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Summary. We obtain some new existence, uniqueness and stability results for
ordinary differential equations with coefficients in Sobolev spaces. These results are
deduced from corresponding results on linear transport equations which are
analyzed by the method of renormalized solutions.
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I. Introduction
The famous Cauchy-Lipschitz theorem (in its global version) provides global
solutions of ordinary differential equations

X =b(X) for teR, X(0)=xeR" (1

where b, say, is Lipschitz on R¥ (N = 1). To simplify matters in this introduction,
we restrict temporarily our attention to such autonomous cases. In fact, the
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Cauchy-Lipschitz theorem provides much more information than the mere exist-
ence and uniqueness of a solution of (1) since it provides a unigue continuous flow
X(t, x) i.e. a unique continuous function X on R x R" satisfying (1)— in integral
form —and

X(t+s)=X{t X(5,7)) onRY forallt seR. 2)

And the continuity in x of X reflects the continuity of the solution upon initial
conditions, which in fact can be strengthened to

X (6, x,)— X(t, x,)] < efM)x; —x,| forteR, x,, x,eRY (3)

where C, is the Lipschitz constant of b. The stability of X with respect to
perturbations on initial conditions can be also modified to take into account
stability with respect to perturbations on b: for instance, if b, converges uniformly
on compact sets to b, X, solves (1) with b replaced by b, and X, is bounded on
compact sets of R x RY uniformly in n, then X, (t, x) converges to X (¢, x) uniformly
on compact sets of R x R¥ — notice that b, does not need to be Lipschitz. In all
these standard results, measure theory plays no role. However, since our goal is to
extend all this theory to vector-fields lying in Sobolev spaces instead of being
Lipschitz, it is then natural to add the following (easy but no so standard)
information also derived from the Cauchy-Lipschitz theorem:

e S i< Ao X(f) et forallt =0 4)

for some C, = 0, where A is the Lebesgue measure on RY and 4 X(¢) denotes the
image measure of A by the map X (¢) from RY into RY ie.

[ ¢d(A-X W)= | ¢(X(t,x))dx, Ype2(RY).
RY RY

Several proofs of (4) are possible: the simplest — but the wrong one — uses (2) and
(3) to deduce

’X(trxl)-X(t’ x2)| ;e*COtle_XZI for all tgoaxl’xZeRN (5)

and thus X (t) is a Lipschitz homeomorphism from R¥ onto RY satisfying (4) with

C, = C,. A better proof — better since it yields a sharper estimate and the correct

explanation of (4)—is based upon the following (standard) observation: let A(t)

denote A° X(t), then one can show that A(¢) satisfies in the sense of distributions
ar - -

E;—dlv(b,t) =0 on (0,0)xRY, A—q=41

and A admits a density r with respect to A which satisfies

9
5;—div(br)=o on (0, 0) x RY, rl,_o,=1o0nRY. 6)

And one deduces easily

e S <r(t, x) < et on (0, ) x RY N
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where
C,=|divh|p» . (8)

Roughly speaking, the divergence of b governs the exponential rate of compression
or dilation of Lebesgue’s measure transported by the flow.

It has been a permanent question to extend any part of this elementary theory
to less regular vector fields b — question pertinent to a wide variety of applications
ranging from Fluid Mechanics to Control Theory. Various (somewhat limited)
extensions have been proposed but seemed to be of restricted applicability in view
of standard examples.

It is our goal here to provide a quite general (and natural) extension to vector-
fields b having bounded divergence and some Sobolev type regularity. Our
motivation stems from kinetic theory and fluid mechanics (see for instance [5], [6])
where such questions are fundamental to understand the “characteristics” of the
physical system and where only limited Sobolev regularity seems to be available.
More precisely, we will show that if be W} (R"), divbe L*(R") and

b=b,+b,, b, eL’(RY), b,(1+]x)"*eL*(RY) (forsome ! <p < o0)

(we will in fact cover even more general situations) then there exists a unique “flow”
X € C(R; LL.(RY)) solving (1), satisfying (4) and (2) a.e.. In addition, X e Lf, (RY;
C([ T, TY)) (for all Te(0, c0)). Finally, we will also obtain stability results under
perturbations of b (and, in particular, convergence of the flows obtained by
smoothing b). The corresponding time-dependent theory will also be considered
assuming an L'-time dependence in all the conditions above. All these results will
be obtained in section IIT below.

We will also present in section IV below examples showing the sharpness of
these results: two different types of counterexamples will be presented, the first class
is taken from A. Beck [1] and provides for any pe(l, ) a vector-field
be C,(R*) n W' ?(R?) with two (in fact infinitely many) distinct continuous flows,
showing thus the relevance of the bound on divh. The second class includes
an example of a vector-field be W5 (R?) for any s < | satisfying divb = 0, with
two distinct measure preserving L'-flows, showing the sharpness of the W'
regularity.

It is worth emphasizing a striking aspect of our method of attack: all these
results on ODE’s will be deduced from the analysis of the associated PDE namely
the following transport equation

ou .

——b-Vu=0 in (0,0)xR". (10)

ot
In some sense, the Lagrangian formulation will be deduced from the Eulerian one.
This analysis will be based upon the use of renormalized solutions (introduced by
the authors in the context of kinetic models—see [2], [3], [4], [5]), and a
regularization argument. It will lead to existence, uniqueness and stability results
which are presented and proved in section II.

Let us conclude this Introduction by mentioning several forthcoming appli-
cations of our results to kinetic Vlasov-type models ([5]), fluid mechanics including
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the evidence of singular phenomena in 3-D Euler equations ([7]) or existence
results for density-dependent models ([6]).

II. Linear transport equations
I1.1 Existence and regularization

We begin with a simple existence result for the following linear transport equation

0
a—”t‘—b-vxu+cu=0 in (0, T) x RY (11)

where 7> 0 is given and we will always assume that b, ¢ satisfy at least
be L'(0, T; (Li(RY)Y), ceL'(0, T; L (RY)) . (12)

Given an initial condition 4° in LP(R") for some pell, o], we wish to build a
solution of (11) in L™ (0, T; L?(R")). Of course, the equation will be understood in
distributions sense that is (for instance)

—fdt | dxua—qs— | u®e(, x)dx—l—jtdtj" dxu{div(bp)+cp} =0 (13
V] RN at RN 0 RN

for all test functions ¢eC>®([0,T] x RY) with compact support in [0, T)
x BRY —we will denote this space by 2([0, T) x R¥).
Observe however that this definition makes sense provided we assume

c+divbe L'(0, T3 Li, (RY)), beL'(0, T; (Li,(R¥)™) (14)

1 1
where g is the conjugate exponent of p(; +; = 1>.
With these notations, we have the
Proposition IL1. Let pe[1, ], u®e L?(RY), assume (12), (14) and
1. .
— T; L*{R"
c+pd1vbeL O, T; L*(R™) ifp>1 0
c,divbe L*(0, T; L™ (RY)) ifp=1.

Then, there exists a solution u of (11) in L*(0, T; LP(R™)) corresponding to the initial
condition u®.

Remark. The same result holds if we replace 0 in the right-hand side of (11) by
fe LY(0, T; LP(RM)).

Proof. The proof consists only in a justification by approximation and regulariz-
ation of the following formal estimates. First of all, if p = oo, one has formally by
standard arguments

4@l < 14°] +(j) licull ., ds
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hence in view of (12)
lu(®)ll < Collu’ll, ae. on(0,T) (16)

where C, depends only on the norm of ¢ in L!(0, T; L™ (R")). Next, if p < o, one
observes that formally
)

é-gluip—b'Vqul” + pclul? =0

and thus integrating this equation over R¥, one deduces
d .
— [ lulPdx £ < § |u|”dx>{l| pc+divb| (1)} .
dt gu et
Therefore, using (15)
lu@ll, £ Collu®ll, ae. on(0,T) (17

1
where C, depends only on the norm of ¢ +I—)divb in L0, T; L*(R"Y)).

Now, to prove existence, we regularize b,c,u® by convolution in x ie. we
. 1 .
consider b, =bxp,, ¢, =c*p,, ul=u’+p, where p,=—pl— ), peZ.(R"),
g £

jw pdx = 1. Since we assumed only L. integrability in (12), a further approxima-
tion by truncation is necessary that we leave to the reader and we thus assume that
b,e L0, T; CHRM)), ¢,e L'(0, T; C;(RY)). Then, by standard considerations,
there exists a unique solution u,€ C([0, 7}; C;(RY)) of

ou,

ot
Then, in view of (16) and (17)—estimates which can now be proved rigorously — ,u,
is bounded in L0, T; LP(R")) uniformly in . Extracting subsequences if necess-
ary, we may assume when p > | that u, converges weakly in L*(0, 7; L?(R")) and
weakly * if p= oo to some u. Checking that (13) holds is now a simple exercise that
we skip: remark only that

bV, +cu, =0 in (0, T)xRY, ul-o=ud in R".

c,+divbh,, b,—c+divh, b in L'(0, T; LL(RY).

When p = 1, the same proof applies provided we show that u, is weakly relatively
compact in L*(0, T; L. .(R")). In order to do so, we consider u e 2(R") con-
verging in LY(RY) to u° and we denote by u, , the corresponding approximated
solutions as above.

By the preceding arguments, using (15), we see that

Nt o | 220, 72 12wy < C (1, D) (ind'of ¢) forall p>1

while
4, — Uy, oMl =0, 7. 2@y = Co Ju® —up Il < Collu® —ug |, .
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And this yields the desired weak compactness. A

We now turn to the main result of this section: this result will show that, under
appropriate conditions on b, (weak) solutions of (11) can be approximated by
smooth (in x) solutions of (11) with small error terms. This result will be one of the
fundamental technical tools required throughout the paper. Let p, be a regularizing

kernel ie.
1 .
P, = ;W'O(;) with pe2,.(RY), | pdx=1, £>0.
RN
Theorem IL1. Let 1 < p < oo, let ue L=(0, T; LP(RY)) be a solution of (11) and
assume that b,c satisfy

be LY(0, T; WELARY)), ceL'(0, T; L2 (RY)) for some « = q . (18)

loc
Then, if we denote by u, = ux* p,, u, satisfies

Ju,

o —bVu, +cu, =r, (19)

1 1 1
where r, converges to 0 as € goes to 0 in L*(0, T; LE (R™)) and f is given by: — = —+ —

B« p

ifa or p< oo, f<coisarbitrary if « = p = 0.

Remarks. 1) The same results hold if we replace 0 in the right-hand side of (11) by
fe LN0, T; L{,(RY)).

2) The same results hold if we replace the equality in (11) by an inequality; then,
of course, (19) becomes the corresponding inequality.

3) The same resuits hold if we replace b in (19) by b, = b*p,.

4) Analogous results hold if we modify the time integrability of u and b,c. For
instance, if be L7(0, T; WLARM), ce LY(0, T; L (RY)) where | £y < oo (to sim-
plify), then r, -0 in L7(0, T; L{,.(RY)).

5) The above result still holds with f=1 if we take u continuous in
(t, x)e[0, T] x R¥ b,ce L*(0, T; LL,) and

0
Ebj(t’ x} is a bounded measure on [0, 7] x K

for all compact sets K < R¥, 1 <i,j< N. Fay
The proof of Theorem II.1 is a trivial consequence of the following

Lemma IL1. i) Let Be(WLA(R¥)Y, we LE (R¥) with 1 £ p < o0, & = g. Then
(B-Vw)xp,—B-V(w*p,) >0  in L (RY)

where B is given in Theorem 11.1.
ii) Let Be L*(0, T; (WLARM)WY), we L*(0, T, LE,(RY)); then

(B-Vw)xp,—B-V(wxp,)—>0 in LY(0, T; LE (RY)) .

Proof. Part i) of Lemma II.1 seems to belong to the folklore of real analysis and
thus we will present a rather sketchy proof of it. And we will entirely skip the proof
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of ii) since it requires only to reproduce carefully the proof of i), keeping track of the
time dependence. In order to prove i), we first observe that

(B-Vw)*p,— B-V(w*p,) = — [ w(y)[div, {B(y)p.(x — y)} + B(x)* Vp (x — y)]dy
= [w{(B(y»)— B(x))* Vp,(x — y)}dy — (wdiv B) * p, .

By standard results on convolutions, the second term converges in L{ as ¢ goes to
0 to wdiv B.
Next, we estimate the first term as follows for ¢ small enough

B(y)— B(x))* —y)id
PwBO)I=BO) Vol =] < Clwlp,

{I s {|B(y)—B(x>|}“ dy}”“
[x—yl = Ce &

BR+1

where B,, denotes the ball of radius M, R is fixed, and C denote various constants
independent of ¢, R, w, B. Then, we remark that

{§ac g fmorso, b
Br sy Ix—yl < Ce €

{j dx | dZ<idt'VB(x+t£z)‘>a}1/a

Bgyy lzZlsC Y

= CIIVB 1«

BR+|+C)

In order to conclude, we just need to observe that it is now enough to show that
fw»){B(y)—B(x)}* Vp(x—ydy—>wdivB  in Lf,

when w and B are smooth. Indeed, the general case follows by density using the
above bounds. But, this convergence is clear if w and B are smooth since

N

é
JwH{BO) = B} Vpx=y)dy > —wlo) ¥ —AB SREPCLE

i j=
and

- i_ B(x) IZ p(z Ydz = divB. A

[
11.2 Uniqueness

Theorem I1.2. Let 1 <pLoo,letuel”0,T; L”(RN)) be a solution of (11) for the
initial condition u® =0 (ie. u satisfies (13) with u® =0). We assume that c,
divbe L'(0, T; L*(RN)), be L'(0, T; WL A(RY)) and
b
1+ |x]|

LY(0, T; LY(RY)) + L'(0, T; L*(RY)) . (20)
Then, u = 0.
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Remark. 1t will be clear from the proof below that (20) may be somewhat
relaxed . . .
Combining Proposition 1I.1 and Theorem II.2, we immediately deduce the

Corollary ILL. Let 1<p=<oo, let u®eLP(R¥). We assume that ¢,
divbe L'(0, T; L*(R¥), be L1(0, T; Wl . 4RY)) and (20). Then, there exists a unique
solution u of (11) in L*(0, T; LP(R™)) corresponding to the initial condition u°.

Proof of Theorem I1.2. We first apply Theorem I1.1 and deduce

0
—%_ b 'Vug +cu, =r, > 0in L1(09 T’ LIIOC(RN)) :

From this we deduce that if e C!(R), f’ is bounded on R then
2 Bl — b VB + e B (1) = @)
And letting ¢ go to 0, we obtain
%ﬂ(u)— b-VBu) + cup'(u)=0 in(0,T)x RY. (21)

Next, we consider some smooth cut-off functions ¢ = ¢(R> for R = 1 where

o€, (RY), Supp¢ = B,, ¢ = 1 on B,. Then, we multiply (21) by ¢, and we find
d .

EI Bw)drdx + [ {cuf () +divbBu)} pgr = — [ fw)b*Vep . 22

Let M (0, o), we would like to choose f(t) = (|t| A M)? which is Lipschitz on R but

not C!: this point may be oversome by tedious approximation arguments that we

skip and we deduce from (22)

%jﬂul/\M)‘”qudx§C§(lu|AM)P¢Rdx+% [ (ul A MY b(t, X)) dx .

R<|qS2R
Next, we observe that (juja MyPeL®(0, T; L' ~ L) while
b(t, x)| b(t, x)|

—1 L —- .
R R=Eix|£2R = 1+ |x| R < x|

Therefore, we deduce from (20)

d ) vecapp D)
g1 (A MY 6xS CIAMPOrem) | MY+ CM? [ SE20

where b=b, +b,, m=|b,/(1 +|xD)lo, by/(L+]x)eL'(0, T; L'({R"Y)) and
b,/(1 +|x)e L*(0, T; L™ (RY)). Letting R go to oo, this yields

d
EI(IuI/\M)"é Cl(julAMy .

Therefore, ju) A M = 0, and we conclude when p < oo letting M go to oo.
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When p = o0, some further arguments seem to be necessary. First of all, if
ue L*(0, T; L* ~ L) the proof above applies and yields the uniqueness. In the
general case, we will use a duality argument that we only sketch below (since we
will deal with much more general duality results later on): let ¢ 2((0, T) x R), it
is enough to show that

jt [ updxdr =

0 Ry
In order to do so, one considers the solution of the following backwards problem

0P . .
E_b Vo —(c+divh)®d=¢ in (0,T)xRY @,_,=0o0nR".
By Proposition II.1, such a solution @ exists and is in fact unique by the above
proof. Furthermore, ®e L*(0, T, L' n L*).
Next, we invoke the regularization result Theorem II.1 to deduce

0

(;E n (0, T)xRY, ul_o=0 on RV

8<De . . N N
3 —(c+divh)e=¢+y, in (0, T)xR", & -7=0 on R

where r, 1, -0 in LY(0, T; L] (R")). Multiplying the first equation by ®,¢p,

integrating by parts and using the second equation we find

T T
—§ § uldp+ . )gdxdt+r, @ prdxdt+ | | u P b Voppdxdt =

ORN 0 RN

Letting ¢ go to 0, we deduce

T T | |
[ | updxde| < f |u ||(D|1+' | g <y < 2rdxdt .
0 Ry 0 R
And we conclude easily since |u||{®|e L*(0, T; L} ~ L*). A

In fact, the above proof also shows the

Corollary I1.2. Under the assumptions of Corollary 11.1, u satisfies
ue C([0, TT; LP(RY)) if p<co. (23)

%ﬁ(u)— b-VBu) +cup'(u)y=0 in(0, T)x RY (24)

Sor all functions e C'(R) such that
1B ()l = C(1 + ") (25)

withr=p—1ifg>N,r<p—1 ifq=N,r=%iff1<N-
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P
Proof. (24) is an easy consequence of (21) observing that S(u)e L™ (0, T; Li; T (RY))
and using Sobolev inequalities to deduce that b- B(uye L1(0, T; LL (RY)) if (25)
holds. Next, the proof of Theorem I1.2 shows that

% § lulPdx + | {pc+divb}ul”dx =0 ae.on (0,7). (26)
RN RN

Therefore, |u(t)|,e C([0, T]) and this implies easily, in view of (11), that

ue C([0, T7; LP(R™)) if p> 1. The case p =1 is slightly more delicate: first of all,

approximating u® by ul e L' n L? (for some p > 1) and using (26) to deduce that the

corresponding solution u, of (11} converges to u in L*(R") uniformly on [0, 7], we

already obtain that ue C([0, T]; L. .(R")) and that

sup ess | |u(t) 12 dx—>0 as M - o . 27
te[0, T] R¥ -
Next, we consider (e C*(RY), 0 {<1,{=0o0n By, {=11if |x| 21 and we
introduce (i = {(Rx) for R = 1. Then, copying the proof of Theorem II.1 we find
forai M >0

d ||
— W AM{gdx SC| [uaM{gdx+C | lul AM )
dt g ‘ R ) R/2SMSR T+

A

This yields

supessj|u|/\MCRdx—>0 as R- oo, forall M>0. (28)

te[0,T] RN

And we conclude combining (27), (28) and the fact that ue C({0, T]; LL.). A

I1.3 Existence of renormalized solutions and stability

In this section, we extend the range of the existence and uniqueness results proven
in the preceding sections by requiring less integrability conditions on the deriva-
tives of b and the initial conditions and we prove a fundamental stability result. In
order to state precisely our results, we need to introduce a few notions and
notations.

First of all, the conditions on b, ¢ we will assume throughout this section (and
the following ones) are

beL'(0, T; WLI(RY), divbeLl(0, T: L*(RY)), N

ce L0, T; L™(RY)) (
PEX )10, T2 LI®Y) + LH0, T: L*(RY)) . (x%)
1+ |x|

Next, we need to introduce a set of functions that we will denote by L°: L% is the set
of all measurable functions u on R¥ with values in R such that

meas {|u| > A} < oo, foralli>0. 29)
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Observe that whenever feC(R) is bounded and vanishes near O then
Buye L* n L™ (R"). We will say that " — u in L° if (") — B(u) in L' for all such g

and that u" is bounded in L° if f(u") is bounded in L for all such f. In this way, the
sets L*(0, T; L°), C([0, T]; L°) are well-defined. Finally, L°_ will stand for the
corresponding local versions (in fact L2, is nothing but the set of all measurable
functions from R” into R).

We now turn to the notion of renormalized solutions of (11). We will say that

ue L*(0, T; L®) is a renormalized solution of (11) if the following holds
0
3 B =b- VB +cuf ) =0 in (0. T)x R (30)

for all e C}(R), B and f'(1 + |t|)~* are bounded on R and B vanishes near 0. We
will call such functions  admissible functions. Observe that these conditions imply
that

B(u) and uf'(u)e L0, T; LY(RY)) .

And, of course, ue L*(0, T; L°) will be a renormalized solution of (11) correspond-
ing to the initial condition u® (given) in L° if B(u) solves (30) with B(u°) as initial
condition for all f as above. We may now state our main results.

Theorem IL3. We assume (*) and (x*).

1) (Consistency). Let ue L*(0, T; LP(RY)) and let be L'(0, T; L*(RY)) with
1 £ p £ 0. Ifuis arenormalized solution of (11), then u is a solution of (11). Ifuis a
solution of (11) and be L0, T; WLA(RY)), then u is a renormalized solution.

2) (Existence and uniqueness). Let u®e L°(RY), then there exists a unique
renormalized solution u of (11) in L*(0, T; L°(RY)) corresponding to the initial
condition u®. Furthermore, ueC([0, T]; L°(RY));, ueC([0, T]; L*(R") if
ue LF(R®) for some 1 £ p < oo and

ueL*(0, T; L*(R")) n C([0, TT; L (RY)) (Vp< o) if u®e L*(RY).
Finally, the following identity holds for all e C(R) bounded and vanishing near 0

% | Buydx+ | cup’(w)+divbpu)ydx =0, ae on(0,7). (31)
RN RN

The next result is a stability result which corresponds to the case when ¢ = 0.
We will indicate briefly after the proof of all these results how stability results may
be obtained in the general case by a simple trick (reducing the general case to the
case when ¢ = 0).

Theorem IL4. (Stability).  Let  b,,c,e L0, T;LL,) be  such  that
divb,e L'(0, T; LL,) and b,,c,,divb, converges as n goes to oo to b, 0, divh
(respectively) in L*(0, T; LL.) where b satisfies (x) and (+*) (with ¢ = 0). Let u" be a
bounded sequence in L (0, T; L°) such that u" is a renormalized solution of (11) with
(b, ¢) replaced by (b,, ¢,) corresponding to an initial condition ul € L°. Assume that uy
converges in L{_ as n goes to oo to some u®e L°.
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1) (Local convergence). Then, u, converges as n goes to oo in C({0, T]; LY .) to
the renormalized solution u of (11) (with ¢ = 0) corresponding to the initial condition
u®. In addition, we assume now that u2 converges to u® in L?,_ for some pe[1, c0), that
u" is bounded in L™(0, T; L%}, that b, c,, divbh, are bounded in L'(0, T; LZ,) or
{lu*(®)I?/te[0, T, n 2 1} is relatively weakly compact in LL,.. Then, u, converges to
uin C([0, T]; LY.

2) (Global convergence). Assume that c, converges to 0 in L*(0, T; L' + L") ( for
some r < o0), that divbh, = B: + B2 where B2 is bounded in L*(0, T; L*) and B}
converges in L*(0, T; L"), that u® converges to u® in L° and that u" satisfies (31) with
(b, ¢) replaced by (b, c,). Then, u, converges to u in C([0, T']; L°). In addition, we
assume now that u® converges to u® in L” for some 1 < p < oo, that u" is bounded in
L>(0, T; L") or ¢, =0, that c,, divb, are bounded in L*(0, T; L) or {|u"(1)|"/
te[0, T], n 2 1} is relatively weakly compact in L. Then, u, converges to u in
C([0, T L?).

Remarks. 1) Notice that we are not assuming in the stability result that b, — b in
LY0, Ts Wi )-

2) Similar results hold for equations with a right-hand side. A

We will prove Theorems I1.3 and Theorem I1.4 in several steps: first of all, we
prove part 1) of Theorem I1.3 and the uniqueness statement of part 2} in the case
when ¢ = 0. Then, we will prove Theorem I1.4 in two steps. Next, we prove the
existence statement of part 2) in Theorem IL.3. Finally, we will explain how to
recover the general case from the case when ¢ = 0.

Step 1. In order to prove part 1) of Theorem I1.3, we first recall that solutions of
(11) (in distributions sense) are renormalized solutions of (11) when be L1(0, T;
WL.9), a fact which has been shown already (see Coroliary I11.2 and (24) in
particular). Next, if u is a renormalized solution of (11) and ue L* (0, T; L) then u is
a solution of (11): indeed, one just needs to choose a sequence of admissible
functions B, such that

1.0l £1t] and f,—t uniformly on compact sets of R .

Then, (11) follows from (30) by easy measure theory considerations.

Next, the uniqueness assertion in part 2) of Theorem IL.3 also follows from
Theorem I1.2 when ¢ = 0 since B(u) is then a solution of (11)in L*(0, T; L! n L™).
Therefore, f(u) is unique and since this holds for all admissible f we deduce easily
that

ulw>|u|>0=l;1w>|v|>0a.e., lu:():lv:oa.e.,
1u=j:oo = 1v=:tooa-e' ’

ie. u=v ae, if u, v are two renormalized solutions. Observe also that all the
continuity in time statements and the identity (31) contained in part 2) of Theorem
I1.3 follow in the same way from Corollaries II.1 and 11.2.
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Step 2. Pointwise stability

We now wish to show, under the assumptions of part 1) of Theorem I1.4, that u,
converges a.c. on (0, T) x R to u or that for any admissibie 8, f(u,) converges a.e.
on (0, T) x RY to B(u). We thus fix such a f and denote by v, = f(u,). Observe that
v, is bounded in L=(0, T; L' n L™) and solves

dv, , . N

o b, Vv, +cu,p'(w,)=0 inO0 7)x R (32)
while v,}, - o = v% = B(u?). Remarking that 2 is still admissible, using the definition
of renormalized solutions, we see that w, = v2e L*(0, T; L' ~ L™) solves

ow,
ot

— b, V. w, + 2c,u,v,B'(u,) =0 in (0, T) x R (33)

and w,, = o = (10)%.

Without loss of generality, we may assume that v, and w, converge weakly (say
in L*((0, T) x R")—*) to v and we L=®(0, T; L' ~n L*(R")) which are solutions of
(11) (in distributions sense) in view of the assumed convergences of b*, ¢*, divb”". In
addition, v and w correspond respectively to the initial conditions B(u°) and B(u°)?
since u? converges to u® in L2 .

Then, in view of part 1) of Theorem I1.3, v is a renocrmalized solution of {11} and
thus o2 is a solution of (11) corresponding to the initial condition (v°)* = B(u%)*:
indeed, recall that ¢ = 0 here and that one just has to let the admissible nonlinearity
in (30) go to t2 Therefore, by the uniqueness result Theorem I1.2, v? = w. But this
means that

v2 - p? weakly in L®((0, T) x R¥)— «

hence v, converges in L?(0, T; L%.) to v, therefore in measure. Recalling that
v, = f(u,) and f 1s an arbitrary admissible function, we see easily by varying f
among a countable collection of such admissible functions f, such that

1
, 0< Bty if |t|>%

B.()(1 +1t)) 7, B, are bounded on R

.Bkzo if [ <

|-

that u, has to converge in measure to some u. But then v, has to converge to f(u).
Hence v = f(u) and u is a renormalized solution of (11) corresponding to the initial
condition 4° (and thus is unique).

Step 3. Conclusion of the proof of Theorem I1.4

There only remains to show that convergences are uniform in t and global when the
data converge globally.

The uniform convergences in t follows from Ascoli type arguments. Indeed, if
we first fix an admissible function B, we know by step 2 that fi(u,) and y(u,)
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converge respectively to f(u) and y(u) in LP(0, T; L?.) for all 1 < p < oo where
y = B?. Furthermore, choosing ¢y as in the proof of Theorem I1.2, we see that

d .
A § v drdx + [ {cyu,y'(u,) +divh,y(u,)} dr + y(u)b,  Vordx = 0.
R¥ RY
And one deduces easily that

d
= [ pu)drdx— — | {divbge+b-Véu}ywdx in L'0.T).
RY " ORY

Therefore, since u is a renormalized solution of (11),
fN Blu,)? prdx - jN B(u)?¢prdx, uniformly in [0, T']
and ' )
[ B (t)) drdx = | PP dedx, if t,>t in [0,T].  (34)
R’ RY

On the other hand, for any bounded ball By, one checks easily using (30) that S(u,)
is relatively compact in C({0, T']; H *(Bg)) for some large s > 0 (independent of n).
Therefore, if ¢, — t in [0, T], B(u,(t,)) » B(u(?)) in H ™*(Bg) for all R < oo, and thus
weakly in L?(Bg). Then, in view of (34), B(u,(t,) = Bu(t)) in L*(Bg). Since
Buye C([0, T]; L?) (V1 < p < 0), this implies that B(u,) - f(u) in C([0, T']; LZ).

One proves in a similar fashion the remaining assertions of Theorem I1.4
concerning the L? convergences at least when p > 1 replacing B(u,)? by |u,|?, or the
global convergences (again when p > 1). One just has to notice that when ¢, = 0, L?
bounds may be obtained using (31) to deduce

d
7 Al = AT AMPPdx < C § {(ju,l— D)7 A M}7dx
N RN

which yields a L*(0, T; L?) bound upon letting A go to 0 and M go to co.

There just remains to show the local and global convergences in L'. In both
cases, observing that u, u, are also renormalized solutions, we deduce that we
may assume without loss of generality that u,, u are nonnegative. Next, by the
convergences proved above, we see that in the local situation

(=AM @=2*"AM  in C([0, T]; L) (35)

for all 1 >0, M < oo. But then the assumption on weak L. compactness implies
that, for all R < co, we have

sup | lu,ll, > wdx—>0 asM— +o0. (36)
t,n By

Combining (35) and (36), it is easy to deduce the convergence in C([0, T1; LL.).
In the global situation, we want to show that, for any sequence ¢, in [0, T']

converging to some ¢, u,(t,) converges in L' to u(t). This is clearly enough since

ueC([0, T]; LY). Since u, converges to u in C([0, T']; L), we already know that
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u,(t,) converges to u(t) in measure or to simplify the presentation almost every-
where (extract a subsequence if necessary). On the other hand, because of (31), we
have

J’ e—-a(tn)u"(tn)dx + f j‘ {C,, + div b" + a’(t)}e‘a“) u, dtdx =0 37
RV 0 R¥
f e~ “u(t)dx +[ f{divb+d'}e “Dudtdx =0 (38)
O ¥

for any function ae W' 1(0, T'). And we choose a such that
a(0)=0,a@®)+c,+divh,=20 ae.on (0,T)x R,

Then, by Fatou’s lemma (recalling that u,, u = 0), we deduce that

§ unt)dx— [ u(t)dx . (39)
RN

RN
And recalling a standard exercise in measure theory we conclude:

j lu,(t,) — u(t)| dx = j —u(tydx +2 j (up(t,) — u(0)) ™ dx

and (u,,(t,,) —u(t))” > 0in L' by Lebesgue’s lemma.

Step 4. Existence when ¢ =0

1
We just approximate b by b, —f b(t, y)p.(x — y)dy where p, = NP (;)

peD . (RY), jRdix = 1. Then, eL'0, T, Weo(RM) forallk = 1 b

b,
(1 +|x]*)"2
cause of (x) and (*x).

Next, consider f, as in Step 2 above: we will impose in addition that
B = Y.k Bi for some y,. , € CY(R), for all &’ = k = 1. Then, we denote by u
= (), up 5 = B (u®)* ps for § 2 0 (with the convention p, = d,). By standard
results, there exists a unique solution uf , in L*(0, T; L*(R")) of the following
problem

ougy
ot

— b, Vul,=0 in (O, 7)xR" u} l,.o=uls on R¥ (40)

and u ,e W' *((0, T) x Bg) (VR < o0) for >0, uf , converges to u; , to 0 (say in
C([0, T; LL.)) and we denote by u, , = u? ,. Clearly, @i}, , = . ((ui ) solves

%(ai’.s) - bs. Vaz',e = 0 il’l (0’ T) X RN’ ai’,e = yk',k(ul?,é) on RN

for all k' = k, 6 > 0. Therefore, letting é go to 0, and comparing with (40) we see
that

Ue o= Yl ,) on (0, T)xRY, forallk Z2k=1.
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From this, we deduce that there exists u,e L*(0, T; L°) such that u, , = B, (u,) and
thus u, is a renormalized solution of (11) with (b, ¢) replaced by (b,, 0) correspond-
ing to the initial condition u,. In order to conclude the existence proof one just
needs to check that u, is bounded in L*(0, T; L°) and to use the stability result
letting ¢ go to 0.

Step 5. Reduction to the case when ¢ =0

Let ae L'(0, T; L*(R™)). In view of () and (*#), there exists a unique solution

o
El—-b'WD:a on (0, T)xRY, &,_,=0o0nR" 41)
(see Coroitary I1.1 and 11.2).

Then, the reduction of the general case to the case when ¢ =0 follows

.immediately from the following.

Lemma I1.2. Let (b, ¢) satisfy (x) and (+#). Let u’eL®. Then, ue L*(0, T; L®)
is a renormalized solution of (11) for the initial condition u° if and only if ™ ®u is
a renormalized solution of (11) with (b, c) replaced by (b,a+c) for the initial
condition ug.

Proof. Formally, this is nothing but the chain rule and we have to justify the
obvious formal manipulations. Of course, by symmetry, it is enough to show one
direction of the above equivalence. Hence, let ue L*(0, T; L°) be a renormalized
solution of (11) for the initial condition u° and let y, f be admissible functions. We
want to show that y(e ™ ®B(u)) = w solves

ow

¥ b-Vo +y'(e” ®Bu)e” *{ch Wu+ap)} =0
on (0, T) x RY, w|,_o=7°pu’ on R". 42)
To this end, we apply the regularizing result Theorem II.1 and we find that
a(ps . N N
—bVP, =a+y, in (0, T)xR", &f.o=00onR
ot
a0 (43)
ét-e—b'Vv£+cﬁ’(u)u:re in 0,T)xRY, vl-o=0?onRY

where v = p(u), v° = B®), @, = P*p,, v, =v*p,, v =v°*p,, and Y, r, >0 in
L0, T; Liy.).

We next set o = y(e” %v,) and we may now use the chain rule to deduce from
(43)

ow,

ot

—b Vo =y'(e” % )e” %{r,— cf Wu—ap(w) — . f(u)}

in (0, T) x RY, @~ =7y(0?) on RV .
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And (42) follows upon letting ¢ go to 0 in the preceding equation, concluding thus
the proof of Theorems I1.3 and I1.4. A

Remarks. 1) Theorem 1.4 with Lemma 1.2 yields corresponding stability results
for general equations (without assuming ¢ = 0).

2) It is possible to extend some of the results above to more general initial
conditions namely u° € L = {v measurable from R" into R} (= L{.). Then, we may
define admissible functions f as follows: e C*(R), 8 and B'(1 +|t|) are bounded.
And we then use the same definition as before for renormalized solutions observing
thatifue L®(0, T; L) then B(u)e L*((0, T) x R¥). Let us remark at this point that
if u®e L then both definitions are easily shown to be equivalent.

Then, the proofs above show that there exists a unique renormalized solution u
of (11) in L®(0, T; L) for any initial condition u°e L, and ue C([0, T]; L). Part 1)
(concerning the LY = L convergence) is then still true.

Furthermore, if |u°) < oo a.e., and u? converges in measure locally to «°, then
checking that

sup {{lul = M} Bgl—0 as M — o (for all R < )
te[0, T]
and deducing from that for all R < oo and & > 0, there exists M large enough such
that for all n large

sup |{lu,| 2 M} nBg| <S¢
1ef0,T]
we see that 4" converges to u locally in measure uniformly in t.

3) Let us observe also that the method of proof used in the proof of Lemma I1.2
may also be used to show that if u®, v° e L° (or L, see 2) above) and |u°], [v°] < o0 a.e.
so that #° + v° makes sense and belongs to L°, the renormalized solution w of (11)
corresponding to u®+ v° is u+0v where u, v are respectively the renormalized
solutions of (11) corresponding to u°, v°. (Notice that, because of (31), Ju, |v] < o0
a.e.).

4) Using the regularizing result, one may check that if u,, ..., u, (for some
m = 1) are renormalized solutions of (11) say in L®{0, T; L) with |u;] < co ae,c =0
and F is a continuous map from R™ into R, then u = F(u,,...,u,) is still a
renormalized solution of (11) (with ¢ = 0). A

Let us indicate another possible strategy for proving stability results (of a
slightly different kind). We first state the type of results one can obtain with this
strategy.

Theorem IL.5. Let b,e L'(0, T; L) be such that divb, is bounded in L' (0, T; L™)
and b, converges, as n goes to oo, to b in L'(0, T; L},.) where b satisfies () and (**)
(with ¢ = 0). Let u" be a bounded sequence in L™(0, T; L°) such that u" is a
renormalized solution of (11) satisfying (31) with (b, ¢) replaced by (b,, 0), correspond-
ing to an initial condition u® € L°. Assume that ul converges to u° in L° (resp. in L” for
some 1 < p < o0), then u" converges in C([0, T]; L°) (resp. in C([0, T']; L?)) to the
renormalized solution u of (11) (with ¢ = 0) corresponding to the initial condition u°.
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Since a large part of the proof of this result is analogous to the proof of
Theorem I1.4, we sketch it and consider only the case of an initial condition u?
which is bounded in L' n L® and converges in L!, therefore u" is bounded in
L*=(0, T; L' n L™). Next, because of (x) and (x=), with the notations of the proofs
above, we deduce the existence of u? solution of

ou’
arR —b-Vuy=f¢ in(0,T)x RN
with u%l, = o = ¢ru’, where u% is smooth in x (uniformly in t), compactly supported
in x (uniformly in ¢) and f} 0, uk u as R— + o and then ¢ - 0. In
L? C(L')

fact, u% is nothing but ¢ru, where u, is obtained using the regularizing result
Theorem I1.1. Next, we write

0
= ) = by V(W =) = (b= b)Vuiy + /5

Since #” is a renormalized solution satisfying (31), one deduces from the above
equation and a tedious approximation argument

d .
7 f lu"—ukldx < [ 1b—=b,||Vuk|dx + [ 1fgldx + (| divb,(0) ]| [ " —ufldx .
[RN RN RN RN

t
Hence, setting A4,(¢)= { [ div b,(s)|[ = ds, we deduce
0

sup {( [ - u;|(z>dx>e'4"“>} < f lub — gl dx

[0.T] RY R

T
+ (e 4O dr [ |b—b,||Vuk| + | fgldx
0 RY

or, in view of the bounds on (div b,),,

sup < § 5u"-ﬂ§aldx>(!) < Co § lug— prudldx
Rl\'

[0, T] \ p¥

T
+Co [ | ddx{|b—b,|[Vug|+1/xl}

O RN

for some constant C, independent of n, ¢, R.
Hence, we have

lim sup ( ] lu"—uldx)(t} < C, sup ( § lu—u}[dx)(t)
10,7}

n [0,T) \ g¥ RY

T
+Cof | dedx|fil,

O RV

and we conclude letting first R go to + oo and then ¢ go to 0. A
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114 Duality

Theorem 1I16. Let (b,c) satisfies (x) and (¥*), let ueLl®(0, T; LP(RN)),
ve L0, T, LR with 1 Sp< o0, g = 5%1—, be respectively renormalized solu-

tions of (11) and
ov

E_b Vo—(c+divhv=f in (0,T)x RY (44)

where fe L'(0, T; LY(RY)). Then, we have the following duality formula

| w(T)o(T)dx — j' 0)v(0)dx —_f { fudrdx . (45)
RN Q RN
Remarks. 1) Recall that u (and 51mllarly for v) belongs to C([0, T); L?) (if p < o0,
C([0, T; L) for all r < oo if p = 0).

2) Tt is of course possible to define solutions of (11) for an initial condition
u’e L? by imposing that the above formula (45) holds for all v solving (in
renormalized sense, or in distributions sense) (44) with fe 2((0, T) x R¥). Then,
under conditions (*) and (**), the above result shows that u is the unique solution of
(11) in that (dual) sense. A

Proof. Formally, the above result is nothing but an integration by parts and so we
need to justify once more these formal manipulations. To this end, we take an
admissible function f and use the regularizing result Theorem II.1 to deduce

) .

~a—tﬁ€ —b-Vi +cip@=r, in(0 T)xR"Y, (46)
0
ot

where @ = f(u), 7= p(v), 4, =dx*p,, b, =0*p, and r,, 5,20 in L'(0, T; Lj,.).

Introducing ¢y as in the proof of Theorem I1.2, we may now multiply (46) by ¥, ¢,

integrate by parts and use (47) to deduce

[ (7)o, dmdx — | 8,080 brdx = | | (f+s5,)ii,drdtdx+

RY RN 0 RN

r.0y g — bV i, 0, 4 (c + divbyof () d P dt dx +

§.—b-V8, —(c+divh)vp'(v) =s,+f in (0, T)x R 9]

+
RN

o<—.-§ Ot

ciff )0, ¢ +divbil b, dt dx .
RN
Then, we may let & go to 0 and then argue as in the proof of Theorem I1.2 letting R
g0 to oo to obtain

| &(T)s(Tydx - | ac

RN RN

© ey =y

| fii + (¢ + divb)vf (v} +
1RT
|
0

f #)0 + divbid dt dx .
rY
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Finally, in order to conclude we just have to let f§ converge to f,(t) = t (imposing
that |f() < ¢, |0l = 1 on R). A

We conclude this section with an example of the possible applications of the
duality formula to weak convergence and stability results. It can also be applied to
recover the “strong” stability results of the preceding section.

Corollary I1.3. Let b, converge to b in L*(0, T; LL.) be such that div b, is bounded in
LY0, T; L™). Let u, be a renormalized solution of (11) with (b, ¢} replaced by (b, 0)
for an initial condition ul. We assume in addition that b, satisfies (x*) and that u;)
converges weakly in LP(RY) for some pe(1, + o] to some u°. Then, u, converges
weakly in L®(0, T; L?) to the renormalized solution of (11) (with ¢ = 0) for the initial
condition u°.

Proof. One first observes that, by the results of the preceding sections, u, is
bounded in L*(0, T; LP(R")). Next, we consider the solution of
op,
ot
where ¢ is given in 2((0, 7) x RV). By the stability result Theorem I1.4 {and the
remarks following its proof) @, converges in C([0, T]; L") for all 1 £r < o (and
remains bounded in L*{0, T; L*)) to the solution ¢ of

0P .
a———b Vo —divbd=¢ in (0,T)xR", &,.=0 on R"Y.
Then, if u, converges weakly in L*(0, T; L”) to some u (extracting a subsequence if

necessary), we may pass to the limit in (45) and we find

,—divh,®,=¢ in O, T)xRY, &)_-r=0 on RY

— f U, ®(0)d ff dudtdx .
o R

Since ¢ is arbitrary, we may use the remark 2) following Theorem IL5 to conclude
the proof. A

I1.5 Stability and time compactness

The goal of this section is to present an extension of the stability results proven in
the previous sections. The main difference lies in the time dependence of the
coefficients. More precisely, we extend Theorem 11.4 (for instance) as follows

Theorem I1.7. Theorem 11.4 still holds if we replace the convergence of (b,, c,, div b,)
to (b, 0, divb) in L1(0, T; LL.) by the following assumptions: first, we assume that
(b,, cn, div b,) converges to (b, 0, div b) weakly in L*(0, T; L}..) and also that ¢, = b,
¢y, div b, satisfies

Gt x+h) > @,(t,x) as h—-0 in L0, T; L), uniformly in n . (xxx)

Remarks. 1) Of course, if b, c,, divh, do not depend on ¢, as it is well-known the
combination of the weak convergence and of (x*#) is equivalent to the strong
convergence. In this case, Theorem I1.7 thus reduces to Theorem I1.4.
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2) In general, Theorem I1.7 is more general than Theorem I1.4 and, even if it
seems a rather technical extension of Theorem I1.4, the gain in generality will be
quite important for applications. Observe in particular that (x*#*) holds as soon as
¢, is bounded in L*(0, T; X)) where 2> 1, and X is any space with a compact
embedding in L} —for instance any Sobolev space W™ with p = 1, m > 0 has this
property. IaY

Proof of Theorem I1.7. Since its proof is very much similar to the proof of Theorem
I1.4, we only explain the new ingredient: to this end, we take ¢, = 0 and we consider
v” bounded in L, solution of

o’
ot

—div, (b, ") =0 in 2'((0, T) x RY)

writing the equation in divergence form allows to simplify a bit the presentation,
avoiding to keep track of the extra “divergence” term present in the case of the non-
divergence form equation. Of course, we may assume that v" converges weakly in
L to some v and we want to prove that v satisfies

d
ait’ —div,(by) =0  in Z'((0, T) x RY) ;

or in other words that b, " converges weakly (in 2’ or in L') to buv.
To this end, we introduce a regularizing kernel as in the proof of Theorem 11.1
and we observe that (++#) yields immediately

ba0"p,) — (b xp, ~ 0 in LYO, T; L),

as ¢ - 0+, uniformly in 7.

d
Since E(U”*pE)::(divx(b,,v"))*pe is clearly uniformly (in n) bounded in

L0, T; LL,), we deduce easily from the compactness of Sobolev embeddings that
for each fixed ¢ >0

Vxp, V%P, ae. in (0, T) x RY

(extracting a subsequence if necessary). This almost everywhere convergence com-
bined with the uniform bounds on v"*p, and the weak”convergence of b, in
L0, T; LL.) yields the desired convergence namely

b, (V"% p.) - b(v*p,) weakly in LY(0, T; L},.), foralle>0.
Indeed, collecting all the above convergences and the obvious one
b(v*p,)—bv  in L0, T; L), as e >0+,
we deduce easily that we have

by" »bv  weakly in L(0, T; LL,) . o
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III. Applications to ordinary differential equations
1.1 The divergence free autonomous case

We consider in this section the case when b depends only on x and satisfies

be WLHRY), divb=0 ae onRY, (48)

eL'+ L™, (49)

T+ x|
In some of the estimates below we will strengthen (49) as follows
belL?+(1 +|x|)L~" for some pe[1l, o] . (50)

We are going to show the existence and uniqueness of solutions of (1). Stability
results will be given in the next section in a more general situation. But, if we
assume only (49), the solution map X (¢, x) we will obtain will not be in L. (for a
fixed ) so we have to define solutions of (1) in a manner similar to renormalized
solutions of (1): we will show that X (t)e C(R; L)® where L = {¢ measurable from
R¥ into R and |¢| < o0 a.e.} (for example) endowed with the distance

1
d(¢,y) = z ’27.‘H¢—l//‘/\ 1 HL‘(B,,)

nz1

which corresponds to the convergence in measure on arbitrary balls. In addition,
because of (48), X will satisfy

iAo X(t) =4, forallteR (51H

(recall that A is the Lebesgue measure and that A - X (¢) is the image measure of 2 by
X(t) ie:

[ 0d(h-X®)= | ¢(X(t)dx .

RN RN

Because of (51), ¢ - X (t) makes sense in L for all ¢ € L. The ODE (1) will hold in the
following sense: for all Be C*(R", RY) such that f and |DB(z)|(1 + |z|) are bounded
on RY B(X)e L*(R; L},) and we have

0
5 BX) = DAX)-b(X) on RxRY, (X)l-o=px) on®" (5
where the equation holds in distributions sense. We will also call admissible
functions such functions f. Notice that because of (49) and (51),
b(X
(X) e L°(R; L' + L™).

1+ X
Finally, the group property will now hold in the following sense

X(t+s,)=X(t, X(s,)) aeon RV, forall 1, seR. (53)

We may now state our main existence and uniqueness result.
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Theorem II1.1. We assume (48) and (49). Then, there exists a unique X € C(R; L)¥
satisfying (51), (52), (53). In addition, X satisfies

B(X)e LL.(RY; C(R)), for all admissible B (54)
for almost all xeRY, X e C1(R), b(X)e C(R) and %% =b(X) onR. (59)

Furthermore, if uye L° (or L), u(t, x)=uy(X(t, x)) is the unique renormalized
solution in C(R; L% of (11) with ¢ = 0, for the initial condition u® ( for all T). Finally,
if b satisfies (50), then X e LY, (RY; C(R)).

Proof. Step 1 ( Existence)
We regularize b as usual: set b, = b * p,. By Cauchy-Lipschitz theorem, there exists
a unique smooth map X, on R x RY satisfying

0X,
ot

In addition, (51) and (53) hold for X, (of course (53) holds now everywhere) and for
each u®e L° (or in L), u°(X,) is the unique (renormalized) solution of

=h(X,) onRxR¥ X, _.,=x onR". (56)

(Z;E=b8'VuE in RxRY wul-o=u’ onR". (57)
In particular, X, solves
a;?:bs-vxe in RxRY, X,/ _.,=x onR". (58)
Next, choosing f,(z) = z(1 +]z|2) "2 Log(1 + |z|?) for ze R¥, we deduce that
gt*ﬂo(Xe) = b, V(Bo(X,)) = Vfo(X,) b(X,) in RxRY. (59)
b(2)]

Since |VB,(2): b(z)| = C

, we deduce from (49) and (51) that
1+ |z|

a%(ﬂO(XS)) is bounded in L*(R; L! + L™) and belongs
to a relatively compact set of L®(—T, T; L*(Bg)) (VR, T < ) (60)

In particular, f,(X,) is bounded in L*(R; Ly,,).

We may then use the stability results to deduce that X, converges as ¢ goes to 0,
inC([—T, TT; L)Y (Y Te(0, o0)) to X which satisfies (52). In addition, choosing first
u® in 2(R"), using the stability results and then approximating general u° in L°, we
see that for all u®e L° (or L), u®(X) is the unique renormalized solution of (11) with
¢ = 0 for the initial condition u°. In particular, we deduce that for all u®e 2(R")

[ u®(X(t,x))dx = | u®(x)dx, YieR
[RN RN
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therefore (51) holds. The uniqueness of renormalized solutions also yields the group
property (53).
Because of (51), (52) yields
0
ggﬁ(X)eLw([R;Ll+L°°) . (61)
Since L*(R; L'+ L®) 5 LY (R¥; L. .(R)), we deduce that

BX)e Liyo(RY; Wis (R) & Li (RY; C(R)) .
Then, (60) also yields

é
b—tﬁo(X)eL“'(R; L'+ L™) (62)
from which we deduce as above that B,(X)e LL (R¥; C(R)). In particular, for

t . .
Log(1 +t2)> is strictly
1+t
increasing on [0, oo) we deduce that X € C(R).

Next, we show the claim contained in (55) about the time continuity of b(X) for
almost all x € R". In order to do so, we first choose iy € C'(R) such that >0 on R,
Y is even and

almost all xeRN, B,(X)e C(R) and since <t—+

Y(|z))IDb,(2)] < By(z)e L} (RY), for all e [0, 1] (63)
[’ (Iz))] 1b.| Log (1 +|b,]) < f,(z)e LY (RY), for all [0, 1]. (64)
The existencc of such a i is a simple consequence of the fact that Dbe Lj, (R") and

thus |b|eLN—1(RN) by Sobolev embeddings therefore [b] Log(l +|b|)e LL (R").

loc
Then, we compute

{!// (Xo)Bobo(X )} = b, VY(X,)Bo(b(X.))
+ l»l,(Xe) ) Vﬁo(be(xe)) ‘ Dbz(Xr) ) be(Xs)
therefore in view of (63) and (64)
0
é;{'/f(Xe)ﬂo(bs(Xg))} < B(X.)
where B(z) = B, + B, € L, (RY). Since X, is measure preserving, this yields
%{W(Xe)ﬁo(bs(xe))} is bounded in L®(R; L') and belongs

to a relatively weakly compact set of L'(— 7, T; L' (Bg)) (VR, T < w0) .

Then, letting ¢ go to 0, we deduce

—{1//()( Bo(b(X))} € L*(R; L*(RY)) (65)
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and exactly as before we deduce that, for almost all xe RV, y(X)B,(b(X)) is
continuous on R and thus, in view of the previous proofs, b(X) is continuous on R.

At this stage, proving that the ODE holds for almost all xe R” is easy: use (52)
in integral form, let f go to the identity mapping, use the a.e. in x temporal
continuity to deduce the integral form of the equation . . .

We conclude Step 1 by showing that XELIOC([REN; C(R)) if b satisfies (50) i.e.
b = bl + b3 where bl e LP(RY), b3(1 + |x|) "' e L*(R¥). Then, we have if p < oc (the
case p = oo Is easier)

0X,
P bi(X,)+b2(X,)

hence
X
Wl < covmy +mior
or setting ¥, = e~ “|X|
0
SY[SCe e X,
Letting ¢ go to 0, we find that
0
éz{e_c’|X|} S Ce "+ e “b(X)| .

In particular e~ “|X|e LL, . (RY; WLP(R)) ¢ LE(RY; C(R)) and our claim is proven.
Observe that the above proof also yields

X eLf,(RY Wil (R)) . (66)

Step 2. (Unigueness)

In order to prove uniqueness, we just have to prove that, if X satisfies the

conditions listed in the uniqueness statement and if uy e Z(RY), then u, (X (¢, x)) is

the solution of (11) with ¢ = 0 corresponding to the initial condition u,. Since u, is

arbitrary, this yields of course the uniqueness. Hence, we set u(t, x) = uy(X(t, x))

and we wish to show that u—which belongs to C(R; L:, (R¥) forall 1 £ p< oo

and to L™ (R; LP(RY)) for all 1 £ p < oo — satisfies (11) in distributions sense.
In order to do so, we write for all ye Z(RY), h>0, teR

j {ut+hx u(t, x) )y (x)
—j {ug(X (£ + hy X)) — uo(X (t, x)) } ¥ (x)dx

and since X satisfies the group property, we deduce

0= § 1 (X6 X (5 0) ~ X (6 )} W)
RN
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And using the group property and the measure invariance of X (h), this yields

A1) = Rj ut, 2) {Y(X (—h, 2)—y(2)}dz . (67)
Next, we observe that b(X)* Vi (X)e L*(R; L!) and that for all admissible func-
tions f8
276? (B(X)) = VY (B(X))-DB(X)-b(X)  on RxRY
and letting f converge to the identity map (as we did several times before) we
deduce

%//(X) = b(X) V(X)) onRxRN.

In particular, we have
h

Y(X(—h2)— (@) = — [ b(X(—0,2) V§(X(—0,2))dz .

0

Inserting this expression in (67) and using once more the group property and the
measure invariance of X(¢) we finally obtain

A= —| {b(x)'Vx//(x)}'{%§u(t+a, x) — ult, x)do'}dx.
RY 0

Since b-VyelL', u is bounded in L®(R;L*(R¥)) and ueC(R;LE.) (for
1 £ p < o0), we deduce from this expression that

Ay() o — [ b(x)* Vi (x) u(t, x) dx uniformly for ¢ bounded .
RN
Since, on the other hand, we have obviously

A1) —;% j u(t, x)yr(x)dx in 2’(R) ,
RN

we finally obtain the desired equation (11). A

Remarks. 1) In the uniqueness statement, it is possible to replace (52) by (55) and, in
fact, one may show that (55) implies (52) (under the assumptions of the Theorem
I11.1). In the case when (50) holds, it is even possible to replace (55) by

1D,

s b(X) in 2'(RxRY), (68)
since in that case X e C(R; L},).

2) Under the assumptions of Theorem I11.1, we do not know of any estimate on
the dispersion D, X (t, x) except for the formal following one: differentiating the
ODE with respect to x, we find formally

7

2D X = Db(X)"
= Dx b(X) D X
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hence

0
5; (LoglD. X1} = IDb(X)] .

Therefore, if Dbe LP(R") for some pe[1, o], we deduce
ILogD, X||l.» £Clt], forallteR. (69)

Notice that when p = oo this yields the usual exponential rate for dispersion. A

1I1.2 The general autonomous case

In this section, we replace the condition (48) by
be WL HRY), divheL*(RY). (70)

Of course, this will affect the property stated in (51) namely the invariance of 4 by
X (t) and instead we will obtain for some C, e [0, o)

e ol < JoX(t) S el forall teR (71
or in other words, for all ¢ 2(R"), ¢ = 0 and for all reR

e Coltl j ¢dx < j H(X (1, x))dx < el | $pdx .
RN

Then, we have the

Theorem IIL1.2. We assume (70) and (49). Then, the same conclusions as in Theorem
I11.1 hold provided condition (51) is replaced by (71).

Remark. The unique solution X (t, x) satisfies in fact (71) with C, < [[divb|, -

Proof of Theorem II1.2. Step 1 of the proof of Theorem III.1 may be repeated
without any changes; however, the uniqueness proof (step 2) has to be modified a
bit. If we follow the proof given in step 2 (keeping the same notations) and use (71)
instead of (51), we obtain for all te R, h >0, y € Z(R")

Ay(t) — |:— [ x)'{%i b(X(~0,2) V(X (—ao, z)da}dx}

RN
g.}l; § ult, X(h, )Y dx — | ult, )Y (X(—h, 2))dz
RY RY
C
< E( el — D Yl wy

and from this, we deduce letting h go to 0

%— div(bu)e L™ (R; L™ (RY)) ;
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. 1
(observe indeed that W [ b(X(—0,2) V(X (—0,2)do is bounded in L', uni-
0

formly integrable and converges in L to b(z)* Viy(z)). Therefore, if we set F = %

— b Vu, we already know that Fe L™ (R; L*(R")) and we want to show that F
vanishes.
We then use the regularizing result (Theorem IL.1) to deduce that

Ju,

3 n RxRY

where r, - 0in Li, (R x R"). Then, we introduce ¢, as in the proof of Theorem 11.2
and we observe that

2
S (ebr) = b V(udp) = F4r,—b-Vp in Rx R

Using the regularity of u, (and (52)), it is now easy to integrate this equation “along
the characteristics X in order to find

(¢Rua)(t7X(—t7 X)) (¢Ru (X, j{¢R(F+r b.Vd)Rus}(a’X(_a’ X))dO'

ae. xeRM, forallteR.

We then let ¢ go to 0, using (71), and we obtain
(Pru)(t, X (—1, X)) — (¢ru)(x, 0) = f{d)RF bV ¢rul(o, X(—0,x))do .
Then, letting R go to oo, using (71) and (49), this yields
u(t, X(—t, x)) —u(x, 0) = jF(a X(—0,x))doc ae xeRM, forallteR.

But the left-hand side vanishes, therefore we have
Fit,X(—t,x))=0 ae xeR" foraliteR.

And using once more (71), we finally obtain that F vanishes a.e. on R x R",
concluding thus the proof of Theorem II1.2. A
Using the stability results proven in section I1.3, we immediately deduce the

Corollary III.1. Let b,e L\ be such that divb,e L} and b,, divb, converge as n
goes to b, divb in L} (respectively) where b satisfies (70} and (49). Assume that there
exists X,e C(R; LYY such that, for any uge 2(R"), uy(X,(t, x)) is a renormalized
solution of
ou,
ot

Then, for all Te(0, ©), X, converges in C([—T, +T]; L)Y to the mapping
X e C(R, L)Y satisfying (71), (52), (53). In addition, X, converges to X uniformly for t
bounded, in measure for x bounded in R".

in RxRY, u,l, -o=u,onR". (72)
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Remark. Using Theorem I1.5 instead of Theorem I1.4, we see that we may assume
that div b, is bounded in L™ instead of assuming its L, convergence.

I11.3 Time-dependent theory

We now consider general vector fields b = b(t, x) which satisfy (x) and (xx) for all
T < oo. Then, we want to solve for all t >0, xeR" the following ordinary
differential equation

0X

s =b(s, X) for s=t X|-,=x (73)

and thus X is a function of (s, t, x): X = X(s, t, x). The mapping X will belong to
C(D; L) where D = [0, o) x [0, o).
Because of (), we will find the following relation

exp(— 1A — AB)A £ Ao X Sexp(|A(t)— A(s)])4, forallt,s=0 (74)
where A()e W1 1(0,R) (VR < o0), A(0) =0, A'(t) =20 for t = 0. In fact, the sol-
ution we will build will satisfy (74) with

t
A(t) = [ | diveb |« gwds . (75)
(4]

Next, the group property we used in the autonomous case becomes
X(ty, t1,X) = X(ts, t5, X(t5,1,,%x)) ae xeRY, forallt, t,, t3>0. (76)

b(s, X)
1+]X]
define solutions of (73) in a similar way than in the preceding sections namely the
following should hold for all admissible functions and for all t > 0

In view of (74) and (x%), el (0, T; L' + L™) (VT < o) and thus we will

%B(X)=Dﬁ(X)'b(s,X) on (0,00)x R, B(X)|;-, = B(x) on RY, (77)

where the equation holds in distributions sense.

We may now state our main existence and uniqueness result. Let us point out
that we will not give stability results which are easily deduced from the stability
results of section 1.3 exactly as we did in Corollary IIL1.

Theorem I1L2. We assume that b satisfies (%) and (). Then, there exists a unique
XeC(D; L)Y satisfying (74), (76) and (77). In addition, if u®e L° (or L), u(s, t, x)
= u%(X(s(t, x)) is, for all s = 0, the unique renormalized solution in C([0, o0); L°) of

%+b'qu=0 in (0,0)xR¥ ul,-;=u’ on RV, (78)

Remarks. 1) The analogue of (54)-(55) is now
B(X)eC([0 £t < ), LL.(RY; C([0 < 5 < 0)))) for all admissible 8 (79)
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for all t 2 0, for almost all xe RY, X(s)e W ! and 66_X =b(s, X) on (0, )
s

(80)

Finally, if b satisfies (for all T < o0}
be L0, T; LP)+ (1 + |x|)L*(0, T; L®) forsome 1 <p< o (81)
then X e C([0 <t < 00); LE(RN); C([0 < s < o0)))). In addition, in the last state-
ment or in (79) one may permute s and ¢. A

We skip the proof of this result since it mimicks the proofs made in the
preceding sections, keeping track carefully of the t-dependence (or s-dependence)
using the stability result.

IV. Counterexamples and remarks
V.1 WP vector-fields with unbounded divergence

In this section, we construct vector-fields b which are autonomous (i.e. b depends
only on x) in two dimensions (x€R?), belong to W.P(R?)~ BUC(R?) for an
arbitrary p < oo and yet yield infinitely many solutions of the ODE

X =b(X), X|_o=x (82)

such that X (¢, x) satisfies the group property and X is continuous.
This construction follows in fact directly from the construction made by
A. Beck in [1] that we recall now: let K be a Cantor set in [0, 1] and let ge C*(R)
be such that 0 < g < 1 on Rand g(x) = 0 if and only if xe K. We denote by f(x) =
Lfg(t) dt on R. Next, we denote by M the set of atom-free, nonnegative, finite
measures on K and for any measure m in M, we define a function f,, on R by
fulx +m(K A [0,x]) =f(x), VxeR. (83)
Finally, we introduce
b(x) =(1, f/(f '(x?)), forall x=(x'x*)eR?, (84)
Xt x) ="+t Lt +f,71(x%), forall teR, x=(x!,x*)eR?. (85)

Notice that since f, f,, are strictly increasing, b, X, are continuous in all their
variables. Remark also that the group property is clearly satisfied.

We now claim that X, is differentiable with respect to t or equivalently f,, 1s
continuously differentiable and that

St +fo 162y =l S M) = £ (S THX D) (86)

showing thus that X,, solves the ODE (82) for the choice of b given by (84).
Then, let t€ R, there exists a unique x e R such that

x+mKn[0,x])=t.
If x ¢ K then for s close enough to t one has

x+s—0)+mKn[0,x+s5—t])=s
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therefore f,, is differentiable at ¢ and f,(t) = f*(x) or in other words £, ( £, ' ( fu(t)) =
£ 7N =1 1{f,(1). Next, if xe K and s is close to ¢, denoting by x(s) the
unique solution of

x(§)y+m(Kn[0,x(s)]) =1,

we observe first that
IX(s)—x| < [s—t].
Then
[fn(8) = SO = 1 £ (x(8) = f ()] £ Clx(s) — x|> £ C(s—1)?

since f'(x) = 0. Hence, f,(t) = 0 = /" (x) or in other words
Sl U@ =1 TSN =111 -

As this proves our claim and (86) since ¢ is arbitrary and f,, is strictly increasing.

There just remains to explain how g can be chosen in such a way that
be W!.»(R?) for an arbitrary p < oc. Of course, we only have to check that
F=1(f"Y()eLr (R?. To this end, we observe that

F'=g'(f " Dg(f )

therefore, assuming for instance that g(¢) converges to 1 as |t| = oo so that fmaps R
onto R

JIF@)rdt = flg HOWg(f @)l de
R

-flg )P Vg (s)Pds .

Hence, we only have to show the existence of a g making this last integral finite: in
order to do so, we choose g, satisfying all the properties stated for g above and we
set

1
g =gs with m—1+‘
p
so that |g| ="~ P|g'|? = m”|g,|”. And we conclude requiring that g, € LP(R).
Remarks. 1) Since divh = ¢g'(f " (x*))g(f ~'(x?))" 1, divb is clearly not bounded
on R? (even locally).
2) Notice also that Ae X(f) is absolutely continuous with respect to 4 and
admits a density p(t, x,)e L*(R; L'(R)) and even in L*(R; L{ (R)) for some g > 1
provided g ~“ " Ve Ll (in fact, if p above increases then g decreases!).

IV.2 Divergence free vector-fields without integrable first derivatives

In this section, we build an autonomous vector-field b on R? such that
divhb = 0in 2'(R?), be W52 (R?) for all se[0, 1) 87
be LP(RY) + L*(R?) for all pe[l,2) (88)
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for which there exists two measure-preserving flows solving the assoctated ODE.
Since we are in two dimensions, divergence-free vector-fields correspond to Hamil-
tonian systems and we will in fact build a singular Hamiltonian system as follows
Xy . .
Hx)= — == if x| Sx,l, = = (x = x|+ 1) if xq > x,],
X1
(89)
= —(x,+1x]+ 1) ifx; < —[x,], forall x=(x;,x;)eR?

then b will be given by

o0H 1
bz(x)=571 { Li<pg + 11x,|>w}

X,

90
b= — o = sign(x;){ 1 +1 °0
1= x5 N gnix; Ix,[? bxi] £ x5 1% > x5

0 o’
And one checks easily that (87) and (88) hold: notice in fact that bj, ax.0x,

(V1 £i,j £2) are bounded measures on R?— B; for each >0 and the total
variation of these measures on R? — B; grows logarithmically as & goes to 0.
Given an initial condition x° = (x?, x9), we next wish to define two different
flows X', X2 (= X1, X2(t, x°)). Since we are dealing with “L! flows” (i.e. defined
ae), we only need to define these flows on I={x"eR?/x{+0, xI +0,
Ix9] =& [x$]}. Then, by symmetry considerations, we only need to define X !, X * on

= {x°eR?/x0>0, x3>0, x{ x5} .
In the case when x? > x9, we define X! and X? by
Xi=X2=x%~t, Xl=Xl=x{-1t ift=<xi,
Xi=X2=x{—-2x3+1t ift=x3 forall x{>x3>0. 91

In the case when x9 < x5, we define X!, X2 as follows

0
X3 =102y =212 X3 =x—él( x3)* —24'2 92)
2

0
X3 =¢|(x9)? 261", XZ= @ L g)(x9)? — 2t|'/% where &£ = 1
2

1 i
if 1S 569% o= —1 if12 (3 (93)

for all teR, x> x?>0.

Notice that in both cases, X! and X? are continuous in f, belong to
WLP(—T, T)(VT < o) (for all p < 2), are smooth except for one ¢, solve the ODE
with b for all ¢ except for one value and such that b(.X) is continuous in t except for
one value, (X (¢))e LP(— T, T) (V T < w) (for all p < 2). Furthermore, for i = 1, 2,
we have

sup | X, x)| < Cr(1+x) forall T<oo,teR, xel (94)
~T=t<T
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and
X'e L (R* C(R) N C(R; LI (R?) (Vp< o). 95)

One can also check that X! and X ? are measure preserving i.e.
AoX(t)=4 forallteR, i=1,2

and satisfy the group property (53).

Finally, let us also remark that the proof of Theorem IIl.1 and the above

properties of X!, X2 show that, for any u®e 2(R?) (or L7, L°, L, L .. ), u'(t, x)
= u%(X(t, x)) is, for each i = 1, 2, a renormalized solution (and thus a solution in
distributions sense) in C(R; L?(R?)) (V1 € p < o) of
aui — b i 2 i 4] 2
i Vi@ on RxR* u|_o=u’ onR*.
Notice that this also shows that: i) the regularizing result Theorem II.1 does not
hold here—otherwise, we would deduce u! = u?, a contradiction—, ii) renormal-
ized solutions cannot be compared with distributional solutions in the sense that
the notions are not comparable. Indeed, we have seen in the preceding sections that
renormalized solutions are more general than distributional solutions under some
conditions on b. However, the above example shows that this is not always the case:
indeed, if u° is an initial condition such that u! # u? (i.e. u® # 0!), then v = u* — u?
solves the equation in distributions sense and satisfies: v|, - , = 0 in R%. Therefore, v
cannot be a renormalized solution: indeed, if it were the case, we would easily
deduce by a simple integration that

{ B(v(t))dx =0, for each admissible B, for all re R
RZ

ie. v = 0, contradicting the above choice.

1V.3 Small noice approximations

Asit is well-known, it is possible to regularize ordinary differential equations by the
addition of a “small” Brownian motion or equivalently to regularize the corre-
sponding transport equation by the addition of a “small viscosity” term namely by
considering

5’? —¢Au,—b-Vu, =0 in(0,T)x RY . (96)

Even if it is possible to make a parallel theory of renormalized solutions for general
parabolic equations including (96) and arbitrary initial conditions under the
conditions (+) and () on b (for example), we will not do so here. Let us only
remark that the arguments introduced in R. DiPerna and P.L. Lions {3] in the
context of Fokker-Planck-Boltzmann equations may be used and in fact extended
to cover much more general equations like (96).

Instead, we will concentrate here on the passage to the limit as ¢ goes to 0. One
possible result in this direction is the following.
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Theorem IV.1. Assume that b satisfies (x) and (»*). Let u,e L*(0, T; L' nL*) be a
solution of (96) (in distributions sense) corresponding to an initial condition u?.
Assume that u? converges in LF(R) to u® for some pe(1, o). Then, u, converges in
C([0, T7; LP(R™)) to the renormalized solution of (11) (with ¢ = 0) corresponding to
the initial condition u®.

Remarks. 1) In fact, the proof will show that u,e C([0, T]; L?(R™)).
2) Similar results may be obtained in the case when p = 1.

Proof. The proof follows the argument introduced in the proof of Theorem 11.4.

We first observe that we may still apply the regularizing result Theorem 11.1
since its proof carries over without modifications. Then, this shows that u® = u, * p;
satisfies

ou’
ot

in LY((0, T) x Bg) (for al R< ).  (97)

In particular, choosing cut-off functions ¢, as we did several times before and
multiplying (97) by ¢2ul|* 1 u’, for some o > 0, we find

6{ 1
j 2 |u"]"‘“dx}+£ocj [Vl |2t~ T p2dx +
ot la+1g R e R

v 9221 W Bhdx = [y Ghdx— [ 2bVoululf drdx+

+ 26 | (Vg Vul)pg(ul)dx .
R’V

Using Cauchy-Schwarz inequality, we deduce for all ve(0, )

0{ 1
- { o3 |u"l”‘“dx}+b (0 —v) [ VUl ull*~ ' pidx +
Ot {a+ 1 g R av R

di
1y S g <  VEINE % 10 Vol et 0 + SVl

Letting § go to 0, R go to oo, this yields: ju, |~ 2y, e L*(0, T; H'(R")) forall « > 0
and choosing o = p—1

—j lu |Pdx + | (divb)|u,|?dx <0 . (98)
R}\
In particular, u, is bounded in L®(0, T; LP(RY)).

Next, we show that u, converges weakly in L=(0, T; L?(R")) to the renormal-
ized solution u of (11). To this end, we use a duality argument: we first observe that
copying the proofs of Proposition II.1, Theorems II.1 and I1.2, we obtain in
particular the existence and uniqueness for every y€ 2((0, T) x R¥) of a solution of

0
- (;/;E —eAY, —diviby,) =y on (0, T)xRY Y —r=00nR¥Y (99
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Furthermore, ¥, e C([0, T]; LYR™)) n L*(0, T; L*(R™)) (for all ge[1, o)) and we
have

T T
[ §uypdrdx— [ udy (0)ydx=§ [ uydrdx . (100)
0 R¥ R’ o RN

Next, the arguments given above show that i, is bounded in L=(0, T; LY(RY)) for
all 1 £ g £ . Then, passing weakly to the limit in (99) and using the uniqueness
results of section II, we deduce that i/, converges weakly in L*(0, T; L%R"))
(l<g<w) to the solution YeC([0,T); LYRY) L=, T; L*(RY)
(V1 =g <)

‘%f—dw(hp)w in (0, 7)xRY, Y-y =0o0nR". (101)

To prove strong convergence, we first observe that the same proof as the one used
to show (98) yields

0
% § W lidx — | (g—Ddivbly,[*dx 0, (102)
RN RN
while we already know (see section II) that y satisfies
A
ﬂéj]wqu— { (q— D)divb|y|idx =0 . (103)
RN RN

This, exactly as we did in the proof of the stability result Theorem I1.4, implies that
i, converges to  in C([0, T}; LYRY)) for all 1 £ g < o0.

Now, if u, converges weakly in L*(0, T; L?(R")) to some u, we may pass to the
limit in (100) and we deduce

} f ul//dtdx—} [ uy(0)dtdx = } f uydtdx . (104)
0 RN 0 RN

o R~

And by the results of section IL.5, we know that u is the unique renormalized
solution of (11) with ¢ = 0, for the initial condition u°.
The proof of the strong convergence follows then from (98) and the fact that u
satisfies
0 .
— § [ulPdx + [ (divh)|u”dx =0,
Ot gv e

by the same arguments as those used in the proof of Theorem I1.4. FAN

1V .4 Remarks

In this section, we just want to indicate some variants or extensions of the results
presented above.
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First of all, we begin with transport equations or ODE’s in a bounded smooth
domain @ of RY; then, let be L1(0, T; W' 1(Q)) be such that

b-n=0 onadQ, (105)

where n denotes the unit outward normal-—recall that b has a trace on 0 in
LY, T; L} (6Q)).
All the results presented in the sections above may be adapted for the study of
u

a—t—b'Vuzo in(0,T)xQ, ul,.,=u’onQ (106)

and
X =btX) for t=s X(s,x)=x€eQ. (107)

Then, (105) is the condition which prevents the necessity of using boundary
conditions for u and which makes X stay in Q for all ¢.

We may thus prove the existence, uniqueness and stability of distributional and
renormalized solutions of (106); and the existence, uniqueness and stability of
solutions X of (107) in C([0, T'] x [0, T]; L*(£2)) which leave 2 and the restriction
of Lebesgue measure to Q invariant (up to an exponential factor if divbh # 0). Let us
only mention that the proofs still rely on the regularizing result Theorem II.1 which
now provides a local regularization. Boundary effects are then taken care of by the

following observation based upon (105) and the regularity of b:
T
[ 1b-nldSdt—0 as e -0, , (108)
(O3 N

where I', = {ye Q/dist(y, 02) =¢}.

Let us also briefly mention that existence, uniqueness and stability results can
also be obtained (in fact, in a simpler way due to the entropy formulations) for
scalar conservation laws like

%i:+ div{b(x)f(w)} =0 in(0,TyxR"

where b(t, x)e L1(0, T; WL.'(R")) and one deals with entropy solutions “a la
Kruzkov” . ..

Our next remark concerns possible localizations of all the global results we
presented: since b was not required to be bounded (or in L'(0, T; L™}}, the speed of
propagation was not finite and we were obliged to study global situations.
However, if we assume that be L'(0, T; L) (for instance)—instead of (x*)—then it
is possible to localize all our results and then our uniqueness results for ODE’s can
be localized: in this way, one obtains almost a pathwise uniqueness in the sense that
one still cannot prove by our methods uniqueness of a given trajectory starting
from a given point but one may prove uniquencss by “flattening” a bit this
trajectory in an arbitrary neighborhood of the initial point. In a very vague sense,
trajectories for which trajectories exist for close enough initial points—one could
call stable trajectories such trajectories—with a local invariance of the Lebesgue
measure are unique.
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Finally, let us mention some remarks concerning ODE’s that we formulate to
simplify in the context of Hamiltonian systems:

. OH . oH
X = 7()(, p), p= _7(Xsp) p (109)
cp 0x

for some Hamiltonian H on RY x R
First of all, since H is constant on trajectories, one sees that formally if u(x, p, 1)
solves

du (H ou oOH ou
AP s p) = 11
5 ap(x P) ot o) o (110)
then
0
— | ulx,p,)H(x, p)dxdp =0 . (111)
ot RY x RY
This formal estimate may then be used (and justified) in order to weaken the
. 0H 0H
assumptions made on the behavior of b = <?, — T) at infinity. Next, if H has
P X

some singularities on a “small set”, one may use our results in the following way:
assume that {(x, pye RN x RY/|H(x, p)| < R} is open for R large enough and that
He W2 1(Qg) where Q, denotes the above set. Then, one can apply the results
mentioned above with € = Q since (105) clearly holds. By letting R go to o, this
allows to “solve” (109) for almost all initial conditions. But we will not pursue in
that direction here.
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