Characterisations of polynomial-time and -space complexity classes over the reals: ODEs and Robustness

Manon Blanc

MC2 Seminar

I focus on complexity over the reals and notions of robustness.

 Having algebraic characterisations of FPTIME and FPSPACE with ODEs;

I focus on complexity over the reals and notions of robustness.

- Having algebraic characterisations of FPTIME and FPSPACE with ODEs;
- Having computability and complexity results for the reachability problem in dynamical systems;

I focus on complexity over the reals and notions of robustness.

- Having algebraic characterisations of FPTIME and FPSPACE with ODEs;
- Having computability and complexity results for the reachability problem in dynamical systems;
- Having computability and complexity results for tiling problems.

- We are interested in having algebraic characterisations of FPTIME and FPSPACE.
 - \rightarrow Why algebraic characterisations?

- We are interested in having algebraic characterisations of FPTIME and FPSPACE.
 - \rightarrow Why algebraic characterisations?
- We already do it for computability classes

- We are interested in having algebraic characterisations of FPTIME and FPSPACE.
 - \rightarrow Why algebraic characterisations?
- We already do it for computability classes
- Model : Framework of computable analysis

- Framework of implicit complexity (Bellantoni, Cook, Levant, Marion, de Naurois...)
- Time = Length:
 - Continuous ODEs: Bournez, Graça, Pouly (ICALP 2017)
 - Discrete ODEs : Bournez, Durand (MFCS 2019)

characterisations of PTIME

Warm-up: algebraic

Discrete derivation

$$\frac{\delta f(\mathbf{x}, \mathbf{y})}{\delta \mathbf{x}} = f(\mathbf{x} + 1, \mathbf{y}) - f(\mathbf{x}, \mathbf{y})$$

 \rightarrow It is a derivation with a step of one

"Length ODE"?

Definition (Length ODE)

A function f is "length-ODE" definable (from u, g and h) if it is a solution of:

$$f(0, \mathbf{y}) = \mathbf{g}(\mathbf{y})$$
 and $\frac{\delta \mathbf{f}(x, \mathbf{y})}{\delta \ell} = \mathbf{u}(\mathbf{f}(x, \mathbf{y}), \mathbf{h}(x, \mathbf{y}), x, \mathbf{y}).$ (1)

"Length ODE"?

Definition (Length ODE)

A function f is "length-ODE" definable (from u, g and h) if it is a solution of:

$$f(0, \mathbf{y}) = \mathbf{g}(\mathbf{y})$$
 and $\frac{\delta \mathbf{f}(x, \mathbf{y})}{\delta \ell} = \mathbf{u}(\mathbf{f}(x, \mathbf{y}), \mathbf{h}(x, \mathbf{y}), x, \mathbf{y}).$ (1)

Formal synonym for right-hand side of (1):

$$\mathbf{f}(x+1,\mathbf{y}) = \mathbf{f}(x,\mathbf{y}) + (\ell(x+1) - \ell(x)) \cdot \mathbf{u}(\mathbf{f}(x,\mathbf{y}),\mathbf{h}(x,\mathbf{y}),x,\mathbf{y})$$

"Length ODE"?

$$\mathbf{f}(x+1,\mathbf{y}) = \mathbf{f}(x,\mathbf{y}) + (\ell(x+1) - \ell(x)) \cdot \mathbf{u}(\mathbf{f}(x,\mathbf{y}),\mathbf{h}(x,\mathbf{y}),x,\mathbf{y})$$

- Derivation with respect to the length = change of variable.
- Variation when:

$$\ell(x+1)-\ell(x)\neq 0$$

• Inspired by:

$$\frac{\delta f(x, \mathbf{y})}{\delta x} = \frac{\delta \ell(x)}{\delta x} \cdot \frac{\delta f(x, \mathbf{y})}{\delta \ell(x)}.$$

7

Motivation behind Length-ODEs



Fig. 5. A continuous system before and after an exponential speed-up.

 θ solution of:

 ϕ solution of:

$$y' = f(y)$$

$$z = z'$$

$$f: \mathbb{R} \to \mathbb{R}$$

$$y' = f(y)z$$

Motivation behind Length-ODEs

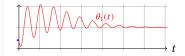


Fig. 5. A continuous system before and after an exponential speed-up.

Re-scaling:
$$\phi_1(t) = \theta(e^t)$$

Motivation behind Length-ODEs

"Time-complexity" is measured by the length of the solution curve of the ODE:

$$length_I(\phi) = \int_I \|\phi'(t)\| dt$$

Invariance by rescaling

$$f(0) = 2$$

$$\frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(0) = 2$$

$$\frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

Unique solution : $f(x) = 2^{2^{\ell(x)}}$

$$f(0) = 2;$$
 $\frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

• We have f(x) = F(z)

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

- We have f(x) = F(z)
- $F(z+1) = 2^{2^z+2^z} = F(z)F(z)$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

- We have f(x) = F(z)
- $F(z+1) = 2^{2^z+2^z} = F(z)F(z)$
- Then, F(z+1) = F(z) + (z+1-z)(F(z)F(z) F(z))

Essential Linearity

u is essentially linear in *f* iff:

$$u = A(..., \sigma(f)) \cdot f(x) + B(..., \sigma(f)))$$

with A and B that may depends on a sigmoid over f.

Characterisation of PTIME (the one you are used to)

We consider

$$\mathbb{LDL} = [0, 1, \pi_i^k, \ell(x), +, -, \times, cond(x);$$
 composition, linear length ODE]

Theorem (Bournez & Durand, '19)

$$\mathbb{LDL}\cap\mathbb{N}^{\mathbb{N}}=\mathsf{PTIME}\cap\mathbb{N}^{\mathbb{N}}$$

Some basic definitions of computable analysis

- What is a computable real number *x*?
 - \rightarrow we can compute a representation of x.

- What is a computable real number x?
 - \rightarrow we can compute a representation of x.

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

- What is a computable real number x?
 - \rightarrow we can compute a representation of x.

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

- What is a computable function $f : \mathbb{R} \to \mathbb{R}$?
 - \rightarrow on a representation of $x \in \mathbb{R}$, we produce a representation of f(x).

- What is a computable real number x?
 - \rightarrow we can compute a representation of x.

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

- What is a computable function $f: \mathbb{R} \to \mathbb{R}$? \to on a representation of $x \in \mathbb{R}$, we produce a representation of f(x).
- How do we define complexity over the reals?

Definitions (from computable analysis): formally

• What is a computable real number x?

There exists a Cauchy sequence $\phi: \mathbb{N} \to \mathbb{D}$ such that for all $n \in \mathbb{N}$, $|\phi(n) - x| \leq 2^{-n}$.

Definitions (from computable analysis): formally

- What is a computable real number x?
 - There exists a Cauchy sequence $\phi: \mathbb{N} \to \mathbb{D}$ such that for all $n \in \mathbb{N}$, $|\phi(n) x| \leq 2^{-n}$.
- What is a computable function $f : \mathbb{R} \to \mathbb{R}$?

There exists an oracle Turing machine M such that, on a Cauchy sequence ϕ converging to x, M queries the oracle to have m such that $|\phi(m)-x|\leq 2^{-m}$ and computes $d\in\mathbb{D}$ such that $|d-f(x)|\leq 2^{-n}$.

FPTIME over the reals with Discrete

ODEs

First step: real sequences

Effective Limit

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is an effective limit of $\bar{f}: \mathbb{R} \times \mathbb{N} \to \mathbb{R}$ if

$$\left|f(x)-\bar{f}(x,2^n)\right|\leq 2^{-n}$$

 $\underline{ \text{Key observation}}: \bar{f} \text{ computable in polynomial time} \Rightarrow f \\ \overline{\text{computable in polynomial time}}.$

Algebraic characterisation of PTIME for sequences

We consider:

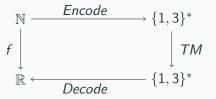
$$\overline{\mathbb{LDL}^{\bullet}} = [\mathbf{0}, \mathbf{1}, \pi_{i}^{k}, \ell(x), +, -, \times, \overline{\mathrm{cond}}(x), \frac{x}{2};$$

composition, linear length ODE, ELim]

Theorem (B., Bournez, MCU22 Best Student Paper Award)

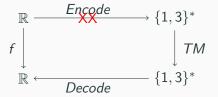
$$\mathsf{FPTIME} \cap \mathbb{R}^{\mathbb{N}} = \overline{\mathbb{LDL}^{\bullet}} \cap \mathbb{R}^{\mathbb{N}}$$

"Proof"



Second step: functions over the reals with discrete ODEs

What we cannot do



FPTIME for computable functions over the reals

We consider:

$$\overline{\mathbb{LDL}^{\circ}} = [\mathbf{0}, \mathbf{1}, \pi_{i}^{k}, \ell(x), +, -, \tanh, \frac{x}{2}, \frac{x}{3};$$

composition, linear length ODE, ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

$$\overline{\mathbb{LDL}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} \ = \mathsf{FPTIME} \cap \mathbb{R}^{\mathbb{R}}$$

Proof ideas (⊇)

 We give continuous approximations of some basic functions (integer/fractional part, modulo 2, ...);

Proof ideas (⊇**)**

- We give continuous approximations of some basic functions (integer/fractional part, modulo 2, ...);
- We encode each step of the transition of the Turing machine into the algebra, using the previous functions: Next;

Proof ideas (⊇**)**

- We give continuous approximations of some basic functions (integer/fractional part, modulo 2, ...);
- We encode each step of the transition of the Turing machine into the algebra, using the previous functions: Next;
- We obtain a *linear length ODE* encoding the execution of the Turing machine: State(t+1) = Next(State(t)) so

$$\frac{\delta \overline{State}(2^{t+1}, y)}{\delta \ell} = \overline{Next}(\overline{State}(2^t, y))$$

.

FPSPACE with Discrete ODEs

Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function \mathbf{f} is a robustly linear ODE definable from g and u (with \mathbf{u} essentially linear in $\mathbf{f}(x, \mathbf{y})$) if:

1. it is a solution of

$$\mathbf{f}(0, \mathbf{y}) = \mathbf{g}(\mathbf{y})$$
 and $\frac{\delta \mathbf{f}(x, \mathbf{y})}{\delta x} = \mathbf{u}(\mathbf{f}(x, \mathbf{y}), \mathbf{h}(x, \mathbf{y}), x, \mathbf{y}),$

2. the ODE is (polynomially) numerically stable.

FPSPACE for computable functions over the reals

We consider:

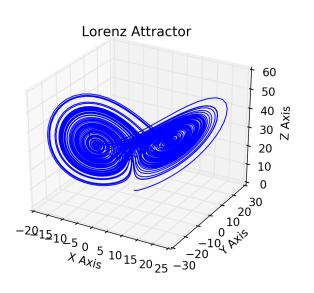
$$\overline{\mathbb{RLD}^{\circ}} = [\mathbf{0}, \mathbf{1}, \pi_{i}^{k}, \ell(n), +, -, \tanh, \frac{x}{2}, \frac{x}{3};$$

composition, robust linear ODE, ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

$$\overline{\mathbb{RLD}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = \mathsf{FPSPACE} \cap \mathbb{R}^{\mathbb{R}}$$

Functions over the reals with continuous ODEs



$$\mathbf{f}(0, \mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t, \mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t, \mathbf{x}), t, \mathbf{x}),$

 Non-computable in the general case, for u computable (Pour-El, Richards)

$$\mathbf{f}(0, \mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t, \mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t, \mathbf{x}), t, \mathbf{x}),$

- Non-computable in the general case, for u computable (Pour-El, Richards)
- Computable for u computable and unique solution (Collins, Graça, Ruohonen)

$$\mathbf{f}(0, \mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t, \mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t, \mathbf{x}), t, \mathbf{x}),$

- Non-computable in the general case, for u computable (Pour-El, Richards)
- Computable for u computable and unique solution (Collins, Graça, Ruohonen)
- FPSPACE-completeness on a bounded domain for u computable in polynomial-time (Kawamura, Ko)

Robust Continuous ODEs

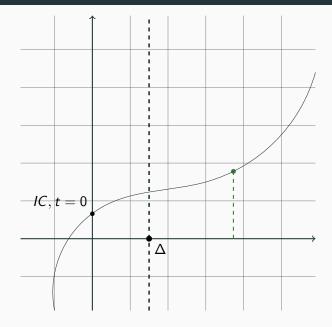
Definition

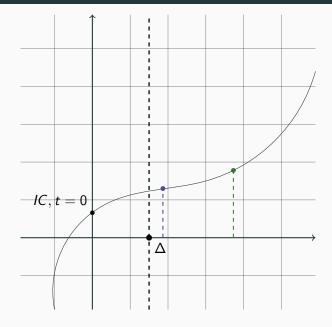
 $f:\mathbb{R}\to\mathbb{R}$ is robustly ODE definable (from initial condition g, and dynamic u) if

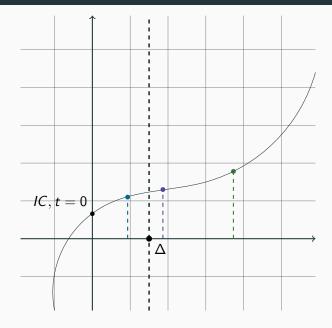
 it corresponds to the solution of the following continuous ODE:

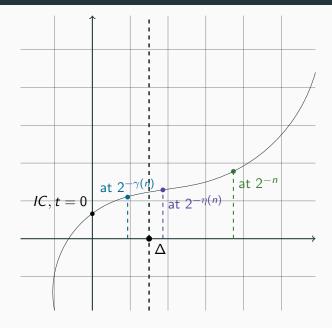
$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),t,\mathbf{x}),$ (2)

- And polynomially numerically stable (to be defined : next slides)
 - ightarrow this allows computation by dichotomy.









- Computation at t = x at precision 2^{-n} , with initial condition t = 0
- Computation at $t=t_0+\frac{x}{2}$ at precision $2^{-\eta(n)}$, with initial condition $t_0=0$ and $t_0=\frac{x}{2}$
- Computation at $t=t_0+\frac{x}{4}$ at precision $2^{-\gamma(n)}$, with initial condition $t_0=0$ and $t_0=\frac{x}{4}$ and $t_0=\frac{x}{2}$ and $t_0=\frac{3x}{4}$

Robust Continuous ODEs (2/2)

More "formally" :

- $\exists \Delta \in \mathbb{Q}_+^*$, such that the previous ODE is (polynomially spaced) solvable on $[0, \Delta]$.
- For $t \ge \Delta$, we can compute $\mathbf{f}(t, \mathbf{x})$ at 2^{-n} by computing some approximation $\widetilde{\mathbf{f}(t/2, \mathbf{x})}$ of $\mathbf{f}(t/2, \mathbf{x})$ at precision $2^{-\eta(n)}$.

Characterisation of PSPACE with continuous ODEs

We consider:

$$\overline{\mathbb{RCD}} = [\mathbf{0}, \mathbf{1}, \pi_i^k, +, -, \times, \tanh, \cos, \pi, \frac{x}{2}, \frac{x}{3};$$

composition, robust continuous ODE, ELim]

Theorem (B., Bournez, ICALP24)

$$\overline{\mathbb{RCD}} \cap \mathbb{R}^{\mathbb{R}} = \mathsf{FPSPACE} \cap \mathbb{R}^{\mathbb{R}}$$

Proof ideas

$$\overline{\mathbb{RLD}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = \overline{\mathbb{RCD}} \cap \mathbb{R}^{\mathbb{R}}$$

Proof ideas

$$\overline{\mathbb{RLD}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = \overline{\mathbb{RCD}} \cap \mathbb{R}^{\mathbb{R}}$$

 $\bullet \ \, \text{Discrete} \Rightarrow \text{Continuous settings:} \\$

Adaptation of the a trick due to Branicky ('95)

Proof ideas

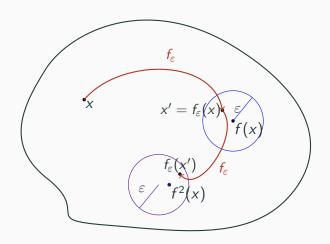
$$\overline{\mathbb{RLD}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = \overline{\mathbb{RCD}} \cap \mathbb{R}^{\mathbb{R}}$$

- Discrete \Rightarrow Continuous settings: Adaptation of the a trick due to Branicky ('95)
- Continuous ⇒ Discrete settings:
 From our definitions of robustness of ODEs

35

Further work: PSPACE-completeness

of Reach



 $\bullet\,$ Reachability in dynamical systems is undecidable

- Reachability in dynamical systems is undecidable
- Say $R^{\mathcal{P}}$ is robust when $R_{\omega}^{\mathcal{P}} = R^{\mathcal{P}} : R^{\mathcal{P}}$ robust $\Rightarrow R^{\mathcal{P}}$ computable.
- Reachability in robust dynamical systems is decidable (Asarin & Bouajjani)

Theorem (B., Bournez, CSL24)

Take a locally Lipschitz system, with $f: X \to X$ polynomial-time computable, with X a closed rational box. Then, for $p: \mathbb{N} \to \mathbb{N}$ a polynomial, $R_p^\mathcal{P} \subseteq \mathbb{Q}^d \times \mathbb{Q}^d \times \mathbb{N} \in \mathsf{PSPACE}$.

 \rightarrow works also for dynamical systems over the reals

Conclusion

Conclusion

- We have an algebraic characterisations of PTIME and PSPACE over the reals using discrete and continuous ODEs.
- Time = Length and Space = Precision;

Conclusion

- We have an algebraic characterisations of PTIME and PSPACE over the reals using discrete and continuous ODEs.
- Time = Length and Space = Precision;
- Further work :
 - talking about NP (non-determinism)?
 - talking about probabilistic classes
 - talking about distributions