
Complexité avancée - TD 10

Rémy Poulain

27 novembre 2019

Exercise 0 : BPP and oracle machines
Prove that PBPP = BPP.

Solution:

Idea : To show that PBPP ⊆ BPP we need to simulate all calls to the oracle BPP by our
language BPP, so the difficulty is in the duplication of random words. We have already seen
this in the exercice with the self-reduction. The main idea is to use error reduction on the oracle
and not on our built language.

Bad idea : Care if you say something like : BPPBPP ⊆ BPP that’s true here but that’s
not obvious, think about NPNP and NP.

Proof (scheme) :
BPP ⊆ PBPP : Obvious, cause you can just ask to the oracle the answer.
BPP ⊆ PBPP : Let L ∈ PBPP, by definition ∃B ∈ BPP an oracle and M a TM (of execution

time lower than p a poly.) which decide together L. We know that for q a poly., we
can have Mq a PTM such that Mq decide B with an error lower than e−q(.). So, if we
simulate all calls to the oracle by BPP, the error is lower than p(.)e−q(.). Notice that
we can set q after that p is given, so we can set q to have a good error. Moreover, for
an input of length n, we have a number of random words polynomial (of n) and all are
of lenght polynomial (of p(n), so of n), then our big random word used to simulate all
random words have a length polynomial of n. Therefore L ∈ BPP �

Exercise 1 : Probabilistic Logarithmic Space
Propose a definition of RSPACE.

Let RL =
⋃

k∈N RSPACE(k · log(n),∞, 0, 1/2) be the class of languages that can be decided in
probabilistic logarithmic space (the machine does not necessarily halt).

Show that :

1. For L in RL and M a PTM which decides L , If x /∈ L, then ∀r, M(x, r) 6= >
2. RL ⊆ NL

3. RL ⊆ RP

Solution:

Idea : What’s difficult here is the possibility that the Machine doesn’t stop. Moreover (for
the same reason) we don’t have a boundary on our random word so we have a probability on an
infinite set (as in ZPP). For the definition we won’t use the usual definition by contraposition
because there is not two but three cases.

1

Proof : Definition : RSPACE(p(n),∞, reject(n), accept()) is the class of all languages L
such that there is a randomized Turing machine M, working in space O(p(n)), that terminates
with probability 1, and such that :

— If x ∈ L, then Pr[M(x, r) = >] ≥ 1− accept(n)
— If x /∈ L, then Pr[M(x, r) = ⊥] ≥ 1− reject(n)

1. For x /∈ L, if ∃r0 s.t M(x, r0) = > then for all word w M(x, r0w) = > so Pr[M(x, r) =
>] > 0, then Pr[M(x, r) = ⊥] < 1 : . �

2. RL ⊆ NL :
Given L ∈ RL,M a RTM which decides L, we build the NDMTM ′ which follows the al-

gorithm :
Input: x a word
Guess r a random word (bit by bit) ;
return Simulate M(x, r)

Therefore :
— if x ∈ L then Pr[M(x, r) = >] ≥ 1

2 , so (∃r,M(x, r) = >) then M ′(x) = >
— if x /∈ L then (@r,M(x, r) = >) then M ′(x) = ⊥
Notice that the first assertion is true if we take |r| > 1. Therefore : M ′ recognize L.
Moreover, the resulting NL machine runs in space klog(n) for some k, but may fail to
terminate. As in the lectures, we know that any run of more than aklog(n) (where a is the
alphabet size) will visit the same configuration twice. So we can stop any run when it
exceeds that number of steps, and reject. This requires an counter of size klog(n). Then
L ∈ NL. �

3. RL ⊆ NL ⊆ P ⊆ RP �

Exercise 2 : BPP-completeness

1. Show that the language L = {(M,x, 1t) |M accepts on input x in time at most t}, where
M is the code of a non-deterministic Turing machine, x an input of M and t a natural
number, is NP-complete.

2. Let L be the language of words (M,x, 1t) where M designates the encoding of a probabi-
listic Turing machine and x a string on M ′s alphabet such that M accepts x in at most
t steps, for at least 2/3 of the possible random tapes of size t.
Is L BPP-hard ? Is it in BPP ?

Solution:

1. — L ∈ NP :
Let M be the code of a non-deterministic Turing machine, x an input of M and t a
natural number.
Notice that the execution time of M(x) is t so lower than the length of (M,x, 1t). So
the algorithm which simulatesM on x on the input (M,x, 1t) is non-deterministic po-
lynomial. Then we can check that (M,x, 1t) ∈ {(M,x, 1t) |M accepts on input x in time at most t}.
Therefore, L ∈ NP.

— L is NP-hard :
Given L′ ∈ NP, M a NDTM for L′, and p a polynomial associated.
For an instance x of L′ we can build (polynomially) the instance (M,x, 1p(|x|))
And, by definition of L, (M,x, 1p(|x|)) ∈ L⇔ x ∈ L′

�

2. — L is BPP-hard : (for exactly the same reasons).
Given L′ ∈ BPP, M a NDTM for L′, and p his polynomial associated.
For an instance x of L′ we can build (polynomially) the instance (M,x, 1p(|x|))
And, by definition of L, (M,x, 1p(|x|)) ∈ L⇔ x ∈ L′

�

Page 2

— Can’t say the same thing cause bpp is not syntactic.

Definition 1 Recall that AM[f] for a proper function f denotes the class of languages L such
that for any ` ≥ 0, there exists a game of Arthur and Merlin (M,A,D) such that for any x of
size n, letting prot = (AM)f(n) :

1. Completeness : if x ∈ L then prot[A,M]D = > with probability at least 1− 1/2n
`

2. Soundness : if x /∈ L then for any Merlin’s function M ′, prot[A,M ′]D = ⊥ with probability
at least 1− 1/2n

`

Exercise 3 : Arthur-Merlin protocols
Prove the following statements, directly from definition of Arthur-Merlin games :
— M = NP ;

Solution:
Notice that for a language L :
L ∈ M ⇔ ∃D ∈ P, ∃p poly, L = {x | ∃y, |y| < p(|x|) ∧ x#y ∈ D}. It’s exactly the
certificate definition of NP. �
Notice that we won’t usually put the condition on p, but it’s implicit.

— A = BPP ;

Solution:
Obvious, just have to write the two definitions :

BPP ⊆ A : Take D = Σ∗#Σ∗#>, and A which simulates our BPP machines and
write the answer.

A ⊆ BPP : Just simulate A and check if it’s in D.
�

— NPBPP ⊆ MA ;

Solution:
Let L ∈ NPBPP, then we have L′ ∈ PBPP such that L = {x | ∃y, x#y ∈ L′}. Moreover
we know from the previous TD that PBPP = BPP, and from the previous answer that
A = BPP. Therefore we have L′ ∈ A such that L = {x | ∃y, x#y ∈ L′}. So L ∈ MA. �

— AM ⊆ BPPNP.

Solution:
Let L be in AM, we have M,A,D given by the definition of AM, we can set the error at
1/3. DefineA′ the PTM s.t. for an input x and a random word r, A′(x, r) = x#r#A(x, r).
Moreover, define D′ = {z |∃y z#y ∈ D}, D′ ∈ NP because D ∈ P. Let Mo be the
probabilistic oracle machine which simulates A′ and call the oracle D′ on the answer,
accepting with the BPP way.

— If x ∈ L, P [Mo(x, r) = >] = P [x#r#A(x, r) ∈ D′] = P [∃y x#r#A(x, r)#y ∈
D] ≥ 2

3 (it’s the definition of AM)
— If x /∈ L, P [Mo(x, r) = ⊥] = P [x#r#A(x, r) /∈ D′] = P [∀y x#r#A(x, r)#y /∈

D] ≥ 2
3

Then L ∈ BPPNP �

Exercise 4 : Collapse of the Arthur-Merlin hierarchy
Recall that, for each Π ∈ {A,M}∗, the class Π is the class of languages recognized by Arthur-

Merlin games with protocol Π.
(a) Without using any result about the collapse of the Arthur-Merlin hierarchy, prove that

for all Π0,Π1,Π2 ∈ {A,M}∗, we have Π1 ⊆ Π0Π1Π2.

Solution:

Page 3

This is not a very formal proof but there is the idea : Let Π0,Π1,Π2 ∈ {A,M}∗. Let
L ∈ Π0Π1Π2, and D a polynomial language given by the definition of the the Arthur-
Merlin protocol. We can restrict D to a language containing words likes x#x0#x1#x2
where obviously x0 is "generated" byΠ0, x1 by Π1 and x2 by Π2. Let φ be the projection
s.t. φ(x#x0#x1#x2) = x#x1. Notice that φ is well defined, because even if the xi can
contain # we know exactly the number of # in each word (that just depends of the
number of letters in the Πi). Moreover φ is polynomial.
Now lets L ∈ Π1, Pc a protocol deciding L and D′ a polynomial language given by the
definition of the the Arthur-Merlin protocol. We simulate it by a protocol of Π0Π1Π2

which does the same thing that Pc "in" Π1, and Arthur does nothing and Merlin does
whatever he wants in ΠO and Π2. Set D = {w s.t. φ(w) ∈ D′}. D is polynomial because
D′ and φ. So L ∈ Π0Π1Π2. �

(b) Now assume the fact that for all Π ∈ {A,M}∗, one has Π ⊆ AM. Prove the following
statement : For all Π ∈ {A,M}∗ such that Π has a strict alternation of symbols, and
|Π| > 2, we have Π = AM.

Solution:
Let Π be such a protocol. We already know that Π ⊆ AM, Moreover Π = AMAΠ′ or Π =
MAMΠ′. In both cases, it contains AM . Therefore AM ⊆ Π �

Exercise 5 : The BP operator
We say that a language B reduces to language C under a randomized polynomial time reduc-

tion, denoted B ≤r C, if there is a probabilistic polynomial-time Turing machine such that for
every x, Pr[C(M(x)) = B(x)] ≥ 2

3 .
Remember the definition of BP · C :

L ∈ BP · C iff exists A a PTM polynomial and a language D polynomial s.t. for all input x
— if x ∈ L then Pr[A(x, r) ∈ D] ≥ 2

3
— if x /∈ L then Pr[A(x, r) /∈ D] ≥ 2

3

1. Show that BP · C = {L | L ≤r L
′, for some L′ ∈ C}

2. Show that BPP is closed under randomized polynomial time reduction.

3. Deduce that BP · (BP · C) = BP · C.

Solution:

1. obvious

2. Let B ∈ BPP, we know that we can have MB a PTM which decides B with an error
lower than 1

12 . Let C ≤r B, we have M a probabilistic polynomial-time Turing machine
such that for every x, Pr[C(M(x)) = B(x)] ≥ 2

3 .. Let MC be the PTM which simulates,
for an input x and two random words r and r′, MB(M(x, r′), r). Then :
— If x ∈ C, P [MC(x, r) = ⊥] = P(r′,r)[MB(M(x, r′), r) = ⊥] ≤ Pr′ [C(M(x, r′)) =

B(x)] + Pr,if y∈B[MB(y, r) = ⊥] ≤ 1
12 + 1

3 ≤
5
12

— If x /∈ C, P [MC(x, r) = >] = P(r′,r)[MB(M(x, r′), r) = >] ≤ Pr′ [C(M(x, r′)) =

B(x)] + Pr,if y /∈B[MB(y, r) = >] ≤ 1
12 + 1

3 ≤
5
12

Therefore C ∈ BPP �

3. By composition of reductions �

Exercise 6 : The class BP · NP

1. Show that BP · P = BPP

Page 4

Solution:
Obvious, I do one inclusion :
Let L ∈ BPP, we have A a PTM given by the definition of BPP , we just simulate it
with A′ which won’t accept or reject but will write > or ⊥ . Let D = >. By definition
of BPP :

— If x ∈ L, P [A(x, r) ∈ D] = P [A′(x, r) = >] ≥ 2
3

— If x /∈ L, P [A(x, r) /∈ D] = P [A′(x, r) = ⊥] ≥ 2
3

Therefore BPP ⊆ BP · P �

2. Show that BP · NP = AM

Solution:
The solution is in the course p.31, and it’s the same construction that AM ⊆ BPPNP.

3. Show that BP · NP ⊆ ΣP
3 (give a direct proof, do not use AM ⊆ ΠP

2).

Solution:
As in the course, we can see that if L ∈ BP · NP, we have M a NDTM polynomial and
q a poly. such that : x ∈ L⇔ ∃t0...tbq(n)/nc ∀r

∨
iM(x, r ⊕ ti).

The only difference here is that the Machine M is non deterministic. Then L ∈ ΣP
3 �

In fact BP · ΣP
i ⊆ ΣP

i+2

4. Show that BP · NP ⊆ NP/poly

Solution:
Same proof that BPP ⊆ P/poly

5. (bonus) Show that if 3SAT ≤r 3SAT then PH collapses to the third level.

Solution:
Idea : adapt Karp Lipton

Exercise 5 (bonus) : One Merlin to rule them all
Show that the following definition of AM if actually equivalent to the one given in introduction :

L ∈ AM iff for any ` ≥ 0, there exists an Arthur A and a polynomial-time-checkable predicate
D such that for any x of size n, letting prot = (AM)f(n) :

1. Completeness : if x ∈ L then there exists some Merlin M such that prot[A,M]D = >
with probability at least 1− 1/2n

`

2. Soundness : if x /∈ L then for any Merlin M ′, prot[A,M ′]D = ⊥ with probability at least
1− 1/2n

`

Solution:
Just the idea : Use the axiom of choice

Exercise 8 (bonus) : Unreliable Merlin
Show that allowing Merlin to use randomness (in a private manner) does not change the class

AM.

Solution:
Just the idea : average on all possible merlin

Page 5

