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I. Introduction 

T h e  f a m o u s  C a u c h y - L i p s c h i t z  t h e o r e m  (in its g loba l  vers ion)  p r o v i d e s  g l o b a l  

so lu t ions  of  o r d i n a r y  different ial  e q u a t i o n s  

f (  = b ( X )  for  t E R ,  X(0)  = x ~  N (1) 

where  b, say, is L ipsch i tz  o n  ~N (N  > 1). T o  s impli fy  m a t t e r s  in this i n t r o d u c t i o n ,  

we restr ic t  t e m p o r a r i l y  o u r  a t t e n t i o n  to  such  a u t o n o m o u s  cases. In fact, t he  
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Cauchy-Lipschitz theorem provides much more information than the mere exist- 
ence and uniqueness of a solution of (1) since it provides a unique continuous flow 
X(t, x) i.e. a unique continuous function X on N x RN satisfying (1 ) - - i n  integral 
form - -  and 

X(t + s," ) = X(t, X(s,')) on A N, for all t, s~ A .  (2) 

And the continuity in x of X reflects the continuity of the solution upon initial 
conditions, which in fact can be strengthened to 

]X(t, x l ) - X ( t ,  x2)l<eC~ for t eA,  xl ,  x2~A N (3) 

where C O is the Lipschitz constant of b. The stability of X with respect to 
perturbations on initial conditions can be also modified to take into account 
stability with respect to perturbations on b: for instance, if b, converges uniformly 
on compact sets to b, X, solves (1) with b replaced by b, and X. is bounded on 
compact sets of A x A N uniformly in n, then X,(t, x) converges to X(t, x) uniformly 
on compact sets of ~ x A N -  notice that b. does not need to be Lipschitz. In all 
these standard results, measure theory plays no role. However, since our goal is to 
extend all this theory to vector-fields lying in Sobolev spaces instead of being 
Lipschitz, it is then natural to add the following (easy but no so standard) 
information also derived from the Cauchy-Lipschitz theorem: 

e-Clt2 <~oX(t) < eC1~2 for all t > 0 (4) 

for some C1 > 0, where 2 is the Lebesgue measure on NN and 2 o X(t) denotes the 
image measure of 2 by the map X(t) from A N into RN i.e. 

cbd(2oX(t))= ~ (a(X(t,x))dx, VqbE~(~u) .  
~N ~u 

Several proofs of (4) are possible: the s imples t - -bu t  the wrong o n e - - u s e s  (2) and 
(3) to deduce 

[X(t, x i ) - X ( t ,  x2)l>e-C~ foral l t>O, xl,  x 2 e ~  N (5) 

and thus X(t) is a Lipschitz homeomorphism from ~N onto ~N satisfying (4) with 
C o = C 1. A better p r o o f - - b e t t e r  since it yields a sharper estimate and the correct 
explanation of (4 ) - - i s  based upon the following (standard) observation: let Z(t) 
denote 2 o X(t), then one can show that )~(t) satisfies in the sense of distributions 

0s 
o ~ - d i v ( b s  0 on (0, oo) x ~u, s = 2 

and 2-admits a density r with respect to 2 which satisfies 

~ t - d i v ( b r ) = 0  o n ( 0 , ~ ) x ~ N ,  rle=o- 1 on ~N. (6) 

And one deduces easily 

e-C~t<r( t ,x)<e c~e on(O, oo) x ~ N  (7) 
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where 
C1 = IldivbltL~. 18) 

Roughly speaking, the divergence of b governs the exponential rate of compression 
or dilation of Lebesgue's measure transported by the flow. 

It has been a permanent question to extend any part of this elementary theory 
to less regular vector fields b - -  question pertinent to a wide variety of applications 
ranging from Fluid Mechanics to Control Theory. Various (somewhat limited) 
extensions have been proposed but seemed to be of restricted applicability in view 
of standard examples. 

It is our goal here to provide a quite general (and natural) extension to vector- 
fields b having bounded divergence and some Sobolev type regularity. Our 
motivation stems from kinetic theory and fluid mechanics (see for instance [5], [6]) 
where such questions are fundamental to understand the "characteristics" of the 
physical system and where only limited Sobolev regularity seems to be available. 
More precisely, we will show that if b~ Wllocl (~N), div b e L~'~(N u) and 

b = b l  +bz, bleLP(RN), be( l+lx l )  LeL~176 N) (for some 1 =<p=< oo) 

(we will in fact cover even more general situations) then there exists a unique "flow" 
X e C(N; Lfoc(NN)) solving (1), satisfying (4) and (2) a.e.. In addition, X e Lfoc(NN; 
C ( [ -  7", T])) (for all Te(0, oo)). Finally, we will also obtain stability results under 
perturbations of b (and, in particular, convergence of the flows obtained by 
smoothing b). The corresponding time-dependent theory will also be considered 
assuming an Lt-time dependence in all the conditions above. All these results will 
be obtained in section III below. 

We will also present in section IV below examples showing the sharpness of 
these results: two different types of counterexamples will be presented, the first class 
is taken from A. Beck [1] and provides for any pe ( l ,  oo) a vector-field 
b e Cb(R 2) ~ W 1' p(N2) with two (in fact infinitely many) distinct continuous flows, 
showing thus the relevance of the bound on divb. The second class includes 
an example of a vector-field be  Wt'dcl(N 2) for any s < 1 satisfying divb = 0, with 
two distinct measure preserving LX-flows, showing the sharpness of the 14~& ~ 
regularity. 

It is worth emphasizing a striking aspect of our method of attack: all these 
results on ODE's will be deduced from the analysis of the associated PDE namely 
the following transport equation 

- - - b - V u - - 0  in (0, o o ) x ~  N. (10) 
c~t 

In some sense, the Lagrangian formulation will be deduced from the Eulerian one. 
This analysis will be based upon the use of renormalized solutions (introduced by 
the authors in the context of kinetic models - - see  [2], [3], [4], [5]), and a 
regularization argument. It will lead to existence, uniqueness and stability results 
which are presented and proved in section II. 

Let us conclude this Introduction by mentioning several forthcoming appli- 
cations of our results to kinetic Vlasov-type models ([5]), fluid mechanics including 
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the evidence of singular phenomena in 3-D Euler equations ([7]) or existence 
results for density-dependent models ([6]). 

II. Linear transport equations 

H.1 Existence and regularization 

We begin with a simple existence result for the following linear transport equation 

•u 
- - - b ' V x u + c u = O  in(0, T ) •  (11) & 

where T >  0 is given and we will always assume that b, c satisfy at least 

b~Ll(0 ,  T; (L~oc(~N))N), c~Ll(0 ,  T; L~oc(~N)). (12) 

Given an initial condition u ~ in LP(~ N) for some pe[1 ,  ~ ] ,  we wish to build a 
solution of (11) in L~(O, T; LP(~N)). Of course, the equation will be understood in 
distributions sense that is (for instance) 

- !  dt [. dxu - [. u~ + dt [. dxu{div(bc))+ccb} =0  (13) 
~" NN 0 NN 

for all test functions 0 6 C ~ ( [ 0 ,  T] x ~N) with compact support in [0, T) 
• ~N - - w e  will denote this space by 9( [0 ,  T) • ~N). 

Observe however that this definition makes sense provided we assume 

c + divb~La(0, T; L~oo(~u)), b~L~(O, T; (L~or ~) (14) 

where q is the conjugate exponent of p + -  = 1 . 
P 

With these notations, we have the 

Proposition ILl.  Let pc  [1, oo], u ~ e Lr(~u), assume (12), (14) and 

c +-1 div b~Ll(0 ,  T; L~([RN)) 
p if p >  1 (15) 

c, divb~La(0,  T; L~(ff~N)) if p = 1 . 

Then, there exists a solution u of(11) in L~(O, T; LP(~N) ) corresponding to the initial 
condition u ~ 

Remark. The same result holds if we replace 0 in the right-hand side of (11) by 
f 6  L 1 (0, T; LP(~N)). 

Proof The proof consists only in a justification by approximation and regulariz- 
ation of the following formal estimates. First of all, if p = oo, one has formally by 
standard arguments 

Ilu(t)ll~ _-< Ilu~ + i  IIcull~ds 
0 
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hence in view of (12) 

Ilu(t)[l~ < Co[lU~ a.e. on (0, T) (16) 

where C o depends only on the norm of c in LI(0, T; L~(~N)). Next, if p < c~, one 
observes that formally 

0 
~t lulP - b 'V~luf  + pcJuf = 0 

and thus integrating this equation over ~N one deduces 

d~ lulPdx< lufdx {llpc+divbll~(t)}. 

Therefore, using (i 5) 

Ilu(t) G < Collu~ a.e. on (O, T) (17) 

where Co depends only on the norm of c +-1 div b in L~(0, T; L~(~N)). 
P 

Now, to prove existence, we regularize b,c,u ~ by convolution in x i.e. we 

~ u~  p~ c ~ P ( i : ) P  C~-@+([~N), consider b~=b*p~,  c ~ = c , p ~ ,  u~ = = , 

~,,  pdx  = 1. Since we assumed only L~o~ integrability in (12), a further approxima- 
tion by truncation is necessary that we leave to the reader and we thus assume that 
b~L~(0,  T;C~(~N)), c~L~(0,  T;C~(EN)). Then, by standard considerations, 
there exists a unique solution u~E C([0, T]; C~(~ ' ) )  of 

~u~ b . V ~ u ~ + G u  = 0 in (0, T) xl/~ N, u~l,=o=U~ _ _  _ o in ~ 
r 

Then, in view of (16) and (17)--estimates which can now be proved rigorously--,u~ 
is bounded in L~~ T; LP(~N)) uniformly in e. Extracting subsequences if necess- 
ary, we may assume when p > 1 that u~ converges weakly in L~'(0, T; LP(~N)) and 
weakly * if p=  ~ to some u. Checking that (13) holds is now a simple exercise that 
we skip: remark only that 

c~ + div b~, b~ ---, c + div b, b in L 1 (0, T; Lqor 

When p = l, the same proof applies provided we show that us is weakly relatively 
compact in L~(0, T; L~oc(~N)). In order to do so, we consider u~ u) con- 
verging in LI (~  N) to u ~ and we denote by u,,~ the corresponding approximated 
solutions as above. 

By the preceding arguments, using (15), we see that 

[lu,,~ IL~(0, T.L,(~')) < C(n,p) (ind'ofe) for all p >  1 

while 
Nu _ u n  tIILr ) < ColIU o o o . = - u , , , ~ l l ~ < C o l l U ~  l l ~ .  
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And this yields the desired weak compactness. A 
We now turn to the main result of this section: this result will show that, under 

appropriate conditions on b, (weak) solutions of (l l)  can be approximated by 
smooth (in x) solutions of(11) with small error terms. This result will be one of the 
fundamental technical tools required throughout the paper. Let Pc be a regularizing 
kernel i.e. 

1 ( - )  
p ~ = ~ p  ~ with pe.@+(N~), S p d x = l ,  e > 0 .  

Theorem ILl.  Let  1 <= p <= oo, let ueL~(O,  T; LP(NN)) be a solution of (11) and 
assume that b, c satisfy 

beLl (0 ,  T; W~gZ(RN)), ceL l (O,  7"; L~oc(~N)) for  some c~ > q . (18) 

Then, if  we denote by u~ = u * p~, us satisfies 

Ou~ b" Vu~ + cut = r~ (19) & 

1 1 1 
where r~ converges to 0 as e goes to 0 in L 1 (0, T; L~oo(NN)) and fl is given by:~ = ~ + 

p 
I 

i f  ~ or p < oo, fl < oo is arbitrary if  ~ = p = oo. 

Remarks. 1) The same results hold if we replace 0 in the right-hand side of (11) by 
f~  L 1 (0, T; L~o~(NN)). 

2) The same results hold if we replace the equality in (11) by an inequality; then, 
of course, (19) becomes the corresponding inequality. 

3) The same results hold if we replace b in (19) by b~ = b* Pc. 
4) Analogous results hold if we modify the time integrability of u and b, c. For 

instance, if beL~(O, T; W~oZ(~u)), ceL~(O, T; L~o~(~N)) where l < ~/< oe (to sim- 
plify), then r~ V 0 in L~(0, T; LIPor 

5) The above result still holds with fl = 1 if we take u continuous in 
(t, x)e  [0, T]  x Nu b, ceL l (O ,  T; L~o~) and 

#x~ bj(t, x) is a bounded measure on [0, T]  x K 

for all compact sets K a ~N, 1 < i, j < N. A 
The proof of Theorem II.1 is a trivial consequence of the following 

Lemma ILl.  i) Let  B E ( W j l j ( ~ N ) )  N, w e  L~o~(~ N) with 1 < p < ~ ,  ~ > q. Then 

(B" Vw) * p~ - B" V(w * p~) --* 0 in L~o~(~ N) 
s 

where fl is given in Theorem II.l. 
ii) Let B~LX(O, T; (W~o~(~N))N), w~L~(O, T; L~o~(~n)); then 

( B ' V w ) * p ~ - B ' V ( w * p ~ ) - - ~ O  in LI(O, T;L~oc(~N)). 
e 

Proof  Part i) of Lemma II.1 seems to belong to the folklore of real analysis and 
thus we will present a rather sketchy proof of it. And we will entirely skip the proof 
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of ii) since it requires only to reproduce carefully the p roof  of i), keeping track of the 
time dependence. In order  to prove i), we first observe that  

(B- Vw) �9 Pc - B" V(w �9 Pc) = - ~ w(y) [divy {B(y)pc(x - y)} + B(x) 'Vp~(x  - y)] dy 

= ~ w(y) {(B(y) -- B(x))" Vpc(x - y)} dy - (w div B) * Pc. 

By s tandard  results on convolutions,  the second term converges in L~or as e goes to 
0 to w div B. 

Next,  we est imate the first term as follows for e small enough 

w(y) {(B(y) - B(x))" Vpc(x - y)} dy L~IB,) N C II w II L~r 

BR + I iX yl < C c 13 

where B M denotes the ball of radius M, R is fixed, and C denote various constants  
independent  of  e, R, w, B. Then, we remark that  

{., I dx ~ I B ( y ) - B ( x ) I  dy = 

B ~ Ix-yl < Ce '~ 

dx ~ dz d trVB(x  +t~z)l 
B 1 Izl < C 

< C IIVBI[LoIB . . . . .  ~- 

In order  to conclude, we just  need to observe that  it is now enough to show that  

w ( y ) { B ( y ) -  B(x)} �9 V p c ( x - y ) d y  ~ w d i v B  in L~or 
C 

when w and B are smooth.  Indeed, the general case follows by density using the 
above bounds.  But, this convergence is clear if w and B are smooth  since 

I w ( y ) { B ( y ) - - B ( x ) } ' V p c ( x - - y ) d y ~ .  --w(x),.i=l~ Bj(x)'j'z~.,~jp(z)dz~- 

and 

- -  i,J =1~ ~ i  Bj(x) " ~ z i ~ j  p(z) dz = div B . A 

H.2 Uniqueness 

Theorem II.2. Let 1 < p < ~ ,  let u e L ~ ( 0 ,  T; LP(Rs)) be a solution of  ( l l )  for the 
initial condition u ~  0 (i.e. u satisfies (13) with u ~  0). We assume that c, 
d i v b ~ L l ( 0 ,  T; L~(~N)),  b ~ L l ( 0 ,  T; Wl~o~q(~N)) and 

b 
- - e L l ( 0 ,  T; LI(~N)) + LI(0,  T; L~ (~N) ) .  (20) 
1 + Ix[ 

Then, u - O. 
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Remark.  It will be clear from the proof  below that (20) may be somewhat  
r e l a x e d . . .  

Combining Proposi t ion II.1 and Theorem II.2, we immediately deduce the 

Corollary ILl .  Let  1 <= p <= o% let u ~ e Lp(RN). We  assume that c, 
div b e L 1 (0, T; L~~ b ~ L 1 (0, T; WII&q(NN)) and (20). Then, there exists a unique 
solution u o f  (11) in L~~ T; LP(NN)) corresponding to the initial condition u ~ 

P r o o f  o f  Theorem IL2.  We first apply Theorem II.1 and deduce 

~?u~ _ b " Vu~ + cu~ = r~ ~ 0 in L 1 (0, T; L~oc(NN)). 

F rom this we deduce that if ffe CI(R), ff' is bounded on R then 

~ ff(u~) - b " V ff(u~) + cu~fl' (u~) = Gff' (u,) . 

And letting e go to O, we obtain 

0 
~ f f ( u ) -  b ' V f f ( u )  + cuff'(u) = 0 in (0, T) x ~N.  (21) 

Next, we consider some smooth cut-off functions q~R = q5 ( R ) f o r  R > I where 

q~ e~+(NN),  Supp q5 c B2, q~ - 1 on B1. Then, we multiply (21) by ~b R and we find 

d s f f ( U ) O R d X + ~ { c u f f ' ( u ) + d i v b f f ( u ) } c h R  = -~f f (u)b 'Vq~R.  (22) 

Let  M e (0, oc), we would like to choose ff(t) = (Itl A M) p which is Lipschitz on N but 
not  C1: this point  may be oversome by tedious approximat ion arguments that we 
skip and we deduce from (22) 

d C S (/u[/x M )  p Ib(t, x)l dx . dtS (lul AM)PdpRdX < C~ ([ul/',M)P~)adX+~R<=I~I<=2 R 

Next,  we observe that (lul /x M)e  e L~~ T; L ~ ~ L ~176 while 

Ib(t, x)l IR < Ib(t, x)l 1R < 
R <=t~I<=2R= I+IX~-~ =lxl" 

Therefore,  we deduce from (20) 

[bl(t, x)l 
d ~  ([ul/x M)PqSR < C S (In]/x M)P4)R + m(t) ~ ([u] A M )  p + C M  p ~ 1 + Ixl 

Ixl > R txl > R 

where b = b 1 + b  2, m =  llbE/(l +lxl)ll~o, b l / ( I  + I x I ) e L I ( O , T ; L I ( N N ) )  and 
bE/(1 + [xl)e L~(0, T; L~~ Letting R go to Go, this yields 

d j" (lul ^ M) e < U S (lul A M) p . 

Therefore,  [ul/x M = 0, and we conclude when p < oo letting M go to 0o. 
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When p = o% some further arguments seem to be necessary. First of all, if 
u6L~(O, T; L ~ n L ~) the proof above applies and yields the uniqueness. In the 
general case, we will use a duality argument that we only sketch below (since we 
will deal with much more general duality results later on): let ~b ~ ~((0, T) • EN), it 
is enough to show that 

T 

S u dxdt = o .  
0 0~ 

In order to do so, one considers the solution of the following backwards problem 

o ~ - b ' V r b - ( c + d i v b ) c b = O  in (0, T) x ~  N, 4 ' l , = r - - 0 o n ~  N. 

By Proposition II.1, such a solution 4~ exists and is in fact unique by the above 
proof. Furthermore, ~b ~L~(0, T; L ~ ~ L~). 

Next, we invoke the regularization result Theorem II.1 to deduce 

c3u~ 
t3~- -b 'Vu~+cu~=r~ i n ( O , T ) •  v, u~lt=o=O on W v 

Oq~ 
~ 3 - t - b ' V c b ~ - ( c + d i v b ) c b = 4 9 + ~  in (O,T)• u, r  on ~u 

where r~, ~b~--*0 in LI(0, T;L~oc(~N)). Multiplying the first equation by t / le~bR, 

integrating by parts and using the second equation we find 

T T 

-- I ~ u~(q5 + O~)dpRdxdt + r~cI)jaRdxdt + ~ ~ u~ 4),b. V4)Rdxdt = O . 
0 NN 0 ~ 

Letting e go to O, we deduce 

]b] 1g< 

And we conclude easily since lu114'1 eL~(0,  T; L 1 ~ L~). A 
In fact, the above proof also shows the 

Corollary II.2. Under the assumptions of Corollary II.1, u satisfies 

ueC([O, T];LP(~N)) if p <  oo . 

~f f(u)  - b" Vff(u) + cuff'(u) = 0 in (0, T) • ~u 

for all functions t3 ~ C 1 (~) such that 

Iff'(t)l < C(1 + Itl') 

P i f q < N .  w i t h r = p - I  if q >  N , r  < p - 1  if q =  N , r =  ~ 

(23) 

(24) 

(25) 
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P 
Proof (24) is an easy consequence of (21) observing that  fl(u)~ L ~ (0, T; ~locI~ + 1 (~N)) 
and using Sobolev inequalities to deduce that  b" fl(u)~Ll(O, T;L~o~(~N)) if (25) 
holds. Next,  the p roof  of Theorem II.2 shows that  

d ~ [ufdx+ ~ {pc+divb}[ufdx 0 a.e. on (0, T) (26) 

Therefore,  Nu(t)]lp6C([O,T]) and this implies easily, in view of (11), that  
u~ C([0, T] ;  LP(~U)) if p > 1. The case p = 1 is slightly more  delicate: first of all, 
approx imat ing  u ~ by u ~ ~ L ~ c~ L p (for some p > 1) and using (26) to deduce that  the 
corresponding solution u, of (11) converges to u in L 1 (~u) uniformly on [0, T] ,  we 
already obtain  that  u~ C([0,  T];  L~o,(~u)) and that  

s u p e s s  S lu(t)lllu(t)l__>Mdx~O a s M ~ .  (27) 
t~[O, T] ~u 

Next,  we consider ~ C ~ ( N N ) ,  0 < { < 1, ~ --= 0 on  B1/2, ~ =- 1 if Ixl > 1 and we 
introduce ~R = {(Rx) for R > 1. Then, copying the proof  of Theorem II.1 we find 
for all M > 0 

_d ~ [uIAM~Rdx<C~ ]uIAM~RdX+ C ~ ]u[AM--]b[ 
dt ~N n ~ R/2  < Ix[ -< R 1 + [X[ 

This yields 

s u p e s s  S lulAM~R dx- 'O as R ~ , f o r a l l M > 0 .  (28) 
rE[O, T] ~ '  

And we conclude combining (27), (28) and the fact that  u ~ C([0, T] ;  L~o c). A 

H.3 Existence of renormalized solutions and stability 

In this section, we extend the range of the existence and uniqueness results proven  
in the preceding sections by requiring less integrability condit ions on the deriva- 
tives of b and the initial condit ions and we prove a fundamenta l  stability result. In 
order  to state precisely our  results, we need to introduce a few notions and 
notat ions.  

First of  all, the conditions on b, c we will assume throughout  this section (and 
the following ones) are 

{b~L l(O, T; W~or d i v b ~ L l ( O ,  T; L~(~N)) 

c~L~(O, T; L~(~N))  , ' (*) 

]b(t, x)[ E L I ( 0 ,  T; LI(NN)) + LI(0,  T; L~(NN)) .  (**) 
1 + Ixl 

Next,  we need to introduce a set of  functions that  we will denote  by L ~  ~ is the set 
of all measurable  functions u on Nu with values in ~ such that  

m e a s { [ u [ > 2 } < ~ ,  for all ) . > 0 .  (29) 
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Observe that whenever f l ~ C ( ~ )  is bounded and vanishes near 0 then 

f f (u)~L 1 c~ L~(~N).  We will say that u" ~ u in L ~ if ff(u ~) --. ff(u) in L 1 for all such fl 
n n 

and that u" is bounded in L ~ if ff(u") is bounded in L ~ for all such ft. In this way, the 
sets L~(O, T; L~ C([O, T];  L ~ are well-defined. Finally, L~ will stand for the 
corresponding local versions (in fact L~162 is nothing but the set of all measurable 
functions from ~N into ~). 

We now turn to the notion of renormalized solutions of (11). We will say that 
u6L~(O,  T; L ~ is a renormalized solution of (1 l) if the following holds 

Otfl(u ) - b" Vff(u) + cuff'(u) = 0 in (0, T) • ~N (30) 

for all ffe C~(~), ff and fl'(1 + Itl) -x are bounded on ~ and fl vanishes near 0. We 
will call such functions ff admissible functions. Observe that these conditions imply 
that 

fl(u) and ufl '(u)~L~(O, T;L~(~N)) .  

And, of course, u E L ~ (0, T; L ~ will be a renormalized solution o f ( l  l) correspond- 
ing to the initial condit ion u ~ (given) in L ~ if ff(u) solves (30) with fl(u ~ as initial 
condit ion for all/3 as above. We may now state our main results. 

Theorem 11.3. We assume (*) and (**). 
1) (Consistency). Let u 6 L ~ ( 0 ,  T;LV(~N)) and let b~L l (0 ,  T;Lp(~N)) with 

1 < p < ~ .  I f u  is a renormalized solution of(11), then u is a solution of( l  1). I f u  is a 
solution of  (11) and b ~ L 1(0, T; W~J(~N)),  then u is a renormalized solution. 

2) (Existence and uniqueness). Let u~176  then there exists a unique 
renormalized solution u of  (11) in L~(O, T; L~ corresponding to the initial 
condition u ~ Furthermore, u6C([O, T];L~ u6C( [0 ,  T];LP(RN)) i f  
u~ ~ LP(~ N) for some 1 < p < ~ and 

ueL~(O,  T; L~(RN)) c~ C([0, T];  Lfoc(~N)) (Vp < ~ )  i f  u ~  

Finally, the following identity holds for  all fl6 C(~)  bounded and vanishing near 0 

d ~ f f (u )dx+ ~ cu f f ' ( u )+d ivb f f (u )dx  0 ,  a.e. on(0 ,  T ) .  (31) 
dt ~= ~= 

The next result is a stability result which corresponds to the case when c = 0. 
We will indicate briefly after the proof  of all these results how stability results may 
be obtained in the general case by a simple trick (reducing the general case to the 
case when e = 0). 

Theorem 11.4. (Stability). Let  b,, c ,~L~(0 ,  T; L~oc) be such that 
divb.  ELl(0,  T;Llo~) and b , , c , , d i v b ,  converges as n goes to ~ to b, 0, d ivb 
(respectively) in LI(0, T; Llto~) where b satisfies (*) and (**) (with e = 0). Let u ~ be a 
bounded sequence in L~(0, T; L ~ such that u = is a renormalized solution of(11) with 

0 (b, c) replaced by (b., c.) corresponding to an initial condition u ~ E L ~ Assume that u, 
converges in L~ as n goes to oo to some u~ ~ L ~ 
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1) (Local convergence). Then, u. converges as n goes to ~ in C([0, T]; L~ to 
the renormalized solution u of(11) (with c = O) corresponding to the initial condition 

o converges to u ~ in L~ocfor some p E [1, oo), that u ~ In addition, we assume now that u. 
u" is bounded in L~ T; Lfoc), that b., c., divb. are bounded in LI(O, T; Ll~oc) or 
{ lu"(t)lP/t ~ [0, T],  n > 1 } is relatively weakly compact in L~o ~. Then, u. converges to 
u in C([0, T]; Lfoc). 

2) (Global convergence). Assume that c. converges to 0 in L a (O, T; L 1 + U )  (for 
some r <  oo), that divb. = fl~. + f12 where f12 is bounded in L~(O, T; L ~ and fll 
converges in L ~ (0, T; L ~ ), that u ~ converges to u ~ in L ~ and that u" satisfies (31) with 
(b, c) replaced by (b., c.). Then, u. converges to u in C([0, T]; L~ In addition, we 

0 U o assume now that u. converges to in LP for some 1 < p < oo, that u" is bounded in 
L~(O, T ; L  p) or c. =0 ,  that c,, divb. are bounded in LI(O, T ; L  ~ or {[u"(t)lP/ 
re [0 ,  T], n > 1} is relatively weakly compact in L 1. Then, u. converges to u in 
c([o, T]; L~). 

Remarks. 1) Notice that we are not assuming in the stability result that b. -~ b in 
n 

L 1 (0, T; wlgc 1 ). 

2) Similar results hold for equations with a right-hand side. A 

We will prove Theorems II.3 and Theorem II.4 in several steps: first of all, we 
prove part 1) of Theorem II.3 and the uniqueness statement of part 2) in the case 
when c = 0. Then, we will prove Theorem II.4 in two steps. Next, we prove the 
existence statement of part 2) in Theorem II.3. Finally, we will explain how to 
recover the general case from the case when c = 0. 

Step 1. In order to prove part 1) of Theorem II.3, we first recall that solutions of 
(11) (in distributions sense) are renormalized solutions of (11) when b~Ll(0 ,  T; 
W 1 j ) ,  a fact which has been shown already (see Corollary II.2 and (24) in 
particular). Next, if u is a renormalized solution of(11) and u E L ~ (0, T; L p) then u is 
a solution of (11): indeed, one just needs to choose a sequence of admissible 
functions ft, such that 

[fl,(t)l ~ It] and ft, ~ t uniformly on compact sets of ~ .  
n 

Then, (11) follows from (30) by easy measure theory considerations. 
Next, the uniqueness assertion in part 2) of Theorem II.3 also follows from 

Theorem II.2 when c -- 0 since fl(u) is then a solution of (11) in L~(0, T; L 1 c~ L~176 
Therefore, fl(u) is unique and since this holds for all admissible fl we deduce easily 
that 

uloo>lul>o = vl| a.e., 1,= o = lv=oa.e. ,  

lu=•  = lv=• 

i.e. u = v a.e., if u, v are two renormalized solutions. Observe also that all the 
continuity in time statements and the identity (31) contained in part 2) of Theorem 
11.3 follow in the same way from Corollaries II.1 and 11.2. 
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Step 2. Pointwise stability 

We now wish to show, under the assumptions of part  1) of Theorem II.4, that  u. 
converges a.e. on (0, T) x ~N to u or that for any admissible fl, fl(u.) converges a.e. 
on (0, T) • ~ to fl(u). We thus fix such a/3 and denote by v. = fl(u.). Observe that 
v. is bounded in L~(0, T; L 1 c~ L ~) and solves 

0v. 
& b." Vxv. + c.u.fl'(u.) = 0 in (0, T) x ~N (32) 

o fl(u~ Remarking that f12 is still admissible, using the definition while v. It = o = v. = 
of renormalized solutions, we see that w. = v 2 ~L~(0,  T; L 1 ~ L ~) solves 

~w. b." Vxw. + 2c.u.v.fl'(u.) = 0 in (0, T) • ~N (33) 
c~t 

and %1, = o = (v~ 2. 
Without  loss of generality, we may assume that v. and w. converge weakly (say 

in L~'((O, T) x ~N) *) to v and weLl'(O, T; L 1 ~ L ~ ( ~ ) )  which are solutions of 
(11) (in distributions sense) in view of the assumed convergences of b", c", div b". In 
addition, v and w correspond respectively to the initial conditions fl(u ~ and/3(u~ 2 

o converges to u ~ in L~ since u. 
Then, in view of  part  1) of Theorem II.3, v is a renormalized solution of(1 I) and 

thus v 2 is a solution of (11) corresponding to the initial condit ion (v~ 2 =/3(u~ 
indeed, recall that c -- 0 here and that one just has to let the admissible nonlinearity 
in (30) go to t 2. Therefore, by the uniqueness result Theorem II.2, v 2 - w. But this 
means that 

v, 2 --* v 2 weakly in L~176 T) x ~N)_  . 

hence v. converges in L2(0, T; L2oc) to v, therefore in measure. Recalling that  
v. =/3(u.) and /3 is an arbitrary admissible function, we see easily by varying/3  
among  a countable collection of such admissible functions flk such that 

/3k=O if Itl _-<~, 0<B~,(t) if I t [>~  

/3;,(0(1 + Itl)-1, /3k are bounded on R 

that  u, has to converge in measure to some u. But then v, has to converge to fl(u). 
Hence v =/3(u) and u is a renormalized solution of(11) corresponding to the initial 
condit ion u ~ (and thus is unique). 

Step 3. Conclusion of the proof of Theorem 11.4 

There only remains to show that  convergences are uniform in t and global when the 
data  converge globally. 

The uniform convergences in t follows from Ascoli type arguments.  Indeed, if 
we first fix an admissible function /3, we know by step 2 that  /3(u,) and 7(Un) 
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converge respectively to fl(u) and 7(u) in LP(O, T; Lfor for all 1 ~ p < ~ where 
7 =/12. Furthermore, choosing qSg as in the proof of Theorem II.2, we see that 

d ~ 2(u,)(ORdX + ~ {c.u,y,(u,)+divb,y(u,)}4oR+y(u,)b.V(aRd x O. 
dt ~ ~ 

And one deduces easily that 

d 
[ 7(u")ORdx--* ~ {divb~gR + b'VOR})'(u)dx in L~(0, T) .  

n ~ N  

Therefore, since u is a renormalized solution of (11), 

fl(u.)~(o,,dx --, ~ fl(ufcbRax, 
n Nr," NN 

uniformly in [0, T]  

and 

fl(u.(t.))2(ORdX+ ~ fl(u(t))2dPRdX, if t , ~ t  in [0, T ] .  (34) 
N N NN 

On the other hand, for any bounded ball BR, one checks easily using (30) that fl(u,) 
is relatively compact in C([0, T]; H-S(Bg)) for some large s > 0 (independent of n). 
Therefore, if t, V t in [0, T], fl(u,(t,)) 7 fl(u(t)) in H-S(BR) for all R < o% and thus 
weakly in L2(BR). Then, in view of (34), fl(u.(t.))~ fl(u(t)) in L2(BR). Since 
fl(u)eC([O, T]; LP) (v 1 __< p < oo), this implies that fl(u.) ~ fl(u) in C([0, T]; L2oc). 

One proves in a similar fashion the remaining assertions of Theorem II.4 
concerning the L p convergences at least when p > 1 replacing fl(u,) 2 by [u,[ p, or the 
global convergences (again when p > 1). One just has to notice that when c, = 0, L p 
bounds may be obtained using (31) to deduce 

d I {(lu,,L--2)+AM} pdx <= C I {(lu.l - 2 ) +  AM} pdx 
dt ~N R~ 

which yields a L~(0, T; L p) bound upon letting 2 go to 0 and M go to ~ .  
There just remains to show the local and global convergences in L 1. In both 

cases, observing that u ; ,  u,- are also renormalized solutions, we deduce that we 
may assume without loss of generality that u., u are nonnegative. Next, by the 
convergences proved above, we see that in the local situation 

(U.--2)+A M ~ ( u - - 2 ) + / \ M  in C([0, T]; Lion) (35) 

for all 2 > 0, M < oo. But then the assumption on weak L]oc compactness implies 
that, for all R < oo, we have 

sup~ lu.llI..I>>_Mdx~O a s M ~ + ~ .  (36) 
t ,  n B R 

Combining (35) and (36), it is easy to deduce the convergence in C([0, T]; L~o~). 
In the global situation, we want to show that, for any sequence t. in [0, T]  

converging to some t, u.(t.) converges in L 1 to u(t). This is clearly enough since 
ueC( [ -0 ,  T ] ;  L1). Since u. converges to u in C([0, T]; L~ we already know that 
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u,(t . )  converges to u(t) in measure  or to simplify the presentat ion almost  every- 
where (extract a subsequence if necessary). On the other hand, because of (31), we 
have 

tn 

e - " " " ) u . ( t , ) d x +  ~ ~ { c . + d i v b . + a ' ( t ) } e - a ~ ~  d t d x = O  (37) 

e-~ dx + i ~ {d ivb  + a' } e-~ dt dx = 0 t3S) 
[~N 0 ~N 

for any function a ~ W L ~ (0, T). And we choose a such that  

a ( O ) = O , a ' ( t ) + c , + d i v b , > O  a.e. on (0, T ) •  R N. 

Then, by Fa tou ' s  l emma (recalling that  u,, u > 0), we deduce that  

u . ( t . ) dx  ~ ~ u ( t ) d x .  
~N ~N 

And recalling a s tandard exercise in measure  theory we conclude: 

(39) 

lu.(t.) - u(t)l dx = ~ u.(t .)  - u( t )dx  + 2 ~ (u.(t .)  - u( t))-  dx 

and ( u , ( t , ) -  u(t))-  ~ 0 in L 1 by Lebesgue's  lemma.  

Step 4. Existence when e = 0 

I /-\ 
We 

T ; W  k' ( ~ N ) ) f o r a l l k >  1 be- Pe@+(~N) ,  ~N p d x  = 1. Then, (1 + ixi2) 1/~ELI(O' ~ 

cause of (*) and (**). 
Next, consider flk as in Step 2 above: we will impose in addit ion that  

ilk' = Yk,,k ~ flk for some 7k',k e C I(J~), for all k'_> k > 1. Then, we denote by u ~ 
= flk(UO), Uk, oO = flk(UO)*p~ for J => 0 (with the convent ion Po = 50). By s tandard  
results, there exists a unique solution u~,~ in L~(0,  T; L~(NN)) of the following 
problem 

,~u~,~ 
c3t b ~ ' V u ~ , ~ = 0  in (0, T) x ~ N , u  ~k,~lt=o=uok,~ on W v (40) 

and u k , ~  ~ W 1' ~((0, T) x BR) (VR < ~ )  for 6 > O, u ok,~ converges to u ~ to 0 (say in 
0 Clearly, -~ o C([0, T] ;  L~o~) ) and we denote by Uk. ~ = Uk,~. Uk'~ = 7k',k(Uk,~) solves 

( 0 ~ , ~ ) - b ~ ' V 0 ~ , ~ = 0  in ( O , T ) •  Uk,~=Tk, k(UR, a) on 

for all k' > k, 6 > 0. Therefore,  letting 6 go to 0 + and compar ing  with (40) we see 
that  

Uk'~=yk',k(Uk,~) on(0 ,  T ) •  for a l l k ' > k _ >  1 .  
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F r o m  this, we deduce that there exists u, e L | (0, T; L ~ such that  Uk. e = f t k ( U e )  and 
thus u~ is a renormal ized solution of  (11) with (b, c) replaced by (b~, 0) correspond-  
ing to the initial condit ion u o. In order  to conclude the existence proof  one just 
needs to check that u, is bounded  in L~(0, T; L ~ and to use the stability result 
letting e go to 0. 

Step 5. Reduction to the case when c = 0 

Let a e L l ( 0 ,  T; L~(~N)). In view of (*) and (**), there exists a unique solution 

- - - b ' V q ~ = a  on (0, T) x ~ N ,  4 ~ ] t = o = 0 O n  ~u (41) 
& 

(see Corol lary  II.1 and  II.2). 
Then, the reduction of the general case to the case when c = 0 follows 

. immediately f rom the following. 

L e m m a  II.2. Let  (b,c) satisfy (*) and (**). Let  u ~  ~ Then, u~L~(O, T ; L  ~ 
is a renormalized solution of  (11)for  the initial condition u ~ if and only if e -~u  is 
a renormalized solution of (11) with (b, c) replaced by (b, a + c ) f o r  the initial 
condition Uo. 

Proof  Formal ly ,  this is nothing but  the chain rule and we have to justify the 
obvious  formal  manipulat ions.  Of  course, by symmetry ,  it is enough to show one 
direction of the above equivalence. Hence, let u~ L~176 T; L ~ be a renormalized 
solut ion of(1 l) for the initial condit ion u ~ and let 7, fl be admissible functions. We 
want  to show that  ~ (e -  ~fl(u)) = co solves 

0o9 
- - -  b " Vco + 7' (e- ~ft(u))e- ~{ c ft' (u)u + aft(u)} = 0 
St 

on (0, T) x [R N, col, = o = 7 ~ ft(u~ on E N. (42) 

T o  this end, we apply the regularizing result Theorem II.1 and we find that  

{ ~ t ~ - b - V q ~ = a + t ) ~  in (0, T) x N  ~, 4 5 ~ l t = o = 0 O n N s  (43) 

o ~N - b ' V v ~ + c f l ' ( u ) u = r ,  in (0, T) xIR N, v~l,=o=V~ on 

~--_ 0 130 w h e r e v = f t ( u ) , v  ~ f t ( u ~  = * p ~ , a n d r  
LI(0,  T; L~o~). 

We next set r ~ = y(e -  ~,v~) and we may  now use the chain rule to deduce from 
(43) 

~tn_~ _ b" V ~  ~ = y'(e - ~v~)e- ~ {r~ -- cft'(u)u -- aft(u) -- ~b~ft(u)} 
Ot 

i n ( O , T ) •  ~N, og*l ,=o=?(v  ~  ~ N .  
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And (42) follows upon letting e go to 0 in the preceding equation,  concluding thus 
the proof  of Theorems I1.3 and I1.4. A 

Remarks .  1) Theorem II.4 with L e m m a  II.2 yields corresponding stability results 
for general equations (without assuming c = 0). 

2) It is possible to extend some of the results above to more  general initial 
condit ions namely u~  = {v measurable  from RN into ~} ( = L~ Then, we may  
define admissible functions fl as follows: f l ~ C l ( R ) ,  fl and fl'(l +It[) are bounded. 
And we then use the same definition as before for renormalized solutions observing 
that  i f u ~ L ~ ( 0 ,  T ; /2)  then f l (u )eL~( (O,  T) x ~i:~). Let us remark  at this point that  
if u ~ e L ~ then bo th  definitions are easily shown to be equivalent. 

Then, the proofs above show that  there exists a unique renormal ized solution u 
of (11) in L~176 T;/2) for any initial condit ion u~ and u ~ C ( [ 0 ,  T];  s Par t  1) 
(concerning the L~ = s convergence) is then still true. 

o converges in measure  locally to u ~ then Fur thermore ,  if lu~ < oo a.e., and u, 
checking that  

sup I { l u I ~ M } c ~ B R I ~ O  a s M - - , o o ( f o r a l l R < o o )  
t6[O, T] 

and deducing f rom that for all R < ~ and e > O, there exists M large enough such 
that  for all n large 

sup I{}u,I > M } m B R I  <= e 
te[o, rl  

we see that  u" converges to u locally in measure  uniformly in t. 
3) Let us observe also that the method of proof  used in the proof  of L e m m a  II.2 

may also be used to show that  i fu ~ v ~ e L ~ (or s see 2) above) and lu~ Iv~ < oo a.e. 
so that u ~ + v ~ makes  sense and belongs to L ~ the renormalized solution w of(11) 
corresponding to u ~  v ~ is u + v where u, v are respectively the renormalized 
solutions of (11) corresponding to u ~ v ~ (Notice that, because of (3l), [ul, [v[ < oo 
a.e.). 

4) Using the regularizing result, one may  check that if u~ . . . . .  u,. (for some 
m > 1) are renormalized solutions of(11) say in L~(0,  T; s  with lui[< ov a.e., c - 0 
and F is a cont inuous map  from N" into N, then u = F(Ul . . . .  , u,,) is still a 
renormalized solution of (I 1) (with c - 0). A 

Let us indicate another  possible strategy for proving stability results (of a 
slightly different kind). We first state the type of results one can obtain with this 
strategy. 

Theorem I1.5. L e t  b , 6 L l ( O ,  T; L~oc) be such that divb ,  is bounded in LI(0, T; L ~) 
and b, converges,  as n goes to ~ ,  to b in LI(0,  T; L~oc) where b satisfies (*) and (**) 
(with e = 0). L e t  u" be a bounded sequence in L~(O, T ; L  ~ such that u n is a 

renormalized solution of(1  l) satisfying (31) with (b, c) replaced by  (b,, 0), correspond- 
ing to an initial condit ion u ~ ~ L ~ Assume that u ~ converges to u ~ in L ~ (resp. in LP for  
some 1 <= p < oo), then u ~ converges in C([0, T];  L ~ (resp. in C([0, T] ;  LP)) to the 
renormalized solution u o f  ( l I) (with c = O) corresponding to the initial condit ion u ~ 
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Since a large par t  of the proof  of this result is analogous  to the p roof  of 
0 Theorem II.4, we sketch it and consider only the case of an initial condit ion u, 

which is bounded  in L 1 c~ L ~ and converges in L I, therefore u" is bounded  in 
L~(0,  T; L ~ c~ L~).  Next,  because of ( .)  and (**), with the nota t ions  of the proofs 
above,  we deduce the existence of u~ a solution of 

Ou~R-b'Vu~ =f~ in (0, T) • ~N 
Ot 

with u~ ], = o = q~R u~ where u~ is smooth  in x (uniformly in t), compact ly  suppor ted  
in x (uniformly in t) and fd ~0, u~ ,u as R ~ + 0o and then e ~ 0. In 

L I C(L  1 ) 

fact, u~ is nothing but ~bRu ~ where u~ is obta ined using the regularizing result 
Theorem II . l .  Next,  we write 

~ ( u "  - u~) - b, "V(u" - u~) = (b - b,)Vu~ +fd.  

Since u n is a renormalized solution satisfying (31), one deduces from the above 
equat ion and a tedious approx imat ion  a rgument  

d 
~ ~ [u"-u~ldx < E ~ [b-b.] ]Vu~ldx + E ~ Ifd]dx + ][divb.(t)]JL~ ~,'~ ]u"- u~]dx . 

Hence, setting An(t)= i ILdiv b,(s)[IL~ ds, we deduce 
0 

[0, T ] ~N ~;,' 

T 

+ ~ e-A"(~ I ]b--b.] IVu~l + If~ldx 
0 ~N 

or, in view of the bounds  on (div b,),,  

sup ( d  tu"-u~ldx)(~) <=Co ~ lU~-dpRU~ 
[0, T] Ez~ 

T 

+ Co S ~ dtdx{[b-b.ltVu~] + ff~]} 
0 j~N 

for some constant  Co independent  of n, e, R. 
Hence, we have 

,ira C S C S 
[0, T] \ Er [0, T] KEN 

T 

+ C O ~ ~ dtdx I f[~], 
0 ~N 

and we conclude letting first R go to + 0o and then e go to 0. A 
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H.4 Duality 

Theorem II.6. Let (b,c) satisfies (*) and (**), let u~L~(O,T;LP(~N)) ,  

- P 1' be respectively renormalized solu- veL~(O,  T; Lq(NN)) with 1 < p <= o% q P -  

tions o f ( l l )  and 
gv 
- - - b ' V v - ( c + d i v b ) v = f  in (0, T) x Ns (44) & 

where f e L 1 (0, T; L ~ Then, we have the following duality formula 
T 

I u ( T ) v ( r ) d x -  f u(O)v(O)dx : I S f u d t d x "  (45) 
@N N~ 0 NN 

Remarks. l) Recall that  u (and similarly for v) belongs to C([0, T];  L p) (if p < oo, 
C([0, T];  L[oc) for all r < oo if p = oo). 

2) It is of course possible to define solutions of (11) for an initial condit ion 
u ~  by imposing that  the above formula  (45) holds for all v solving (in 
renormalized sense, or in distributions sense) (44) with r e 2 ( ( 0 ,  T) x NN). Then, 
under condit ions (*) and (**), the above result shows that  u is the unique solution of 
(1 I) in that  (dual) sense. 

Proof  Formally,  the above result is nothing but an integrat ion by parts  and so we 
need to justify once more  these formal manipulat ions.  To  this end, we take an 
admissible function fl and use the regularizing result Theorem II.1 to deduce 

a 
~ - b . V ~ + c ~ f l ' ( ~ )  = r~ in (0, T) x R N , (46) 

~?tg~ - b- Vg~ - (c + div b) vfl'(v) = s~ + f  in (0, T) x NN (47) 

where ~i = fl(u), 17= fl(v), ~ =  6*p~, ~ = O*p~ and r~, s ~ 0  in LI(0,  T; L~o~). 
Int roducing ~b R as in the proof  of Theorem II.2, we may  now mult iply (46) by g~b R, 
integrate by parts  and use (47) to deduce 

T 

a ~ ( r ) g ~ ( r ) ~ R d x -  ~ g~(O)g~(O)r~gdx = ~ I ( f  + s ~ ) ~ g d t d x  + 

T 

+ ~ I r~rS~b, - bVqSR~g ~ + (c + div b)vfl'(v)O.~.(o~ dt dx + 
0 NN 

T 

- I I C6fl'(6)O~4)R + div b U~V~4)R dt d x .  
0 ~u 

Then, we m a y  let e go to 0 and then argue as in the proof  of  Theorem II.2 letting R 
go to oo to obtain  

T 

I n ( T ) ~ ( r ) d x  - I ~(0)~(0) = I S f6  + (c + div b)vfl'(v)~ + 
NN NN 0 N N 

T 

-- ~ ~ c~fl'(O)g+ d ivbOgdtdx  . 
0 NN 
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Finally, in order to conclude we just have to let fl converge to ill(t) = t (imposing 
that ]fl(t)[ < t, Ifl'(t)[ _-< 1 on R). A 

We conclude this section with an example of the possible applications of the 
duality formula to weak convergence and stability results. It can also be applied to 
recover the "strong" stability results of the preceding section. 

Corollary II.3. Let b, converge to b in L ~ (0, T; L~or be such that div b, is bounded in 
L~(0, T; L~).  Let u. be a renormalized solution of(11) with (b, c) replaced by (b., 0) 

o We assume in addition that b, satisfies (**) and that u ~ for an initial condition u, .  
converges weakly in LP(~U) for some p~(1, + co] to some u ~ Then, u, converges 
weakly in L~(0, T; L p) to the renormalized solution of(1 l) (with c = O) jbr the initial 
condition u ~ 

Proof  One first observes that, by the results of the preceding sections, u, is 
bounded in L~ T; LP(~N)). Next, we consider the solution of 

8cl), b , ' V q ) , - d i v b . 4 ) ,  4) in ( O , T ) •  N, ~,[ t=r 0 on ~N 
& 

where 0 is given in @((0, T) x RN). By the stability result Theorem II.4 (and the 
remarks following its proof) 4), converges in C([0, T]; U)  for all 1 _<_ r < ~ (and 
remains bounded in L~(0, T; L~)) to the solution q) of 

0(b 
- - - b ' V 4 ~ - d i v b 4 ' = q ~  in (0, T) x~N, r  on ~N. & 

Then, if u, converges weakly in L ~ (0, T; L p) to some u (extracting a subsequence if 
necessary), we may pass to the limit in (45) and we find 

T 

-- ~ uocb(O)dx = ~ ~ ~ u d t d x .  
0~ 00~ ,v 

Since ~b is arbitrary, we may use the remark 2) following Theorem II.5 to conclude 
the proof. A 

H.5 Stability and time compactness 

The goal of this section is to present an extension of the stability results proven in 
the previous sections. The main difference lies in the time dependence of the 
coefficients. More precisely, we extend Theorem II.4 (for instance) as follows 

Theorem II.7. Theorem 11.4 still holds if we replace the convergence of(b,,  c,, div b,) 
to (b, O, divb) in LI(O, T; L~or by the following assumptions: first, we assume that 
(b,, c,, div b,) converges to (b, O, div b) weakly in L I(O, T; L~or and also that 4), = b,, 
c., div b. satisfies 

(o , ( t , x+h)- -*(o , ( t , x )  as h ~ O  in L l (O,T;L~oc) ,un i formly inn .  (***) 

Remarks. 1) Of course, if b,, c,, div b, do not depend on t, as it is well-known the 
combination of the weak convergence and of (***) is equivalent to the strong 
convergence. In this case, Theorem II.7 thus reduces to Theorem II.4. 
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2) In general, Theorem II.7 is more  general than Theorem II.4 and, even if it 
seems a rather  technical extension of Theorem I1.4, the gain in generality will be 
quite impor tan t  for applications. Observe in part icular  that  (***) holds as soon as 
~b, is bounded  in U(0 ,  T; X)  where :~ > 1, and X is any space with a compact  
embedding in L~or instance any Sobolev space W" '  p with p > 1, m > 0 has this 
property.  & 

Proof of Theorem II. 7. Since its p roof  is very much  similar to the proof  of Theorem 
II.4, we only explain the new ingredient: to this end, we take c, = 0 and we consider 
v" bounded  in L ~ solution of t , x  

(~V n 
- - -  div~(b,v') = 0 in ~ ' ( (0 ,  T) x ~u) 
Ot 

writing the equat ion in divergence form allows to simplify a bit the presentation,  
avoiding to keep track of the extra "divergence" term present in the case of the non- 
divergence form equation. Of  course, we may  assume that  v" converges weakly in 
L ,  to some v and we want  to prove that  v satisfies 

- -  - div~ (by) = 0 in ~ ' ( (0 ,  T) • EN) ; 

or in other  words that  b,v" converges weakly (in @' or in L 1) to by. 
To this end, we introduce a regularizing kernel as in the p roof  of Theorem II.1 

and we observe that  (***) yields immediately 

b,(v".p~)-(b,v')*p~--*O in LL(0, T; L~o~), 

as e ~ 0 + ,  uniformly in n .  

~(v'*p~)=(divx(b,v"))*p~ is clearly uniformly (in n) Since bounded  in 

L 1 (0, T; L~oc), we deduce easily from the compactness  of Sobolev embeddings  that 
for each fixed ~ > 0 

v ' . p ~ v * p ~  a.e. in (0, T) x ~ N 

(extracting a subsequence if necessary). This a lmost  everywhere convergence com- 
bined with the uniform bounds  on v'*p~ and the weak*convergence of b, in 
L 1 (0, T; L~oc) yields the desired convergence namely 

b,(v".p~)~b(v*p~) weakly in Ll(O, T; L~oc), for all ~ > 0 .  

Indeed, collecting all the above convergences and the obvious one 

b(v .p~)~bv inLl(O,T;L~oc) ,as~O+ , 

we deduce easily that  we have 

b,v" ~ by weakly in LI(0,  T; L~or A 
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III. Appl icat ions  to ordinary differential equat ions  

III.1 The divergence free autonomous case 

We consider in this section the case when b depends only on x and satisfies 

b ~ wlio~ 1 (~N), div b = 0 a.e. on ~N , (48) 

b 
- -  ~ L~ + L~176 . (49) 
1 + Ixl 

In some of the est imates below we will s trengthen (49) as follows 

b ~ L P + ( 1  + Ixl)L ~ for some p c [ l ,  oo] . (50) 

We are going to show the existence and uniqueness of  solutions of (1). Stability 
results will be given in the next section in a more  general situation. But, if we 
assume only (49), the solution m a p  X(t, x) we will obtain will not  be in L~oc (for a 
fixed t) so we have to define solutions of (1) in a manner  similar to renormalized 
solutions of (1): we will show that  X(t)e C(~;  L) N where L = {05 measurable  f rom 
~N into ~ and ]051 < oo a.e.} (for example) endowed with the distance 

1 
d(05,~)= ~> 2--;tII05--0tAlIIL,(B.) 

n = l  

which corresponds  to the convergence in measure  on arbi t rary  balls. In addition, 
because of (48), X will satisfy 

2oX( t )  = 2, for all t e R  (51) 

(recall that  2 is the Lebesgue measure  and that  2 o X(t) is the image measure  of 2 by 
X (t) i.e.: 

4d(2oX(t))-- ~ 05(x(t))dx. 
~N ~N 

Because of(5 1), 05 o X(t) makes  sense in L for all 05 E L. The O D E  (1) will hold in the 
following sense: for all f l~Cl(~ N, ~N) such that  fl and IDfl(z)l(l + Izl) are bounded 
on ~N, fl(X)EL~(R; L~oc ) and we have 

~ f l ( X ) =  on x fl(X)l,=o = fl(x) on (52) Dff(X)'b(X) R u, Ru 

where the equat ion holds in distributions sense. We will also call admissible 
functions such functions ft. Notice that  because of (49) and (51), 
b(X) 

- - ~ L ~  L 1 + L~176 
l+lXl 

Finally, the group proper ty  will now hold in the following sense 

X ( t + s , ' ) = X ( t , X ( s , ' ) )  a.e. on ~N, f o r a l l  t, s e R .  (53) 

We may now state our  main  existence and uniqueness result. 
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Theorem III.1. We assume (48) and (49). Then, there exists a unique X ~ C(~; L) ~ 
satisfying (51), (52), (53). In addition, X satisfies 

ri(X)c Lloc(~u; C([~)), for all admissible ri (54) 

Ox 
for almost a l l x 6 ~ N ,  X e C  l ( ~ ) , b ( X ) e C ( R ) a n d ~ t  = b ( X )  o n ~ .  (55) 

Furthermore, if Uo ~ L ~ (or s ), u( t, x) = uo( X (t, x) ) is the unique renormalized 
solution in C(R; L ~ of ( l 1) with c = O, for the initial condition u ~ ( for  all T). Finally, 
if b satisfies (50), then X ~ LPor C(R)). 

Proof. Step 1 (Existence) 
We regularize b as usual: set b~ = b �9 Pc. By Cauchy-Lipschitz theorem, there exists 
a unique smooth map X~ on R • R u satisfying 

0X~ 
-b(X~) on Rx~N, X~l , :o=X on ~N. (56) 

?,t 

In addition, (51) and (53) hold for X~ (of course (53) holds now everywhere) and for 
each u ~  ~ (or in s u~ is the unique (renormalized) solution of 

~u~ 
-b, 'Vu~ in ~ x ~ N ,  u,l,=o=U~ on ~N. (57) 

0t 

In particular, X~ solves 

0X~ 
-b~'VX~ in ~ x ~ N ,  X~l,=o=X on~N.  (58) 

at 

Next, choosing rio(Z) = z(1 + IzI2) -1/2 Log(1 + ]z] 2) for z e  ~?e we deduce that 

~rio(X~) = b~'V(rio(X~)) = Vrio(X,) 'b(X~)  in IR x RN. (59) 

Since ]Vrio(z)'b(z)] < C ]b(z)J we deduce from (49) and (51) that 
: 1 + ]zl' 

c~ 
~(rio(X~)) is bounded in L~~ L* + L ~176 and belongs 

to a relatively compact  set of L~176 - T, T; L~(BR)) (VR, T <  oo) (60) 

In particular, rio(X~) is bounded in L~176 L~or 
We may then use the stability results to deduce that X~ converges as e goes to 0, 

in C ( [ -  T, T]; L f f  (V Te  (0, m)) to X which satisfies (52). In addition, choosing first 
u ~ in ~(~N),  using the stability results and then approximating general u ~ in L ~ we 
see that for all u ~ e L ~ (or/7), u~ is the unique renormalized solution o f ( l  1) with 
c _= 0 for the initial condit ion u ~ In particular, we deduce that for all u ~ e ~(~N)  

S u~  t , x ) ) d x =  ~ u~ V t ~  
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therefore (51) holds. The uniqueness of renormalized solutions also yields the group 
property (53). 

Because of (51), (52) yields 

0 
O-~fl(X)eL~(N; L 1 + L ~) . (61) 

Since L~(I~; L 1 + L ~) ~ L~oc(Nu; L~oc(N)), we deduce that 

f l (X)eL]oc(~u; W~gc'(~)) ~ L~oc(~u; C(~)).  

Then, (60) also yields 

0 
L ~ ~f lo(X)  e L'~ (N; + L  ~ ) (62) 

L 1 t~N. from which we deduce as above that flo(X)e ~oc~ , C(R)). In particular, for 

almost all x s N  N, p o ( X ) ~ C ( N )  and since t ~ ~ L o g ( 1  + t  2) is strictly 
x / l + t  ~ 

increasing on [0, oo) we deduce that X �9 C(N). 
Next, we show the claim contained in (55) about the time continuity of b(X)  for 

almost all x e NN. In order to do so, we first choose t) s C ~ (N) such that 0 > 0 on R, 
0 is even and 

tp(lzl)lDb=(z)[ <= fl2(z)eLl+(~N), for all ~e[0, 1] (63) 

[~P'(Iz[)l [b~l Log(1 + Ibm{) < fl~(z)eL~+(~u), for all ~e[0, 13. (64) 

The existence of such a qJ is a simple consequence of the fact that Db e L~or ~) and 
N 

thus Ibl e L ~ -  1 (~u) by Sobolev embeddings therefore Ib[ Log(1 + ]bl)eL~or 
Then, we compute 

{ ~,(X=)~o(b=(X=))} = b~ "Vq, iX=)~o(b=(X=)) 

+ t~(X~).Vflo(b=(X~))" nb=(X~)'b~(X=) 

therefore in view of (63) and (64) 

~ {tp(X~)flo(b~(X=))} < fl(X~) 

where fl(z) = fl~ + f12 6L~+(~N) . Since X~ is measure preserving, this yields 

~{O(X=)flo(b=(X~))} is bounded in L~(N; L ~) and belongs 

to a relatively weakly compact set of L ~ ( - T ,  T; L ~ (B~))(u R, T < oo). 

Then, letting e go to 0, we deduce 

0 
Ot {O(X) f l~  e L~(~; L 1 (~u)) (65) 
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and exactly as before we deduce that, for almost all x e ~  N, tp(X)flo(b(X)) is 
cont inuous on R and thus, in view of the previous proofs, b(X) is cont inuous on R. 

At this stage, proving that the O D E  holds for almost all x ~ ~N is easy: use (52) 
in integral form, let fl go to the identity mapping, use the a.e. in x temporal  
continuity to deduce the integral form of the e q u a t i o n . . .  

We conclude Step 1 by showing that XeL~'or C(~ ) ) i f  b satisfies (50) i.e. 
b = b I + b 2 where b~ eLP([~N), b2(1 + Ixl)-* ~ L~(~N). Then, we have ifp < oc (the 
case p = c~ is easier) 

~X~ _ b~(X~) + b~(X~) 
& 

hence 

or setting Y~ = e - o [X~l 

c~t = 

~ Y~ <Ce ~ 1 7 6  

Letting e, go to 0, we find that 

~7 < Ce-C' + e C'lb~(X)L. 

-c,  X e N. Lfo~(~N; C(~)) and our claim is proven. In particular e I I Lfor , W)o'S(~)) 
Observe that the above proof  also yields 

X ~ Lfo~(~N; W~od(R)) �9 (66) 

Step 2. (Uniqueness) 

In order to prove uniqueness, we just have to prove that, if X satisfies the 
conditions listed in the uniqueness statement and if Uo ~ ~(~u) ,  then uo(X(t, x)) is 
the solution of (11) with c = 0 corresponding to the initial condit ion u o. Since Uo is 
arbitrary, this yields of course the uniqueness. Hence, we set u(t, x) = uo(X(t, x)) 
and we wish to show that u - -which  belongs to C(~;  Lfoc(~N)) for all 1 < p < oo 
and to L~176 LP(~N)) for all 1 < p < c~ - -  satisfies (11) in distributions sense. 

In order to do so, we write for all ~ ( ~ N ) ,  h > 0 ,  t ~  

1 
ah(t) = j" ~ {u(t + h, x ) -  u(t, x) } q,(x) dx 

~N 

1 
= ~ ~{uo(X(t + h, x ) ) -  uo(X(t, x))} O(x)dx 

~N 

and since X satisfies the group property, we deduce 

1 
&(t )  = ~ ~{uo(X(t, X(h, x))) - uo(X(t, x))} q,(x)dx. 

~N 
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And using the group property and the measure invariance of X(h), this yields 

Ah(t) = ~ u(t, z) {O(X ( - h ,  z))-0(z)} dz.  (67) 
NN 

Next, we observe that b(X) 'Vtp(X)~L~(R;  L 1) and that for all admissible func- 
tions fl 

~O(fl(X)) = Vt)( f l (X)) 'Dfl(X) 'b(X) on I~ x NN 

and letting fl converge to the identity map (as we did several times before) we 
deduce 

~tO(X) = b(X) 'Vtk(X)  on N x NN. 

In particular, we have 
h 

O(X ( -  h, z)) - t)(z) = - y b(X ( - a ,  z))" V O(X ( - a ,  z))dz . 
0 

Inserting this expression in (67) and using once more the group property and the 
measure invariance of X(a) we finally obtain 

Ah(t) = -- y {b(x)'VO(x)}" ~!  u(t +a, x ) -  u(t,x)da dx . 
N N 

Since b ' V O e L  ~, u is bounded in L~(N;L~(NN)) and ueC(N;Lfor (for 
1 =< p < oo), we deduce from this expression that 

Ah(t) ,--* -- S b(x)'VO(x)u(t, x)dx uniformly for t bounded.  
NN 

Since, on the other hand, we have obviously 

Ah(t) , ~ S u(t, x)O(x)dx in ~ ' (N) ,  
~N 

we finally obtain the desired equation (1 i). 

Remarks. l) In the uniqueness statement, it is possible to replace (52) by (55) and, in 
fact, one may show that (55) implies (52) (under the assumptions of the Theorem 
III.l). In the case when (50) holds, it is even possible to replace (55) by 

~X 
- - =  b ( X )  in ~'(R x NN), (68) 

since in that case X e C(N; L~oc). 
2) Under the assumptions of Theorem III.1, we do not know of any estimate on 

the dispersion DxX(t, x) except for the formal following one: differentiating the 
ODE with respect to x, we find formally 

~ DxX = Db(X)" DxX 
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hence 
0 
~t {goglDxXl} < IDb(X)l, 

Therefore, if DbeLP(N N) for some pe  [1, oo], we deduce 

IlLoglDxXlllL, < Cltl, for all t e n .  (69) 

Notice that when p = oo this yields the usual exponential rate for dispersion. A 

111.2 The general autonomous case 

In this section, we replace the condition (48) by 

be  Wjlo~t(E~'), d ivbeL~(EN) .  (70) 

Of course, this will affect the property stated in (51) namely the invariance of 2 by 
X(t) and instead we will obtain for some Co~ [0, ~ )  

e-C~ <= 2oX(t) __< eC~ for all t e n  (71) 

or in other words, for all ~be~(NN), q5 > 0 and for all t e e  

e-Coltl 

Then, we have the 

dpdx< ~ 4)(X(t,x))dx<=e c~ ~ ~)dx. 

Theorem III.2. We assume (70) and (49). Then, the same conclusions as in Theorem 
III.1 hold provided condition (51) is replaced by (71). 

Remark. The unique solution X(t, x) satisfies in fact (71) with C o < N div b lit ~(w~Nj. 

Proof of  Theorem 111.2. Step 1 of the proof of Theorem III.1 may be repeated 
without any changes; however, the uniqueness proof (step 2) has to be modified a 
bit. If we follow the proof given in step 2 (keeping the same notations) and use (71) 
instead of (51), we obtain for all t~ E, h > 0, r e c~(E N) 

1 z)) dz  < -  ~ u ( t , X ( h , x ) ) O ( x ) d x -  ~ u ( t , x ) r  
= h ~ ~ 

< C(ec~ 1)114'IIL, I~N) 

and from this, we deduce letting h go to 0 

Ou 
__ _ div(bu)eL~(N; L~(EN)) ; & 
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1 
i b(X(--~r, z ) ) ' V O ( X ( - a ,  z))d~r is bounded  in L 1, uni- (observe indeed that  ~ o 

0u 
formly integrable and converges in L~o c to b(z).Vtp(z)). Therefore,  if we set F = - -  

c~t 
- b . V u ,  we already know that  FEL~(N;  L~(NN)) and we want  to show that  F 
vanishes. 

We then use the regularizing result (Theorem ILl)  to deduce that 

c3u~ 
0 t ~ - b ' V u ~ = F + r ~  in N x N N  

where r~ V 0 in L~oc(N x NN). Then, we introduce ~bn as in the p roof  of Theorem II.2 
and we observe that  

0 
~(u~4)n)-b 'V(u~d~n)= F + r ~ - b ' V 4 ) R  i n N x N N .  

Using the regularity of u~ (and (52)), it is now easy to integrate this equat ion "a long 
the characteristics X "  in order  to find 

(qSau~)(t, X ( - t ,  x ) ) -  ((aRu~)(x, 0) = i { qSR(F + r~)-  b'V(~Ru~} (a, X ( - a ,  x))da 
0 

a.e. xeNN,  for a l l t e ~ .  

We then let e go to 0, using (71), and we obtain  

(c~nu)(t, X ( - t ,  x)) - ((o,u)(x, 0) = i {~bRr - bVq~Ru}( a, X(--~r, x))dcr . 
0 

Then, letting R go to oo, using (71) and (49), this yields 

t 

u(t, X ( - t ,  x)) - u(x, O) = ~ F(a, X ( - a ,  x))da a.e. x e  NN, for all t e  N . 
0 

But the left-hand side vanishes, therefore we have 

F ( t , X ( - t , x ) ) = O  a.e. x e N  u, for all t e N .  

And using once more  (71), we finally obta in  that  F vanishes a.e. on ~ x Ns, 
concluding thus the proof  of  Theorem III.2. A 

Using the stability results proven  in section II.3, we immediately  deduce the 

Corollary III.1. Let b,~ L~o r be such that div b, E L~o c and b,, div b, converye as n 
goes to b, div b in L~o~ (respectively) where b satisfies (70) and (49). Assume that there 
exists X , e  C(R; L) N such that,.for any Uo ~ ( R N ) ,  uo(X,(t, x)) is a renormalized 
solution of 

~?U._b..Vu, =O in ~ x  ~N, u,[,=o =Uo On ~N. (72) 
Ot 

Then, for all T~(O, oo), X ,  converges in C ( [ - T ,  + T ] ; L )  N to the mapping 
X ~ C(N, L) N satisfying (71), (52), (53). In addition, X ,  converges to X un!formlyfor t 
bounded, in measure for x bounded in R N. 
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Remark. Using Theorem II.5 instead of Theorem II.4, we see that  we may assume 
that  div b, is bounded in L ~ instead of assuming its L~or convergence. 

111.3 Time-dependent theory 

We now consider general vector fields b = b(t, x) which satisfy (,) and (**) for all 
T < o o .  Then, we want  to solve for all t > 0 ,  x e R  N the following ordinary 
differential equat ion 

~X 
- b ( s , X )  for s > t ,  X l s = ~ = x  (73) 

0s 

and thus X is a function of(s,  t, x):X = X(s, t, x). The mapp ing  X will belong to 
C(D; L) where D = [0, oo) x [0, oo). 

Because of (,), we will find the following relation 

e x p ( - } A ( t ) - A ( s ) ) ) 2 < 2 o X < e x p ( ] A ( t ) - A ( s ) [ ) 2 ,  for all t, s > 0 (74) 

where A(t)e W 1" 1(0, R) (VR < oo), A(0) = 0, A'(t) > 0 for t > 0. In fact, the sol- 
ution we will build will satisfy (74) with 

A(t) = i [[ divxb l[ L ' (~  ~) ds . (75) 
0 

Next, the group proper ty  we used in the a u t o n o m o u s  case becomes 

X(t3, t l ,X  ) = X(t3, t2, X(t2, t l ,X)) a.e. x e ~  N, for all t 1, t2, t 3 > 0 .  (76) 

b(s ,X)  LI(O , T ; L I + L ~ )  ( V T <  oo) and thus we will In view of (74) and (**), 1 ~  ~ 

define solutions of (73) in a similar way than in the preceding sections namely the 
following should hold for all admissible functions and for all t > 0 

0 
~sfl(X ) =  D f l ( X ) ' b ( s , X )  on (0, oo) xNU, f l ( X ) l s = , = f l ( x ) o n  Nu,  (77) 

where the equat ion holds in distributions sense. 
We may  now state our  main existence and uniqueness result. Let us point out  

that we will not  give stability results which are easily deduced from the stability 
results of  section II.3 exactly as we did in Corol lary  I Ik l .  

Theorem III.2. We assume that b satisfies (*) and (**). Then, there exists a unique 
X s C ( D ;  L) u satisfying (74), (76) and (77). In addition, if u ~  ~ (or L), u(s, t, x) 
= u~ x)) is, for all s > O, the unique renormalized solution in C([0,  oo); L ~ of 

?u 
~t + b ' V x u = O  in (O, oo) x~U,  ul t=s=u~ on ~u .  (78) 

Remarks. 1) The  analogue of (54)-(55) is now 

f l (X)eC([O < t < oo); LI~o~(NN; C([0 < s < oo)))) for all admissible fl (79) 
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for all t > 0, for a lmost  all x ~  N, X(s)~ W 1'~ and ~ - = b(s ,X)  on (0, ~ )  

(8O) 
Finally, if b satisfies (for all T <  ~ )  

b E L ~ ( O , T ; L P ) + ( I + I x l ) L I ( O , T ; L  ~) f o r s o m e  1 < p <  ~ (81) 

then X s C ( [ 0  < t < oo); Lfoc(~u); C([0 < s < ~)))) .  In addition, in the last state- 
ment  or  in (79) one may  permute  s and t. A 

We skip the proof  of  this result since it mimicks the proofs made  in the 
preceding sections, keeping t rack carefully of the t -dependence (or s-dependence) 
using the stability result. 

IV. Counterexamples and remarks 

IV.1 W I'p vector-fields with unbounded divergence 

In this section, we construct  vector-fields b which are au tonomous  (i.e. b depends 
only on x) in two dimensions ( x ~ Z ) ,  belong to  Wllo'cP(~Z)~BUC(~ 2) for an 
arbi t rary  p < ~ and yet yield infinitely m a n y  solutions of the O D E  

)( = b(X), X[,= 0 = x (82) 

such that  X(t,  x) satisfies the g roup  proper ty  and X is continuous.  
This construct ion follows in fact directly from the construct ion made  by 

A. Beck in [1] that  we recall now: let K be a Can to r  set in [0, 1] and let 9 e  C~176 
be such that  0 ___< g < 1 on ~ and g(x) = 0 if and only i f x ~ K .  We denote b y f ( x )  = 
So g(t)dt on ~. Next,  we denote by M the set of atom-free,  nonnegative,  finite 
measures on K and for any  measure  rn in M, we define a function f,, on ~ by 

f ~ ( x + m ( K  c~[0, x ] ) )  = f ( x ) ,  V x ~ R .  (83) 

Finally, we introduce 

b(x) = ( 1 , f ' ( f -  1(x2))), for all x = (x 1, xZ)~ ~z , (84) 

X , , ( t , x ) = ( x l + t , f , , ( t + f , ~ l ( x 2 ) ) ) ,  f o r a [ l t 6 ~ , x = ( x t ,  x 2 ) ~  2 . (85) 

Notice that  since f f,, are  strictly increasing, b, X,, are cont inuous  in all their 
variables. Remark  also tha t  the group proper ty  is clearly satisfied. 

We now claim that Xm is differentiable with respect to t or equivalently f,, is 
cont inuously differentiable and that  

f~,(t + f,~ ~(x2) ) = f~,(f,~ I(XZ)) = f ' ( f -  ~(X2)) (86) 

showing thus that  X m solves the O D E  (82) for the choice of  b given by (84). 
Then,  let t ~ ~, there exists a unique x ~ ~ such that  

x + m(K n [0, x ] )  = t . 

If  x r K then for s close enough to t one has 

( x + s - - t ) + m ( K c ~ [ O , x + s - t ] )  = s 
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therefore fro is differentiable at t andf,~(t) = f '  (x) or in other wordsj~,(f,~l(fm(t))) = 
f '  ( f - l ( x ) ) )  = f ' ( f  1(fro(t))). Next,  i f x ~ K  and s is close to t, denoting by x(s) the 
unique solution of 

we observe first that 

x(s) + m(K c~ [0, x(s)]) = t ,  

I x ( s ) - x l  < I s - t l  . 

Then 
lf, ,(s)-fro(t)] = I f ( x ( s ) ) - f ( x ) [  < C l x ( s ) -  x[ 2 <= C ( s -  t) 2 

since f ' ( x )  = 0. Hence, f ' ( t )  = 0 = f '  (x) or in other  words 

f / ,( f ,~ 1(fro(t))) = f '  ( f  - l ( f  (x))) = f ' ( f  - 1 ( f r o ( t ) ) )  " 

As this proves our claim and (86) since t is arbi t rary  and f,, is strictly increasing. 
There just remains to explain how g can be chosen in such a way that  

b e  W~lo~(N 2) for an arbi t rary  p <  oc. Of  course, we only have to check that  
F = f ' ( f - 1 ( 0 ) 6  L~oc([R2). To this end, we observe that 

F ' = g ' ( f  l ( t ) ) g ( f - l ( t ) ) - I  

therefore, assuming for instance that g(t) converges to 1 as It] ~ ~ so t h a t f m a p s  
onto  R 

JF'(t)] pdt = ~ Ig ' ( f  ~(t))[Plg(f-~(t))] -pdt  

= ~ Ig(s)l-cp-Xllg,(s)lPds . 

Hence, we only have to show the existence of a g making  this last integral finite: in 
order  to do so, we choose go satisfying all the properties stated for g above and we 
set 

p - - l  
g = g ~ '  with m =  1 + - - ;  

P 

so that  ]gl-~P-1)]g'lP = mPlg'ol p. And we conclude requiring that  g'o~LP(R). 

Remarks. 1) Since div b = g ' ( f -  l ( xZ) )g ( f -  I(x2))-  1, div b is clearly not bounded  
on ~2 (even locally). 

2) Notice also that  ;t,~X(t) is absolutely cont inuous  with respect to 2 and 
admits  a density p(t, x2)~ L~-(~; L~(~)) and even in L~(~ ;  L{~o~(~)) for some q > 1 
provided g - lq -a l~L~o  ~ (in fact, if p above increases then q decreases!). 

IV.2 Divergence free vector-fields without integrable first derivatives 

In this section, we build an au tonomous  vector-field b on ~2 such that  

d ivb  = 0 in ~, (~2) ,  b e  W~;~(~ 2) for all s~[0 ,  1) 

b E L P ( ~ Z ) + L ~ ( ~  2) for all p ~ [ 1 , 2 )  

(87) 

(88) 
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for which there exists two measure-preserving flows solving the associated ODE.  
Since we are in two dimensions, divergence-free vector-fields correspond to Hamil- 
tonian systems and we will in fact build a singular Hamil tonian system as follows 

xl if [x l l< lx2 [ ,  = - - ( x l - - l x 2 [ + l )  i f x l  >[x21, H(x) = Ix21 = 

- - - ( x t + { x 2 ] + l )  if X l <  --Ix21, for a l l x = ( x l , x 2 ) e [ R  2 

then b will be given by 

(89) 

I OH 1 
bz (x )  = ~Xl = {l~2111xll~,xd+llx,,>lx21} 

(9O) 
( b l (x )  ~?H_ {]X~2 ll;,,l_<,x21 + ll:,,>lx21 sign (x 2) ) 

~ /  t~ 2 t/) 
And one checks easily that (87) and (88) hold: notice in fact that bj, Oxic~x j 

(Vl < i , j  < 2) are bounded measures o n  ~ 2 - B a  for each 3 > 0  and the total 
variation of these measures on ~2 _ B~ grows logarithmically as 6 goes to 0. 

Given an initial condit ion x ~ o o = (x~, x2), we next wish to define two different 
flows X ~, X 2 ( =  X ~, X2( t ,  x~ Since we are dealing with "L 1 flows" (i.e. defined 
a.e.), we only need to define these flows on I = { x ~  ~ + O, x ~ + O, 
Ix~ 4= Ix~ Then,  by symmetry considerations, we only need to define X 1, X 2 on 

Q = { x  ~ ~ ~ 2 / x ~  > o, x ~ > o, x ~ , ~ o } .  

In the case when x ~  ~ we define X 1 and X 2 by 

X ~ = X  2 = x  ~  X ~ = X  2 = x ~ - t  i f t < x  2, 

X ~ = X  2 = x ~ - 2 x ~ + t  i f t > x  2 for a l l x  ~  ~  (91) 

In the case when x~ ~ < x2 ~ we define X ~, X 2 as follows 

x~ t(x2~ 2 - 2t[ ~/2 (92) X~ = I(x~ 2-2t11/2,  X~ = x ~  

x o = 1 0 2  X 2 = el(x~ 2 --2t l  '/2, X 2 xO e}(x2) --2t[ 1/2 where ~ = 1 

l 0 2  1 0 2  i f t < ~ ( x 2 )  , e - - - - 1  i f t > ~ ( x 2 )  (93) 

for all t E ~, x ~ > x ~ > 0. 
Notice  that in both cases, X a and X z are continuous in t, belong to 

WI'P( - T, T) (V T <  ~ )  (for all p < 2), are smooth except for one t, solve the O D E  
with b for  all t except for one value and such that b ( X )  is cont inuous in t except for 
one value, b(X( t ) )eLP(  - T, T) (u T <  ~ )  (for all p < 2). Fur thermore,  for i = l, 2, 
we have 

sup I X i ( t , x ) l < = C r ( l + x )  fo ra l l  T < o o ,  t e ~ , x e l  (94) 
-T<--t<_T 
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and 
X i oo 2. C(N; L~'oc(N2)) (Vp < oo).  (95) eL,oc([~ , C(~)) n 

One can also check that X a and X 2 are measure preserving i.e. 

2 o X i ( t ) = 2  for a l l t E ~ ,  i =  1,2 

and satisfy the group property (53). 
Finally, let us also remark that the proof  of Theorem III. l  and the above 

properties of  X 1, X z show that, for any u~ ~,@(~ 2) (or L p, L ~ L,  L . . .  ), ui(t, x) 
= u~ x)) is, for each i = 1, 2, a renormalized solution (and thus a solution in 
distributions sense) in C(~; L"(~: ) )  (Vl < p < oe) of 

c3u i 
- -  =-  b ' V u  i o n  ~ x ~ 2  bli l t  0 : uO o n  [1~2 . 
0t 

Notice that this also shows that: i) the regularizing result Theorem II.1 does not  
hold here--otherwise ,  we would deduce u ~ -= u z, a con t rad ic t ion - - ,  ii) renormal-  
ized solutions cannot  be compared  with distributional solutions in the sense that  
the notions are not comparable.  Indeed, we have seen in the preceding sections that  
renormalized solutions are more  general than distributional solutions under some 
conditions on b. However, the above example shows that this is not  always the case: 
indeed, ifu ~ is an initial condit ion such that u t ~ u 2 (i.e. u ~ ~ 0 !), then v = u t - u 2 

solves the equation in distributions sense and satisfies: vl, = o = 0 in R 2. Therefore, v 
cannot  be a renormalized solution: indeed, if it were the case, we would easily 
deduce by a simple integration that 

f l (v( t))dx = 0, for each admissible fl, for all t e R  
~2 

i.e. v -= 0, contradict ing the above choice. 

IV .3  Smal l  noice approximat ions  

As it is well-known, it is possible to regularize ordinary differential equations by the 
addit ion of a "small" Brownian motion or equivalently to regularize the corre- 
sponding transport  equation by the addition of  a "small viscosity" term namely by 
considering 

t?u~ _ eAu~. - b.  Vu~ = 0 in (0, T) x ~N . (96) & 

Even if it is possible to make a parallel theory of  renormalized solutions for general 
parabolic equations including (96) and arbitrary initial conditions under the 
conditions (,) and (**) on b (for example), we will not  do so here. Let us only 
remark that the arguments  introduced in R. DiPerna  and P.L. Lions [3] in the 
context of Fokker-Planck-Bol tzmann equat ions may be used and in fact extended 
to cover much more general equations like (96). 

Instead, we will concentrate  here on the passage to the limit as e goes to 0. One 
possible result in this direction is the following. 
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T h e o r e m  IV.I. Assume that b satisfies (*) and (**). Let u ~ L ~ ( 0 ,  T; L 1 c~ L ~') be a 
o solution of (96) (in distributions sense) corresponding to an initial condition u~. 

Assume that u ~ converges in LP(~ N) to u~ for some p c ( l ,  oo). Then, uE converges in 
C([0, T]; LP(~N)) to the renormalized solution of (l 1) (with c = O) corresponding to 
the initial condition u ~ 

Remarks. 1) In fact, the proof  will show that uE~ C([0, T]; LP(~N)). 
2) Similar results may be obtained in the case when p = 1. 

Proof. The proof  follows the argument introduced in the proof  of Theorem II.4. 

We first observe that we may still apply the regularizing result Theorem II.1 
since its proof  carries over without modifications. Then, this shows that u~ = u~ �9 p6 
satisfies 

cguf 
c3t eAu~ b " Vu~ ~ L 1 BR) (for all R < ~ )  (97) . . . .  r ~ 7 0  in ((0, T ) •  

In particular, choosing cut-off functions ~b g as we did several times before and 
multiplying (97) by C~g[U~J2 6 ~- 1 u~, 6 for some ~ > 0, we find 

0 {  1 ~ } ,Vu~, tu~, c~2dx+ ~ + l  ~ )2 lu~ lCt+ldx  +g,O~ ~ 6 2 6 c t - 1  
~N 

divblu~l~+lr ~ 6 6~ 2 + ~ ~ - ~  = r~(uE) ~gdx- -  ~ 2b'V(aa(U~)'Ogdx+ 
~u ~u ~N 

Using Cauchy-Schwarz inequality, we deduce for all v ~ (0, ~) 

0 { 1 ~N 2 61~+ 'dx }+@x - v ) ~  lVu,]2]u:[~-lflp2dx+ 
, ~ N  

~divb  
~ - I  lull 4 'R+Ib'V4'RI -[V,;bRI {u~[ dx + u~ ~+~ c~2dx < ~ Ir~l ~= 2 lu e6~xl (~R2 _[_ E: 2 ~ z t + l  
~ - ~ - 1  ~N V 

Letting 6 go to 0, R go to ~ ,  this yields: {u~[~'- ~/2 u~ ~ L 2(0, T; H~(~N)) for all c~ > 0 
and choosing ~ = p -  1 

~ lu~lPdx+ ~ (divb)lu~lPdx < 0 .  (98) 
~t ~ ~r 

In particular, u~ is bounded in L~'(0, T; L~(~s)). 
Next, we show that u~ converges weakly in L~176 T; LP(~N)) to the renormal- 

ized solution u of(11). To this end, we use a duality argument: we first observe that 
copying the proofs of Proposition II.1, Theorems II.1 and II.2, we obtain in 
particular the existence and uniqueness for every Z ~ ~ ((0, T) x ~ )  of a solution of 

- 8 r 1 6 2 1 6 2  on(0, T) x ~  ~, r  N (99) 
~t 
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Furthermore, ~b~ e C([0, T]; Lq([~N)) ~ L ~ (0, T; L ~ (RN)) (for all q ~ [1, oc)) and we 
have 

T T 

I I u~O~dtdx-  ~ u~ = ~ ~ u~zdtdx .  (100) 
0 ~N ~ '  0 ~N 

Next, the arguments given above show that ~ is bounded in L~(0, T; Lq(~N)) for 
all 1 =< q =< oo. Then, passing weakly to the limit in (99) and using the uniqueness 
results of section H, we deduce that ~ converges weakly in L~(0, 7"; Lq(NN)) 
(1 < q < oo) to the solution ~ ~ C([0, T]; Lq(NN)) c~ L ~ (0, T; L~(NN)) 
(V1 =<q< oo) 

-'~0-div(b0)=z in(0, T) x R  s, ~ , j , = r = 0 o n N  N . (101) 
c~t 

To prove strong convergence, we first observe that the same proof as the one used 
to show (98) yields 

~ [O~[qdx- ~ ( q -  1)divblO~lqdx <= O, (102) 

while we already know (see section II) that ~ satisfies 

e ~ l~lqdx - y (q- l )d ivblO[ qdx _-O. (103) 
Ot RN NN 

This, exactly as we did in the proof of the stability result Theorem II.4, implies that 
0~ converges to 0 in C([0, T]; Lq(RN)) for all 1 < q < ~ .  

Now, ifu, converges weakly in L~(0, T; LP(~N)) t o  some u, we may pass to the 
limit in (100) and we deduce 

T T T 

~ u~bdtdx-~  I u~ dtdx = ~ ~ uzd tdx .  (104) 
0 ~u 0 ~u 0 ~N 

And by the results of section II.5, we know that u is the unique renormalized 
solution of (11) with c = 0, for the initial condition u ~ 

The proof of the strong convergence follows then from (98) and the fact that u 
satisfies 

~ lu[Pdx+ ~ (divb)lulPdx O, 
C~t ~N ~N 

by the same arguments as those used in the proof of Theorem II.4. 

IV.4 Remarks 

In this section, we just want to indicate some variants or extensions of the results 
presented above. 
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First of all, we begin with transport equations or ODE's in a bounded smooth 
domain ~2 of ~u; then, let beL~(O, T; W ~' 1(O)) be such that 

b .n=O o n e ' O ,  (105) 

where n denotes the unit outward normal--recal l  that b has a trace on c~2 in 
La(0, T; L I ( ~ ) ) .  

All the results presented in the sections above may be adapted for the study of 

c~u 
- - - b ' V u = 0  in(0, T) x~2, u l , = o = u ~  (106) & 

and 

)~=b(t ,X)  for t >=s,X(s,x)= x ~ .  (107) 

Then, (105) is the condition which prevents the necessity of using boundary 
conditions for u and which makes X stay in ~ for all t. 

We may thus prove the existence, uniqueness and stability of distributional and 
renormalized solutions of (106); and the existence, uniqueness and stability of 
solutions X of (107) in C([0, T]  • [0, T]; L1(~2)) which leave ~ and the restriction 
of Lebesgue measure to ~ invariant (up to an exponential factor ifdiv b ~ 0). Let us 
only mention that the proofs still rely on the regularizing result Theorem II.1 which 
now provides a local regularization. Boundary effects are then taken care of by the 
following observation based upon (105) and the regularity of b: 

T 

.f .[ ]b'n[dSdt-~O as e ~ 0 +  , (108) 
or~ 

where F~ = {yeg2/dist(y, 8Y2) = e}. 
Let us also briefly mention that existence, uniqueness and stability results can 

also be obtained (in fact, in a simpler way due to the entropy formulations) for 
scalar conservation laws like 

8u 
~ + div {b(x)f(u)} = 0 in (0, T) • EN 

where b(t,x)eL~(O, T; Wjlohl(~N)) and one deals with entropy solutions "fi la 
K r u z k o v " . . .  

Our next remark concerns possible localizations of all the global results we 
presented: since b was not required to be bounded (or in L~(0, T; L~')), the speed of 
propagation was not finite and we were obliged to study global situations. 
However, if we assume that b ~ L ~ (0, T; L ~) (for instance)--instead of (**)-- then it 
is possible to localize all our results and then our uniqueness results for ODE's can 
be localized: in this way, one obtains almost a pathwise uniqueness in the sense that 
one still cannot prove by our methods uniqueness of a given trajectory starting 
from a given point but one may prove uniqueness by "flattening" a bit this 
trajectory in an arbitrary neighborhood of the initial point. In a very vague sense, 
trajectories for which trajectories exist for close enough initial po in t s - -one  could 
call stable trajectories such trajectories--with a local invariance of the Lebesgue 
measure are unique. 
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Final ly,  let us ment ion  some remarks  concerning O D E ' s  that  we formulate  to 
simplify in the context  of Hami l ton i an  systems: 

OH (?H 
5:= ep(X,p),  p =  - 3x(X,p) , (109) 

for some H a m i l t o n i a n  H on Ru x [~N. 
Firs t  of  all, since H is cons tant  on trajectories,  one sees that  formal ly  if u(x, p, t) 

solves 

Ou OH Ou c~H Ou 
Ot ?~p (X' P) " (~x + ~xx-(X' P) " ~pp = O (110) 

then 

0 
Ot S~ u ( x , p , t ) H ( x , p ) d x d p = O .  (111) 

~N X [~u 

This formal  est imate may  then be used (and justified) in order  to weaken the 

(011, at  infinity. Next,  if H has assumpt ions  made  on the behavior  of b = \ 0p ~x 

some singulari t ies on a "small  set", one may  use our  results in the following way: 
assume that  {(x, p ) e  NN x flu~Ill(x, P)I < R} is open for R large enough and that  
H ~ W z' I(QR) where QR denotes  the above set. Then,  one can apply  the results 
ment ioned  above  with t2 = QR since (105) clearly holds. By lett ing R go to oo, this 
al lows to "solve" (109) for a lmost  all initial condi t ions.  But we will not  pursue  in 
that  direct ion here. 
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