If x ∈ L, then Pr[M(x, r) = >] ≥ 1− accept(n)
— If x /∈ L, then Pr[M(x, r) = ⊥] ≥ 1− reject(n)

1. For x /∈ L, if ∃r0 s.t M(x, r0) = > then for all word w M(x, r0w) = > so Pr[M(x, r) =
>] > 0, then Pr[M(x, r) = ⊥] < 1 : . �

2. RL ⊆ NL :
Given L ∈ RL,M a RTM which decides L, we build the NDMTM ′ which follows the al-

gorithm :
Input: x a word
Guess r a random word (bit by bit) ;
return Simulate M(x, r)

Therefore :
— if x ∈ L then Pr[M(x, r) = >] ≥ 1

2 , so (∃r,M(x, r) = >) then M ′(x) = >
— if x /∈ L then (@r,M(x, r) = >) then M ′(x) = ⊥
Notice that the first assertion is true if we take |r| > 1. Therefore : M ′ recognize L.
Moreover, the resulting NL machine runs in space klog(n) for some k, but may fail to
terminate. As in the lectures, we know that any run of more than aklog(n) (where a is the
alphabet size) will visit the same configuration twice. So we can stop any run when it
exceeds that number of steps, and reject. This requires an counter of size klog(n). Then
L ∈ NL. �

3. RL ⊆ NL ⊆ P ⊆ RP �

Exercise 4 : BPP and PSPACE
Give a direct proof that BPP ⊆ PSPACE.

Page 3

Solution:

Idea : The idea is to try all random words and count the rejects and the accepts.

Proof : Given M a PTM for a language L in BPP . By definition, we have c ∈ N, such
as TM (x, r) ≤ |x|c, for all r of length lower than |x|c. Let x be a word and n = |x|. There are
Max(x) = 2n

c different r to test. So we use the following pseudocode :

Simulation(x):
let nacc = 0
let nrej = 0
for r = 0 to Max(x) - 1 do

res = Simulate M(x,r)
if (res)

then nacc ++
else nrej ++

end if
endfor
return (nacc > nrej)

r,nacc and nrej have a length lower than nc. Moreover, by definition, we can simulate M(x, r)
in a polynomial time, so a fortiori, in a polynomial space. Then L ∈ PSPACE. �

Exercise 5 : BPP-completeness

1. Show that the language L = {(M,x, 1t) |M accepts on input x in time at most t}, where
M is the code of a non-deterministic Turing machine, x an input of M and t a natural
number, is NP-complete.

2. Let L be the language of words (M,x, 1t) where M designates the encoding of a probabi-
listic Turing machine and x a string on M ′s alphabet such that M accepts x in at most
t steps, for at least 2/3 of the possible random tapes of size t.
Is L BPP-hard ? Is it in BPP ?

Solution:

1. — L ∈ NP :
Let M be the code of a non-deterministic Turing machine, x an input of M and t a
natural number.
Notice that the execution time of M(x) is t so lower than the length of (M,x, 1t). So
the algorithm which simulatesM on x on the input (M,x, 1t) is non-deterministic po-
lynomial. Then we can check that (M,x, 1t) ∈ {(M,x, 1t) |M accepts on input x in time at most t}.
Therefore, L ∈ NP.

— L is NP-hard :
Given L′ ∈ NP, M a NDTM for L′, and p a polynomial associated.
For an instance x of L′ we can build (polynomially) the instance (M,x, 1p(|x|))
And, by definition of L, (M,x, 1p(|x|)) ∈ L⇔ x ∈ L′

�

2. — L is BPP-hard : (for exactly the same reasons).
Given L′ ∈ BPP, M a NDTM for L′, and p his polynomial associated.
For an instance x of L′ we can build (polynomially) the instance (M,x, 1p(|x|))
And, by definition of L, (M,x, 1p(|x|)) ∈ L⇔ x ∈ L′

�
— Can’t say the same thing cause bpp is not syntactic.

Page 4

Exercise (bonus) 6 : Probabilistic Logarithmic Space
Let BPL be the class of languages L for which there exists a probabilistic Turing machine

running in polynomial time and logarithmic space (the random tape does not count in terms of
space) such that :

— if x ∈ L then Pr[M(x, r) = ⊥] ≤ 1
3

— if x /∈ L then Pr[M(x, r) = >] ≤ 1
3

Show that BPL ⊆ P .

Page 5

