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Abstract

A new method for solving parabolic problems with the finite element method is presented.
A standard approximation id enriched with local functionsin order to capture highly vari-
able, moving solutions. To this end, a projection technique is developed for transferring
solution in formation between global and local approximations. The method is partic-
ularly well suited for studying problems with moving materials interfaces, in particular
phase change problems. Several one dimensional benchmark problem and two-dimensional
applications are presented to illustrate the overall accuracy and utility of the new method.
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1 PRESENTATION OF DUKE UNIVERSITY

I have made my summer work at Duke University, which is located in Durham, in the
forest of North Carolina, USA. More precisely, it is 300 miles to the south of Washington,
DC.
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The location of Duke University.

Duke University was founded in 1924 by James B. Duke, industrialist from tobacco.
He transformed the Trinity College into a new gothic campus which opened in 1930.

Duke University is one of the best universities in the US, especially for its medical
studies. The hospital of Durham is basicly ranked 3"¢ in the US. But all the major sub-
jects are studied in Duke University: Arts, Languages, Medicine, Mathematics, Physics,
Biology, Chemistry and Electrical, Mechanical, Civil and Environmental Engineering.
The Campus welcomes 20 000 students from all around the world: certainly from the US,
but also from China, Turkey, France, Germany ...

I spent the summer (my training was from May, 1% until July, 31*%in the Department
of Civil and Environmental Engineering which is a part of the Pratt School of Engineering.
In this department, the main themes of research are: engineering mechanics, structural
engineering mechanics and water resources (http://www-cee.egr.duke.edu/). 1 worked for
Dr John Dolbow, Ph.D. from Northwestern University, Assistant Professor of Civil and
Environmental Engineering.

Dr. Dolbow is a full time assistant professor at the Department of Civil and En-
vironmental Engineering of Duke University. His research concerns the development of
computational methods for nonlinear problems in solid mechanics. In particular, he is
interested in modeling quasi-static and dynamic fracture of structural components and
the evolution of interfaces with nonlinear constitutive laws.

The work was to adapt the method used for cracks growth (see Daux, Moés, Dol-
bow, Sukumar, and Belytschko (2000)) to the heat transfer problem, especially with
phase transformations. The main objective was to implement the phase transformation
algorithm in a two dimensional finite element code built by Nicolas Moes, N.Sukumar,



Hudson Hall, the location of the Pratt School of Engineering.

J.Dolbow and T.Belytchko (see http://www.tam.nwu.edu/X-FEM/ and http://ceelaby.egr.duke.edu/ dol-
bow/zfem.html)

The computer room in the Department of CEE was equiped by about thirty Unix
stations and about ten windows machines.



2 INTRODUCTION

The problem of phase transformations arises in a number of physical problems of interest
to the engineering community. These include solidification problems in metal casting,
crystallization problems, as well as the behavior of shape-memory alloys. While the
specific physical characteristics of these systems vary, they all share a common character-
istic: a moving interface across which several fields may be discontinuous. For example,
solidification problems can be described by the motion of the freezing (or melting) front,
separating the solid and liquid phases. The behavior of shape memory alloys is directly
related to the motion of interfaces separating austenite and martensitic variants at the
grain scale. The more general problem of a moving interface arises in other problems such
as the burning of rocket fuel or the growth of oxide on a silicon wafer.

With regards to the finite element modeling of phase transformations, the foremost
concern is “capturing” the solution in the vicinity of the moving interface, where the
solution exhibits sharp gradients. Some pioneering work was developed by Lynch and
O’Neill (1981), who wrote the shape functions as functions of time as well as the spatial
coordinates. The nodes on the freezing front thus moved with the interface, such that
the discontinuity in temperature gradient could always be captured. Twenty years later,
this basic technique continues to be adopted for a wide range of problems. For directional
solidification problems, the technique has been considerably refined by Zabaras and his
coworkers (see Sampath and Zabaras (1999)).

A number of problems exist with the moving-mesh approach. Firstly, it is best applied
to directional solidification problems, wherein the front essentially moves unidirectionally.
The main reason is mesh distortion. It is easy to visualize that for freezing fronts which are
geometrically complex, the moving mesh approach eventually leads to mesh entanglement.
Secondly, for thermo-mechanical problems, we are concerned with the evolution of stress
and strain in the object. A moving mesh approach requires projection techniques, and
crucially in the vicinity of sharp gradients, leading to a significant loss in accuracy. In
part, these concerns motivated the ALE formulation developed by Ghosh and Moorthy
(1993). The work proposed herein shares several features with this approach, though it
is suggested to be much simpler and more flexible.

The main philosophy of the eXtended Finite Element Method (X-FEM) developed by
Dolbow (1999) and Moés, Dolbow, and Belytschko (1999), is to model moving features
(cracks, voids, interfaces), with moving enrichment strategies. The basic idea is to aug-
ment a subset of the nodal basis functions with products of those basis functions and
prescribed enrichment functions. It therefore belongs to the general class of partition-of-
unity methods as described by Melenk and Babuska (1996). When the prescribed func-
tions contain discontinuities, the result is a method capable of representing cracks whose
morphology is independent of the finite element boundaries. As a result, no remeshing
is required to simulate crack growth; one merely changes the subset of enriched nodes
and updates (if necessary) the enrichment functions. Likewise, its application to phase
transformations offers the possibility of using a fixed mesh.

For phase transformation problems, we seek to enrich with functions whose derivatives
are discontinuous across the interface. While the precise form of the functions which
provide the greatest accuracy has yet to be determined, the basic concept is appealing.



With the X-FEM the mesh and interface descriptions are independent, and yet we can still
maintain accuracy at the interface, and allow it to move arbitrarily. Thus the method is
applicable to freezing front motions beyond those of directional solidification. Moreover,
with regard to the thermo-mechanical problem, the projections are postulated to be much
more accurate.

This report is organized as follows. In the next section, we describe the governing
equations which describe the heat transfer problem. We then discuss the weak form, and
the discretization with the X-FEM. We after provide some one-dimensional experiments
of the general method, and the last section describes the phase transformation problem
and shows some results in two dimension.



3 PROBLEM FORMULATION

In this section, we briefly describe the governing equations for heat transfer problems.
Consider the domain €2 shown in Fig. ??. The governing equations are :

oT
cazdw g+ f inQ (1a)
§=—kVT nQ (1b)
Tir, = Ty(z,t) imposed on 'y (1c)
gir, = ¢» imposed on T'; (1d)

where T is the temperature, ¢ the volumetric capacitance, ¢’ the heat flux vector and &
the thermal conductivity tensor.

Figure 1: The considered domain.



4 WEAK FORM AND TIME STEPPING

The usual approach to implement a time-integration scheme with finite elements is to
discretize in time after developing the Galerkin approximation. In our case, the approx-
imation evolves in time along with a local feature of interest. So an initial point of
departure is to reverse the order of these steps as follows.

We consider the solution on the time interval [0, ¢;], partitioned into time steps as
[t",t""1]. Considering the thermal conductivities to be isotropic and constant, we write
(1) at time step "+ as:

T
ai

and we consider a classical time-stepping scheme, namely generalized Trapezoidal rule

— KAT™ 1 = "1 on Q (2)

Cc

Tn-l—l —T" + At [afI;:n—H + (1 o O,/)Ttn] (3)
Substituting this equation into the above yields, eliminating TE“ and after rearranging
some terms: A o
KAl
T — TAT”+1 =T"+ (1 - a)AtT} + —

We now multiply by a kinematically admissible weight function §7"*! | and integrate
over the domain at time step ¢"*!. This gives:

aK

/ ST™H Tt dQO— Al / ST AT dQ =
Q Q

C

(4)
/ ST [T™ + (1 — a) AtTY) 0+ L / ST dQ
Q ’ ¢Ja

We now follow the standard step and use integration by parts to shift a derivative from
the trial function to the weight function. This yield to the following expression:

akAt
c

/ ST™H Tt 4O + / VT vt 4O =
Qn+1 Q

/ ST (T + [1 — ) AtTY] d
aptt ’

X 5)

+- / ST frH d§)
CJa

alt
+—

C Ty

ST, - 7 dT

After solving this system, we know the temperature T at instant t"*! and we would like
to know its time derivative T4*'. Basicly {T"™, T1*'} C span{®;}"*! and {T",T}} €
span{®;}" where span{®;}" and span{®;}"*! are the sets of the basis functions {®;} at
time steps t* and t"t!. The equation which links these variables in the classical time-
stepping scheme is:

T =T — (1 — )6tT?
aAt (6)

n+1 __
Ty =

10



The way to calculate T,?H is the same way used in space, that means that we make an L?
projection of the equation (6) onto the set span{®}"!. We multiply the above expression
by 67"t € {®}"*! and integrate on €. More precisely:

1 "+ (1 — Q) AT
/ ST T dQ = —— [ 6T T o — / sy UM o)
Q

After substituting 67 and T bye the chosen weight functions and approximations and
solving this system, we know the field T,?“ and we can continue to march in time.

11



5 DISCRETIZATION WITH THE X-FEM

We now describe how to discretize this BVP with the X-FEM.The standard finite element
approximation to the temperature field takes the form

&) = 3 Ni@)T; (®)

where N; are the classical nodal shape functions and 77 are the corresponding nodal
coefficients. The sum is taken over all nodes in the mesh.
In the X-FEM, we extend the above using the construction

@) = Y N(@ETr +Y N;@-g(@1) as 9)

—_—— ~ -

classical approximation enrichment

where ¢(Z,t) is the enrichment function, a; are enriched degrees of freedom and J C I is
a subset of the nodes in the mesh. For example, we may take J to consist of all nodes
whose shape function supports contain the location of the zone of local behavior w:

J={I3 % € w/N((Z) #0} (10)
This approach allows the approximation to follow a moving feature of interest, as both
the set J and the function g can evolve with w. However we note that this approach also

requires a-prior knowledge of the motion of the local zone w.
In the case of the heat equation (?77?), the mass and stiffness matrices are given by:

Q
Q

where ¢; are the weight functions and ®; can be the classical shape functions or the
function g NV;.

12



6 ONE-DIMENSIONAL BENCHMARK PROBLEMS

6.1 First Problem: A localized, moving heat source
6.1.1 Description of the problem

The objective was to use the X-FEM in a simple case of the heat equation where we knew
the exact solution. The particular case I have chosen is to calculate the temperature in
a rod composed of one phase, where the exact solution is actually the sum of two terms,
both depending on time : one which can be represented by a classical Finite Element
Method, the second constituing of a moving term with a very local behavior to illustrate
the effectiveness of the X-FEM for this kind of problem:

II-x

T(z,t) =T -sin(

N o v
v for the X—FEM
classical

) . e_t/T +T2 . 6_[$_zfront(t)]2 . e_t/T (12)

>

where x and ¢ are the abscissa and the time, and Z .4, the position of the front. The
function  fyons is given by:

T front = xfront(o) + Vfront -1 (13)

The appearance of this solution is the sum of a dissipative term on time (the sinus),
and a moving term (the spike) as shown on Fig 2:

Exact solution

1 1 1 1 . 1 . 1 1
[ 10 20 30 40 50 60 70 80 % 100
X (position on the beam)

Figure 2: The exact solution.

In this case the forcing term on the right hand side of (2) is given by :

m\” 1> 2
P = () =244 = gm0 = @Vl — g O)) - om0 0
(14)
I use the X-FEM with the classical piecewise shape functions /N; and the enrichment
g is given by (see also Fig. 3 and Fig. 4) :

g(z,t) = e~ [E=mmon ) (15)

13



15 T T T T T T T T T 15

05t 05l

Value of the shape function
Value of the enrichment

. . . . . . . . . ~05 . . . . . . .
10 20 30 40 50 60 70 80 90 100 30 35 40 45 50 55 60 65
X (position on the beam) X (position on the beam)

Figure 3: The classical shape function. Figure 4: The enrichment function g.

We note that, using this method, the mass and stiffness matrices need to be rebuilt
at every time step. But basicly, it is just some terms which are changing. In our case,
we enriched only two nodes: the one which is immediately before the front, and the one
which is immediately after the front (see Fig. 77).

nodes enriched

18} i
16} [ |

|
141 [

1.2r

Temperature
=

0.8
0.6
0.4
0.2 4
/ N

0 5 10 15 20 25 30 35 40 45 50
X

Figure 5: The enriched nodes.

The code corresponding to this case was coded with MATLAB. First I had to learn
MATLAB and its environment. The structure of the code is very easy, but there is quite
a bit of syntax to learn.

6.1.2 Numerical Results

The code was running with 20 elements. The appearance of the results is shown bellow:

14
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Exact and approximate temperatures

Figure 6: The results of the code.

We can note that the local behavior of the spike is very well computed. The H' and
L? norm are used to measure the errors between the exact solution and the calculated
solution:

L¥(T -Th) = \/ l[T(x) — Th(z)]” di (16a)

HY(T -T") = \//I[T(ﬂﬁ) = Th()]" + [To(z) = Th(z)]” dl (16b)

6.1.3 The research of the best «

I have studied the influence of o on the L? and H! norms of the error between the exact
solution and the calculated solution with the X-FEM. The computation gave the evolution
of the L? and H' norms as a function of @ € [1/2,1] and the number of time iterations.
The computation for @ < 1/2 was not made, because the method is only conditionaly
stable for these values of a.The result is given Fig. 7 and Fig. 8.

We note that the best result corresponds to the case a ~ .55.

6.1.4 Comparison with the classical FEM

To prove the advantage of the X-FEM, we have computed some results to compare with
the classical finite element method.
The stationary mesh:

The stationary mesh method consists of a classical finite element approximation with
a fixed mesh over time. For the case here of one-dimension, the mesh is composed by
linearly equally spaced points. The grid does not depend on the position of the front
during time. Each element is a segment, its length is l¢jement = = ni — where [ represents
the length of the domain and nggmenss the number of elements. This method does not
need to rebuild the mass M and stiffness K matrices every time step.

The moving mesh:

15



L2 norm

35 05

40 alpha

iteration number

Figure 7: The influence of o on the L? norm.

iteration number

Figure 8: The influence of o on the H! norm.

—— first time step.
—— future time step
— mesh

T (temperature)
o
®
T

0 5 10 15 20 25 30 35 40 45 50
X (position on the beam

Figure 9: The unmoving mesh.
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The moving mesh method consists of remeshing the domain at each time step de-
pending upon the position of the front during time. The mesh is composed by a coarse
background mesh and a fine mesh in the vicinity of the front. In our case, the coarse mesh

l'r‘egion

is composed by 20 elements, the region where the mesh is thiner is [z front — 2 T front T

1 .
reg210n ].

18
—— first time step
—— mesh

16

T (temperature)
o o
o ® [
T T T

I
=~
T

o
N

0 5 10 15 20 25 30 35 40 45 50
X (position on the beam

Figure 10: The moving mesh at an initial
time step.

18
—— first time step
—— mesh

16

141

=
N
T

T (temperature)
[
T

o
@
T

0.4

0.2

0 5 10 15 20 25 30 35 40 45 50
X (position on the beam

Figure 11: The moving mesh at a subsequent
time step.

Results: the comparison between the methods:
The results have been computed for 36 time iterations. We have used the L? and H'

norm to measure the error.
YL? and Y H' represents the sum of the L? and H' error over the 36 time steps.

17



Number of elements X-FEM FEM, stationnary mesh
YL? ‘ YH! || ©L2 ‘ YH!
20 0.65 | 1.73 || 18.34 27.79
100 17.82 25.43
200 6.69 19.33
400 2.64 18.34

In the case of the classical FEM, with 10 elements and 11 nodes, this method exhibit
poor accuracy in computing the solution near the front location, which is not surprising
as the local feature is contained within a single element (see Fig. 12). It is only with a

dramatic increase in the number of element that the computed solution begin to satisfy
(see Fig. 13).

. . . . 1 . . . . 1 . . I 1 . . . I
o 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
position on the beam position on the beam

Figure 12: The finite element (10 Figure 13: The finite element
elements) and exact solution. (400 elements) and exact solu-
tion.

Exact and approximate temperatures

. . . . 1 . . . .
[ 50 100 150 200 250 300 350 400 450 500
position on the beam

Figure 14: The X-FEM (10 ele-
ments) and exact solution.
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6.2 Second Problem: the shock
6.2.1 Description of the problem

This time, I tried to solve a different kind of problem: a problem which includes discon-
tinuous initial data. Consider the first order wave equation :

ur+auy, =0

)1 if o < 2pont(0)
uolz) = {0 if &> from(0)

where a is the speed of the shock and the exact solution is uy(z — at).
The objective is to investigate the capability of the X-FEM for this kind of problem.

6.2.2 The classical FEM

The Galerkin approximation in this case is a classical approximation:

u(z) = Z N;(z) (18)

where N; are the classical piecewise linear shape functions. In this case, we don’t need to
integrate by parts. The formulation is:

! !
Viel,---,N,/u,tNidx+a/ Uy N;dz =0 (19)
0 0

where the time stepping scheme is following:

un—f—l —un
Ut =

’ At

The classical FEM gives oscillations near the shock (see Fig. 15).
We note that the oscillations propagate in time, which was foreseeable, because of the
history term on the right hand side.

6.2.3 The X-FEM

Here the chosen enrichment is the Heavyside function H(z — z front) with:

H(z) = (21)

1 ifx<0
0 ifx>0

and Z front = Zfront(0) + Virons t. The formulation using the time stepping scheme (20) is:

! ! !
Vou € Spcm{@i}"ﬂ,/ Su v dl = —aAt/ ou uy, dl +/ du u" dl (22)
0 0 0

19



The classical FEM for the case of the Shock

1.2 T T T T T T
—— numerical
/\ —— exact
1 i
0.81- 4
0.6~ q
E}
0.4r —
0.21- q
ok
. . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 15: The results for the classical FEM.

The XFEM for the case of the Shock

12 T T T T T T
—— numerical
/\ —— exact
1 i
0.81- 4
0.6~ q
E}
0.4r —
0.21- q
ok
. . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 16: The results for the XFEM, first
shot.
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in assuming that:
H,=—0(z) (23)

where §(z) is the Dirac function. First, the approximation of H, was —§(z%,,,,)-It gives
the results shown on Fig.16.
n+1

But a better approximation of H , between the time steps ¢" and t"*! was —¢ (W)

This approximation permits to the algorithm to give the exact solution as shown on
Fig. 17.

Exact adn approximate solutions
T T T

T
—— numerical
—— exact

0.8

0.6

0.4

0.2

-0.2 L L L L L L L I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 17: The X-FEM gives the exact solu-
tion.
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7 APPLICATION TO PROBLEMS WITH PHASE TRANS-
FORMATIONS

7.1 Problem formulation

Consider the domain €2 which is divided into the regions €2; and €2, by the interface I';
as shown in Fig. 18. Knowing the initial temperature in the domain, T'(Z,0), we seek to

Figure 18: Domain split into €2; Figure 19: Zoom of the interface
and €2, by the surface I';. I';.

determine the evolution of the function T'(Z,¢) which satisfies the governing equations

T
01%—t =V (k- ﬁ) in € (solid phase) (24a)
02{;—5 =V - (ky- ﬁ) in Qy (liquid phase) (24b)

where ¢; is the volumetric heat capacities of the phases, and k; are the thermal conduc-
tivity tensors.
The above are supplemented with external boundary conditions

T=T, onT, (25a)
(k-VT)- R =g onT, (25b)

with T, and ¢ prescribed temperatures and heat fluxes, respectively.
The motion of the surface I'; is described by a Stefan condition, written as:

0s S -
La—j Ny = (K;l . ﬁ)hﬂl— Ny — (K'Z : ﬁ)h‘}' "Ny (26)

where L is the volumetric latent heat of fusion. This equation, in turn with the condition
that the temperature equal the melting temperature on the interface

T=T, only (27)

completes the description of the boundary value problem we wish to solve.

22



7.2 Discretization with the X-FEM

We now describe how to discretize this BVP with the X-FEM. Considering that the
motion of the interface will be described by enrichment functions, there are three issues
we need to be concerned with:

e the time-stepping algorithm;
e the constraint given by equation (27);
e the choice of enrichment functions.

These are addressed in the following subsections.

7.2.1 Variational Formulation and Time-Stepping

We consider the solution on the time interval [0, ¢ ], partitioned into time steps as [t", t"*!].
Considering the thermal conductivities to be isotropic and constant, we proceed as de-
scribed in section 4 and write (24) at time step "t as:

aT 't =k AT™ on O (28a)
CQT,?+1 = KZQAT”+1 on Q2 (28b)

and we consider the general Trapezoidal rule:
Tn+1 =T" + At [aTtrH—l + (1 - a)Tt"] (29)

Substituting this equation into the above yields, and after proceeding to the variational
formulation, we have the following expression:

/ ST™ Tt 4O + leAt/ 5T,Z+1 T;H dS) =
Q;H—l C1 Q;H—l ( )
At 30a

/ 5Tn+1 (T'n + (1 _ a)AtT?) dQ + (l/— 5Tn+1 Iﬁan—ij . 77} dr
Q;”+1 ’ Cl FI .
unknown quantity
At
/ ST T 4o 4 22 / 0T+ T dQ =
Qptt C2 aptt

(30b)

At
/ ST (T 4 (1 — a)AT™) d+ P2 [ 57+ v 5y ar
n+1 ’ c —_——
ik ? T unknown quantity
where we have assumed that I';, = ().
We now focus on the terms in the above which arise on the freezing front I';. These
terms consist of a pair of heat fluxes:

g = k1T, ‘r; (31a)

gt = kT, \F;r (31b)
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which are inherently associated with the motion of the interface through (26).
We note that we need to apply a time-step algorithm to the equation describing the
motion of the interface. To this purpose, we rewrite equation (26) at time step t" as:

1, —— -
. ; (mv:r"\r; . @VT"|FI+) (32)

And now let’s ignore conventional wisdom, and use a different algorithm , the Forward
Euler algorithm ( which is the case of the general Trapezoidal rule algorithm when a = 0),

yields:
h_ @ (33)
Sat - At
which can be rewritten as:
s G SNy (34)

7.2.2 Using the LATIN method

The LATIN method Ladeveze (1998) is a general procedure for solving nonlinear problems
in structural mechanics. It consists of three key features:

1. A separation of global, linear quantities from local, nonlinear quantities;
2. A two-step iterative procedure which “builds” the solution;
3. An ad-hoc space-time procedure.

The first two elements were adopted in Champaney (1996) to model assembling structures,
and in Dolbow et al. (2000) in conjunction with the X-FEM to model crack growth with
frictional contact acting on the crack faces.

For the present problem, knowing all quantities at time ¢", we wish to determine the
temperatures 7" ! and interface fluxes (31) at the new time step such that the weak form
(30) is satisfied and the temperature at the interface is equal to the melting temperature
T,,. We will refer to the latter constraint as the constitutive law on the solid-liquid
interface.

We adopt an iterative strategy to resolve this problem. For notational clarity, we will
drop the superscript n from all quantities, and assume the iterative procedure is invoked
in moving from time step n to n + 1. We will also use subscripts m and m + 1, etc., to
refer to iteration number.

The iterative procedure adopted by the LATIN method begins by considering two
sets of solution spaces. The variables of interest are the temperature 7T, its value on the
interface w:

wh=Ths, w =Tl (3)

the temperature gradient 7, and the heat fluxes on the interface (31). We use the
compact notation:

v = (T,w,VT, ) (36)
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to define the solution spaces. Specifically, we let:
A, = {v satisfying (30)} (37)

and
I = {v satisfying (27)} (38)

The goal is then to find the element v4! located at the intersection of Ay and I,
represented geometrically in Fig. 20. We use the superscript A and I to denote an element
vin Ay or I, respectively. The iterative strategy begins with an initial element vg' in Ay
and builds a sequence of approximate solutions v{', ..., v, v/, ... until convergence.
A given iteration v/, — v/, involves two steps: via — v}, and v}, — v/, as shown in
Fig. 20. The iterations stop when the “distance” between v/, and v/, (measured with
an appropriate norm) is below a specified tolerance.

Two successive approximations are always tied by a given search direction. The di-
rection used when going “down” from the set A4 to the set I is denoted by E4! whereas
the direction when going “up” from I to A, is denoted by E'“. The appropriate choice
of the search directions in order to achieve (fast) convergence is an important aspect of
the LATIN method (see Ladeveze (1998)).

The next two sections describe the two steps in the method:

e Going down from v to v! in the search direction E“/. We will see that this step
is local and may be solved independently for each pair of points facing each other
on the interface.

e Going up from v/, to v/, in the search direction E'*. This step involves a global
solve.

1. The local step: update on the interface
The local update involves determining a new estimate v! for the fluxes and temper-
atures on the interface given quantities obtained from a solution v € A,. The new
approximation is required to satisfy the constitutive law (i.e. v!, € I). Additional
equations are provided by the search direction.

To move from an element vA € A, to v, € I, the search direction E! is associated
with a linear operator ky. The search equations are then
(Wl —vi)e EM =

—
g — g" = ko(wl —wAT)  onTj (39a)
— -
¢, — ¢t =ko(wl, —w2) onl; (39b)
The above can be written more compactly as
(z'ﬁ—g-ﬂ:ko(wé—wé) onl'; (40)

with the understanding that the relationship holds on both I'; and T';, separately.
This compact form will be used in the remainder of this section when convenient.
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Figure 20: The iterative procedure in the LATIN algorithm.

The process of determining v! given v/ then involves solving the above search
equations in conjunction with the constitutive law on the interface

vl eI =wh=w, =T, onl; (41)

I

.,) are very simple in this case. They

The resulting closed form equations for (¢!, w
are given by

wit =wl =Ty, (42a)
&7 = g 7+ ko(w, — wh) (421)

. The global step

We wish to move from v/, € I to v/, ; € Ay. This is accomplished through a global
solve in conjunction with additional equations provided by the search direction E™
which is also associated with the ky operator on the interface. With a known element
vl | the search equations are then
(Vi1 — vp) € B =

—
G 1 — Gy - 1] = —ko(wip ey —wp) on T, (43)

This equation is used in conjunction with the weak form of the governing equations
(30), by solving for ¢;} ., and making the substitution in the surface integrals on T';.
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m

The problem to be solved is then: Find (T2}, wy,,1) which satisfies

VoT € {®}pi1,

At At
/ ST Tt g+ B2 VT VT a0+ =2 [ ko |r, 6T dS =
Qn+1 Qn+1 C Iy
At
/ ST [T" + (1 — a) - AtT}] dQ+ O30 (gL + kowl ) - 6T 4T,
Qn+1 & Iy
(44)
where it is understood that
Q=opttuopt
k=#r; on Q!
c=c¢; on QI
After solving (44), the local fluxes on the interface at step m + 1 are given by
—
G 7 = a7+ o, — wihy) (45)
with
Wing1 = Ty I, (46)

Iteration over subsequent steps continues until convergence is met, measured with
an appropriate norm.

7.2.3 The Time Projection

After solving this system, we know the temperature 7" at instant n + 1 and we would
like to know its time derivative T"+1 in order to apply the equation (30). We proceed as
presented in section 4.Basicly {T”Jrl Ty} C span{®;}n+1 and T € span{®;}, where
{®;}, and {®;},,1 are the sets of the basis functions at time steps n and n + 1. The
equation which links these variables is the time-stepping scheme:

T — T — (1 — Q) AT}

T = 4

ot aAt (47)

We multiply the last expression by §7"*! € {®},,; and integrate on Q:

VoT™ ! € {(Di}n—Ha / ST T:?_H dQ) =
Q
48)
1 T+ (1 — o) AtT? (
Tn+1 dQ — / ST+ ( 01) ot dQ
aAt Q alAt
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7.2.4 The X-FEM Approximation

The standard finite element approximation to the temperature field takes the form:
@) = 3 M@ (49)
I

where N; are nodal shape functions and 77 are the corresponding coefficients. The sum
is taken over all nodes in the mesh. When the shape functions are piecewise linear, the
above construction has the gradient

VT"E) =  VN/(&)T; (50)

which can only be discontinuous across element boundaries. This is, essentially, one of
the motivations for using a moving mesh technique, where the element and interface
boundaries always coincide.

In the X-FEM, we extend the above using the construction

@) = Y N(@Tr +» Nii)-9(&) a; (51)

7 7

vV vV
classical approximation enrichment

where ¢(Z) is the enrichment function, a; are enriched degrees of freedom and J C I is
a subset of the nodes in the mesh. In the case of phase transformations, we take J to
consist of all nodes whose shape function supports contain the liquid-solid interface:

J={I|3 z €T;/N;(Z) # 0} (52)
where z; is the location of the freezing front. This construction has a gradient

VI*#) =) VN/T;+> [VN;-g +N;-Vglay (53)
I J

which can be discontinuous wherever 63] is discontinuous. This represents the basic idea
for this work: the motion of the interface is modeled through a change in the enrichment
function g.

7.3 Summary of the algorithm

We suppose that the fields at time step n are known: temperature, position of the inter-
face. The algorithm is as follows:

—
1. We calculate the velocity of the interface s"* using (26).
2. We predict the position of the interface using (34).

3. We set up the set of the shape and test functions with this position of the interface.
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4. (a) We initialize the values for the LATIN.
(b) We calculate the values correspond to the local step of the LATIN.
(c) We build the mass and stiffness matrices and the right hand side from (44)

e Mass matrix:

At
Mz',j — / (I)”'H(I)”'H dQ-i— a_ kO(I);l+1(I)?+1 dFI (54)
Iy
e Stiffness matrix:
At
Ky =2 / VST - VAT dg (55)

e Right Hand Side:

FM = / P [T + (1 — a) - AtT}] dQ+
Q
ant

C Iy

with T =3, ;17 - ®i(x) and T = Y, ;(1}"); - ®i(x), where (T"); and
(T7); are the composante of 7™ and 77" on ®; which is the shape function
of time step n.

(d) We then solve the given system (M + K) - T"+! = Frtl,

() We then measure the distance between the both elements (on I and A). If this
distance is inferior to the tolerance, we go to the next step, if not, we return
to the (b).

(56)
(¢, + kow?) - @71 dI';

5. We make the time projection, that means that we solve the system: 7]t = 771,

where :
o I, = [, 0/ ®; d
o T = G [T L @ et — (0T + (1 - ) AT, [, 95|

7

6. Then we go to the first step.

7.4 The research of the best enrichment function

To solve this problem, I examined the one-dimensional case, for a two phases problem.
The objective is to find the enrichment function g which gives the smallest amount of
error regardless of the position of the front in the element. 1 assumed that this function
was the same in dynamic case and in the steady-state case.

The problem is basicly the following: find a ¢g function which gives the less amount
of error for solving a field where there is a discontinuity in the spatial derivative (see
Fig. 21).
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Figure 21: The exact field to
solve.

The main idea is that the Gallerkin approximation T" looks the best like the exact
solution 7.

To best describe the local behavior of the solution, we have assumed that the enrich-
ment was equal to 0 in the elements non cut by the interface.

Va ¢ Element;, /% front € Element;,, g(z) =0, (57a)
Vo € Elementio, Th(x) = ﬂoNio + ,Tio—l—lNio—i—l + g(x) (aioNiO + ai0+1Ni0+1) (57b)

The general constraint are:

e T" must be continuous.

h . .
° 38% must be discontinuous.

From the second proposition, we can deduce that the function g - (a;,N;, + @ig+1Nig+1) is
continuous, which means:

9@ ront) (@i Nig (T pront) + Gig+1 Nig+1 (T ront)) = g(x}me) (@io Nig (T front) + @ig+1Nig+1(T front))
(58)
This leads to two possibles cases:

® iy Nio (T front) + Gig+1Nig+1(Z front) # 0: in this case, g is continuous.

® i Nig (% front) + @ig+1Nig+1(T front) = 0: in this case, g can be discontinuous.

7.4.1 First idea: the discontinuous function

The first idea is to use a discontinuous function. I choose the Heavyside function which
is defined by:

-1 f ron
H _ or xr < :Ef t (59)
1 for x > xfront

We can justify this function by saying that the exact solution can be a linear combi-
naison of {Ny,---, Ny} U{HN,,, HN;,+1}in a one element case. Indeed, we can explain
it with some schematics on Fig. 22.

30



xfront xfront %
and — 1
— + 1 .
xfront xfront g xfront

Figure 22: The Heavyside function.

7.4.2 Second idea: an hyperbolic continuous function

This idea is based on the expression:

T — Tclassical
9(z) =

= 60
@iy Niy + Qig+1Nig+1 (60)

In this case, we can then build a enrichment function which resembles the following:

ds
s dx

Figure 23: The hyperbolic enrichment.

7.4.3 Third idea: a “classical, continuous shape function”

This idea is based on the expression:

> Ni(z) - g(x) = g(x) (61)

So the enrichment function g(x) brings just the particular form in the location of the
front (see Fig. 24) which gives an enrichment like a shape function (see Fig. 25).
7.4.4 Numerical results

The numerical experiments were made with a code built with MATLAB. The errors were
measured with the classical L? andH' norms, for 100 different positions of the front
linearly spaced in the element.
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Figure 24: The enrichment shape.
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Figure 25: The enrichment shape.
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We can note that the best results are obtained with the Heavyside function, even if
the “classical shape” is very close.

7.5 Numerical examples in two dimensions

The work for the two dimensional code was to implement the presented method in the code
my advisor used. The code was written in C++. I had to learn a lot of things on C++,
the basis of the object oriented programming (structures, classes, pointers, etc ...) from
Budd (1998) and Deitel and Deitel (1998) and a lot concerning the way of programming
of this code: The way of working of the code, how to use the big number of different
existing routines and how to code new routines. In the 2-D code, I had implemented the
enrichment “shape” for accuracy reasons. Indeed, with a continuous enrichment function,
we can evaluate the temperature at more points than with a discontinuous enrichment
function.

7.5.1 The way to integrate the matrix equations

Given our domain {2 divided into elements, we begin by subdividing the elements which
are cut by the interface in subelements. In this case, it is not necessary to divide the
elements in subtriangles respecting the geometry of the interface like in the case of crack
growth. Indeed the move of the cracks and the move of the solid-liquid interface is different

(see Fig. 28 and Fig. 29).
/ Interface at time step n

Crack at instant n
Crack at instant n+1 Interface at time step n+1

Figure 28: The move of the crack. Figure 29: The move of the interface.

The enriched degrees of freedom are the dofs of each subelements cut by the interface.
Each element or subelement is composed by 4 Gauss points located regularly in the
element.
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Figure 30: The mesh used in the X-FEM.

At

Figure 31: The move of the enriched nodes.
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7.5.2 Two phase Stefan Problems

The problem considered is a two-phase Stefan problem. The domain is a square of length
2 m where the boundary conditions are following:

T(x=-1,y) = -10°C (62a)
T(x=1,y)=4°C (62b)
VI-ii=0ony=—1andy=1 (62¢)

The material coefficients are :

Density in liquid domain: ¢; = 0.62 cal. K *.em™

Density in solid domain: ¢, = 0.49 cal. K~ '.em™3

Thermic conductivity in liquid domain: x; = 0.0069 cal.cm '.sec . K1
Thermic conductivity in solid domain: ko = 0.0096 cal.em™'.sec LK !
Latent Heat: L = 19.2 cal.cm™

This problem was solved using the adaptation of the generalized Trapezoidal rule with
a = 0.6 and a time step At = 2 s.The initial solution is composed by two planes, an
horizontal one at "= 4°C and the other one from 7' = —10°C to T = 4°C (see Fig. 32)

The interface is evolving from x = —0.8 to x ~ 0.6, case of the steady-state. The
figure 33 gives the evolution of the interface with in comparison to the values given
by Lynch and O’Neill (1981). The figure 34 gives the evolution of the profile of the
temperature during time.

0

X (m)

Figure 32: The initial distribution.
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Figure 33: The evolution of the interface.
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Figure 34: The evolution of the profile for
A)t = 180, B) t = 626 and C) steady-state.
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7.5.3 Square of liquid Alluminium

The next example is a square of aluminum. The boundary conditions are:

T = 550°C'on the square boundary (64)

The figure 35 shows the initial distribution of the temperature. The temperature at the
top is 7' = 750°C. The material coefficients are :

Density in liquid domain: ¢; = 0.669 cal. K~ '.cm™

Density in solid domain: ¢, = 0.669 cal. K ~'.cm™3
Thermic conductivity in liquid domain: x; = 0.0548 cal.cm™.sec . K1
Thermic conductivity in solid domain: ko = 0.0548 cal.em ™ .sec LKt

Latent Heat: L = 250 cal.cm 3

The computation was made with using the adaptation of the generalized Trapezoidal rule
with a = 0.6 and a time step At = 0.5 s.

o
8
Temperature (C)

X

Figure 35: The initial temperature.

The appearance of several next time steps are given on Fig.36, 37,38 and 39. We can
note that the liquid region leads the melting temperature very quicly, even if the interface

liquid-solid moves slowly.
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Figure 36: The Temperature after 5 s. Figure 37: The Temperature after 10 s.

-0.5

0 0
X/20 X/20

Figure 38: The Temperature after 15 s. Figure 39: The Temperature after 20 s.
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8 CONCLUSION

This stage enriched me a lot. First I learned a lot of things.

e The first enrichment for me was the discovery of a foreign country: its way of life,
the language. I discovered a lot of different cultures (Duke was crowded with foreign
students): a lot of European people, but also from China and Turkey.

o I learned a lot about the media of the research in the United States. A lot of
things are different from what happenses in France. For Example, the students are
initialized very early for the research. Just after the Graduation (which is equivalent
to the License in France), the students have to do research during their Master’s
Degree. The other main difference with what I knew from France was the financing
fundings of the research, which is more a competition than in France.

e The others things I learned were the scientific knowledge: the Finite Element
Method sure, Continuous Mechanics, Physical Behavior of the phase transforma-
tions, but also a lot concerning the programming (C++, MATLAB).

Concerning the presented method, the application of the X-FEM for problem includ-
ing “difficult locations” (discontinuities, high variations, cracks, ...), in other words for
problems invloving non-linear constitutive laws. proved to be a very interesting tech-
nique. In several phase transformations cases, the presence of terms of interface speed in
the equation of temperature on the interface can make avoid the Latin in the presented
algorithm, which could be the algorithm faster.
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