2^{nde} B

Irrationnalité de $\sqrt{2}$

18 octobre 2010

Objectif: Montrer que le réel $\sqrt{2}$ n'appartient pas à l'ensemble des rationnels, c'est-à-dire qu'on ne peut pas l'écrire sous la forme $\frac{a}{b}$ avec a et b entiers. On dit alors que $\sqrt{2}$ est irrationnel.

Résultat préliminaire

Il s'agit montrer que si le carré d'un nombre est pair, alors ce nombre est forcément pair.

- 1. Soit n un entier relatif. Développer $(2n+1)^2$.
- 2. Considérons p un nombre impair. On peut l'écrire sous la forme p=2n+1 avec n un entier relatif. Montrer que p^2 est un nombre impair.
- 3. Soit q un nombre dont le carré est pair. Pourquoi q ne peut-il pas être impair?
- 4. Conclure.

Cœur du problème

On raisonne par l'absurde, en supposant que $\sqrt{2}$ est un nombre rationnel. On va montrer que cela aboutit à une contradiction.

- 1. On suppose que $\sqrt{2}$ est rationnel. Expliquer pourquoi on peut écrire $\sqrt{2} = \frac{a}{b}$, avec a et b premiers entre eux (c'est-à-dire que a et b n'ont aucun diviseur commun).
- 2. Montrer qu'on a l'égalité $a^2 = 2b^2$.
- 3. En déduire que a^2 est pair, puis que a est pair.
- 4. Justifier qu'on peut écrire a = 2k avec k entier.
- 5. En remplaçant dans l'égalité $a^2 = 2b^2$, montrer alors que b^2 est pair.
- 6. Que peut-on en conclure sur b? Montrer que ce résultat est en contradiction avec un résultat précédemment obtenu. Conclure.

L'hypothèse selon laquelle $\sqrt{2}$ est rationnel conduit, selon une suite de raisonnements logiques, à une contradiction. C'est donc que cette hypothèse était fausse. En conclusion, $\sqrt{2}$ n'est pas un nombre rationnel.

DM facultatif

 2^{nde} B

Irrationnalité de $\sqrt{2}$

18 octobre 2010

Objectif: Montrer que le réel $\sqrt{2}$ n'appartient pas à l'ensemble des rationnels, c'est-à-dire qu'on ne peut pas l'écrire sous la forme $\frac{a}{b}$ avec a et b entiers. On dit alors que $\sqrt{2}$ est irrationnel.

Résultat préliminaire

Il s'agit montrer que si le carré d'un nombre est pair, alors ce nombre est forcément pair.

- 1. Soit n un entier relatif. Développer $(2n+1)^2$.
- 2. Considérons p un nombre impair. On peut l'écrire sous la forme p=2n+1 avec n un entier relatif. Montrer que p^2 est un nombre impair.
- 3. Soit q un nombre dont le carré est pair. Pour quoi q ne peut-il pas être impair?
- 4. Conclure.

Cœur du problème

On raisonne par l'absurde, en supposant que $\sqrt{2}$ est un nombre rationnel. On va montrer que cela aboutit à une contradiction.

- 1. On suppose que $\sqrt{2}$ est rationnel. Expliquer pourquoi on peut écrire $\sqrt{2} = \frac{a}{b}$, avec a et b premiers entre eux (c'est-à-dire que a et b n'ont aucun diviseur commun).
- 2. Montrer qu'on a l'égalité $a^2 = 2b^2$.
- 3. En déduire que a^2 est pair, puis que a est pair.
- 4. Justifier qu'on peut écrire a = 2k avec k entier.
- 5. En remplaçant dans l'égalité $a^2 = 2b^2$, montrer alors que b^2 est pair.
- 6. Que peut-on en conclure sur b? Montrer que ce résultat est en contradiction avec un résultat précédemment obtenu. Conclure.

L'hypothèse selon laquelle $\sqrt{2}$ est rationnel conduit, selon une suite de raisonnements logiques, à une contradiction. C'est donc que cette hypothèse était fausse. En conclusion, $\sqrt{2}$ n'est pas un nombre rationnel.