
Characterisations of polynomial-time and

-space complexity classes over the reals:

ODEs and Robustness

Manon Blanc GDAC Seminar

1

Introduction

Introduction

I focus on complexity over the reals and notions of robustness.

• Having algebraic characterisations of FPTIME and

FPSPACE with ODEs;

• Having computability and complexity results for the

reachability problem in dynamical systems;

• Having computability and complexity results for tiling

problems.

2

Introduction

I focus on complexity over the reals and notions of robustness.

• Having algebraic characterisations of FPTIME and

FPSPACE with ODEs;

• Having computability and complexity results for the

reachability problem in dynamical systems;

• Having computability and complexity results for tiling

problems.

2

Introduction

I focus on complexity over the reals and notions of robustness.

• Having algebraic characterisations of FPTIME and

FPSPACE with ODEs;

• Having computability and complexity results for the

reachability problem in dynamical systems;

• Having computability and complexity results for tiling

problems.

2

Introduction

• We are interested in having algebraic characterisations of

FPTIME and FPSPACE.

→ Why algebraic characterisations?

• We already do it for computability classes

• Model : Framework of computable analysis

3

Introduction

• We are interested in having algebraic characterisations of

FPTIME and FPSPACE.

→ Why algebraic characterisations?

• We already do it for computability classes

• Model : Framework of computable analysis

3

Introduction

• We are interested in having algebraic characterisations of

FPTIME and FPSPACE.

→ Why algebraic characterisations?

• We already do it for computability classes

• Model : Framework of computable analysis

3

Introduction

4

Introduction

4

Introduction

• Framework of implicit complexity (Bellantoni, Cook, Levant,

Marion, de Naurois...)

• Time = Length:

• Continuous ODEs : Bournez, Graça, Pouly (ICALP 2017)

• Discrete ODEs : Bournez, Durand (MFCS 2019)

5

Warm-up: algebraic

characterisations of PTIME

Discrete derivation

δf (x, y)

δx
= f (x+ 1, y)− f (x, y)

→ It is a derivation with a step of one

6

“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE” definable (from u, g and h) if it is a

solution of:

f (0, y) = g(y) and
δf(x , y)

δℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

7

“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE” definable (from u, g and h) if it is a

solution of:

f (0, y) = g(y) and
δf(x , y)

δℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

7

“Length ODE”?

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

• Derivation with respect to the length = change of variable.

• Variation when:

ℓ(x + 1)− ℓ(x) ̸= 0

• Inspired by:
δf (x , y)

δx
=

δℓ(x)

δx
· δf (x , y)

δℓ(x)
.

8

Motivation behind Length-ODEs

θ solution of:

y ′ = f (y)

f : R → R

ϕ solution of:

z = z ′

y ′ = f (y)z

9

Motivation behind Length-ODEs

Re-scaling: ϕ1(t) = θ(et)

10

Motivation behind Length-ODEs

“Time-complexity” is measured by the length of the solution curve

of the ODE:

lengthI (ϕ) =

∫
I
∥ϕ′(t)∥dt

Invariance by rescaling

11

Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)

12

Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)

12

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Essential Linearity

u is essentially linear in f iff:

u = A(..., σ(f)) · f (x) + B(..., σ(f)))

with A and B that may depends on a sigmoid over f .

14

Characterisation of PTIME (the one you are used to)

We consider

LDL = [0, 1, πk
i , ℓ(x),+,−,×, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, ’19)

LDL ∩ NN = PTIME∩NN

15

Some basic definitions of

computable analysis

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): formally

• What is a computable real number x?

There exists a Cauchy sequence ϕ : N → D such that

for all n ∈ N, |ϕ(n)− x | ≤ 2−n.

• What is a computable function f : R → R?
There exists an oracle Turing machine M such that, on

a Cauchy sequence ϕ converging to x , M queries the oracle to

have m such that |ϕ(m)− x | ≤ 2−m and computes d ∈ D
such that |d − f (x)| ≤ 2−n.

17

Definitions (from computable analysis): formally

• What is a computable real number x?

There exists a Cauchy sequence ϕ : N → D such that

for all n ∈ N, |ϕ(n)− x | ≤ 2−n.

• What is a computable function f : R → R?
There exists an oracle Turing machine M such that, on

a Cauchy sequence ϕ converging to x , M queries the oracle to

have m such that |ϕ(m)− x | ≤ 2−m and computes d ∈ D
such that |d − f (x)| ≤ 2−n.

17

FPTIME over the reals with Discrete

ODEs

First step: real sequences

Effective Limit

Definition
f : R → R is an effective limit of f̄ : R× N → R if∣∣f (x)− f̄ (x , 2n)

∣∣ ≤ 2−n

Key observation : f̄ computable in polynomial time ⇒ f

computable in polynomial time.

18

Algebraic characterisation of PTIME for sequences

We consider:

LDL• = [0, 1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
;

composition, linear length ODE,ELim]

Theorem (B., Bournez, MCU22 Best Student Paper Award)

FPTIME∩RN = LDL• ∩ RN

19

“Proof”

N

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

20

Second step: functions over the

reals with discrete ODEs

What we cannot do

R

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

XX

21

FPTIME for computable functions over the reals

We consider:

LDL◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, linear length ODE,ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

LDL◦ ∩ RR = FPTIME∩RR

22

Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1, y)

δℓ
= Next(State(2t , y))

.

23

Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1, y)

δℓ
= Next(State(2t , y))

.

23

Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1, y)

δℓ
= Next(State(2t , y))

.

23

FPSPACE with Discrete ODEs

Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g

and u (with u essentially linear in f(x , y)) if:

1. it is a solution of

f(0, y) = g(y) and
δf(x , y)

δx
= u(f(x , y),h(x , y), x , y),

2. the ODE is (polynomially) numerically stable.

24

FPSPACE for computable functions over the reals

We consider:

RLD◦ = [0, 1, πk
i , ℓ(n),+,−, tanh,

x

2
,
x

3
;

composition, robust linear ODE,ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

RLD◦ ∩ RR = FPSPACE∩RR

25

PSPACE-completeness of Reach in

Dynamical Systems

Dynamical System

x

f (x)

f 2(x)

f

f

26

PSPACE on robust dynamical systems

x

f (x)

εx ′ = fε(x)

f 2(x)ε

fε(x
′)

fε

fε

27

PSPACE on robust dynamical systems

• Reachability in dynamical systems is undecidable

• Say RP is robust when RP
ω = RP : RP robust ⇒ RP

computable.

• Reachability in robust dynamical systems is decidable (Asarin

& Bouajjani)

28

PSPACE on robust dynamical systems

• Reachability in dynamical systems is undecidable

• Say RP is robust when RP
ω = RP : RP robust ⇒ RP

computable.

• Reachability in robust dynamical systems is decidable (Asarin

& Bouajjani)

28

PSPACE on robust dynamical systems

Theorem (B., Bournez, CSL24)

Take a locally Lipschitz system, with f : X → X polynomial-time

computable, with X a closed rational box. Then, for p : N → N a

polynomial, RP
p ⊆ Qd ×Qd × N ∈ PSPACE.

→ works also for dynamical systems over the reals

29

Functions over the reals with

continuous ODEs

Why it is not easy to solve ODEs

30

Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

31

Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

31

Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

31

Robust Continuous ODEs

Definition
f : R → R is robustly ODE definable (from initial condition g, and

dynamic u) if

• it corresponds to the solution of the following continuous

ODE:

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x), (2)

• And polynomially numerically stable (to be defined : next

slides)

→ this allows computation by dichotomy.

32

An unusual way of solving an ODE

∆

IC , t = 0

33

An unusual way of solving an ODE

∆

IC , t = 0

34

An unusual way of solving an ODE

∆

IC , t = 0

35

An unusual way of solving an ODE

at 2−n

∆

at 2−η(n)
at 2−γ(n)

IC , t = 0

36

An unusual way of solving an ODE

• Computation at t = x at precision 2−n, with initial condition

t = 0

• Computation at t = t0 +
x
2 at precision 2−η(n), with initial

condition t0 = 0 and t0 =
x
2

• Computation at t = t0 +
x
4 at precision 2−γ(n), with initial

condition t0 = 0 and t0 =
x
4 and t0 =

x
2 and t0 =

3x
4

37

Robust Continuous ODEs (2/2)

More “formally” :

• ∃∆ ∈ Q∗
+, such that the previous ODE is (polynomially

spaced) solvable on [0,∆].

• For t ≥ ∆, we can compute f(t, x) at 2−n by computing some

approximation ˜f(t/2, x) of f(t/2, x) at precision 2−η(n).

38

Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1, πk
i ,+,−,×, tanh, cos, π,

x

2
,
x

3
;

composition, robust continuous ODE,ELim]

Theorem (B., Bournez, ICALP24)

RCD ∩ RR = FPSPACE∩RR

39

Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs

40

Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs

40

Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs

40

Conclusion

Conclusion

• We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

• Time = Length and Space = Precision;

• Further work :

• talking about NP (non-determinism)?

• talking about probabilistic classes

• talking about distributions

41

Conclusion

• We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

• Time = Length and Space = Precision;

• Further work :

• talking about NP (non-determinism)?

• talking about probabilistic classes

• talking about distributions

41

	Introduction
	Warm-up: algebraic characterisations of PTIME
	Some basic definitions of computable analysis
	FPTIME over the reals with Discrete ODEs
	First step: real sequences
	Second step: functions over the reals with discrete ODEs
	FPSPACE with Discrete ODEs
	PSPACE-completeness of Reach
	Functions over the reals with continuous ODEs
	Conclusion

