Discrete-Time and Continuous-Time Systems
over the Reals: Relating Complexity with
Robustness, Length and Precision

PhD Defence Manon Blanc
Jury: Enrico Formenti, Juha Kontinen, Elvira Mayordomo, Cristébal

Rojas, Pierre Valarcher

o
universite
PAR I S'SAC LAY POLYTECHNIQUE

N2 1P PARIS

Introduction

Introduction: what are we studying?

int x
int y

int su

cout

m

Lorenz Attractor

Introduction: what are we studying?

Discrete-time Continuous-time

Structure of Typical Neuron «
1

Lorenz Attractor

- S
int x = 1; D) f .
int y = 1; /;i: v/
int sum o/
e

cout << : P
XA 01550, 5570

Introduction

e Continuous-Time Systems: can be described by a
(continuous) ODE

W = u(f(t,x), t,x)

e Discrete-Time Systems: can be described by a discrete ODE

of(n,y)
on

= f(n +]_,y) = f(mY) — u(f(n7 y)v n, y)

Introduction

e Continuous-Time Systems: can be described by a
(continuous) ODE

ko ke 9?x k

e Discrete-Time Systems: can be described by a discrete ODE

6f(n,y)

_ £2 o
f:n—2" on =06 = i@

e Characterisations of polynomial-time and polynomial-space;
o Complexity of robust dynamical systems;

e Robustness of tilings.

Motivations

e Verification: can a system reach an unsafe state from an
initial state (reachability)

e Models of computation: what is the computational power of a
given model

e Ressources: how to measure time, memory (space) used by a
computation

Discrete models of computation: Turing machines

The model:

HEIEIE
-

Physical World ‘ Mathematical Model

Computer ‘ Turing machines, boolean circuits...

Example: the addition

Example: the addition

Computationnal Power: model equivalence

‘Turing Machines‘

|

‘ Programs in C ‘

I

‘ Boolean Circuits ‘

‘ Algebraic Models ‘

A-calculus

10

Why algebraic characterisation?

[f17f27'” ,fk;Ol,OQ,"' ,On]

e Allows a more denotational point of view on complexity
classes

11

Why algebraic characterisation?

[f17f27'” ,fk;Ol,OQ,"' ,On]

e Allows a more denotational point of view on complexity
classes

e This is already done in computability:

[0, s, 7; composition, minimisation, primitive recursion]

11

On our example

Effective Church-Turing thesis: Every effectively and reasonable

models of computation yields to the same complexity classes

— Notions of time and space do not depend on the model, up to

some polynomial

— Verification is hard

12

On our example

Effective Church-Turing thesis: Every effectively and reasonable
models of computation yields to the same complexity classes

— Notions of time and space do not depend on the model, up to

some polynomial

— Verification is hard

What about continuous-time models?

12

The General Purpose Analog Computer (GPAC)

Introduced by Shannon (1941);

Mathematical model of the Differential Analizer:

Model based on circuits, with several interconnected units

doing basic operations

Corresponds to polynomial ODEs: y’ = p(y)

13

GPAC

€1
>
e —@— € summer: g = —(e; + &)

e(0)
el
+ €
@ >
product: eg = e1&
integrator:

eo = — Jo (ex(u)du + e(0))

14

GPAC: how does it work?

xX'(t) = y(t)
y'(t) = —x(t) x(t) = cos(t)
x(0) = -1 :{y(t) —)
y(0) = 0

ii5)

Computability: GPAC

‘Turing Machines‘

|

‘ Programs in C ‘

|
‘ Boolean Circuits \ e

] ?
‘ Algebraic Models ‘

16

Is verification simpler for continuous-time systems?

e Difficulty: simulating Turing machines with continuous
settings (e.g. Graga, Rojas) with

e generalised shifts (Moore)

e recurrent neural networks (Siegelmann, Sontag)

e analytic functions (Graca, Buescu, Campagnolo)

e hydrostatic equations in Beltrami fields (Cardona, Miranda,
Peralta-Salas)

e 2d continuous PAMs (Koiran, Cosnard, Garzon)

17

Solving continuous ODEs

B of(t,x)
f(0,x) =g(x) and oy = u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)

18

Solving continuous ODEs

B of(t,x)
f(0,x) =g(x) and oy = u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)

e Computable for u computable and unique solution (Collins,
Graga, Ruohonen)

18

Solving continuous ODEs

B of(t,x)
f(0,x) =g(x) and oy = u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)

e Computable for u computable and unique solution (Collins,

Graga, Ruohonen)

e FPSPACE-completeness on a bounded domain for u
computable in polynomial-time (Kawamura, Ko)

18

Complexity

But now, how do we define the complexity?

e Measuring the complexity so it corresponds to the digital world

19

Complexity

e Time?:
— Time = Length
e Continuous ODEs : Bournez, Graga, Pouly
e Discrete ODEs : Bournez, Durand, Kontinen, Antonelli, ...

20

Complexity

e Time?:
— Time = Length
e Continuous ODEs : Bournez, Graga, Pouly
e Discrete ODEs : Bournez, Durand, Kontinen, Antonelli, ...

e Space?:
e Effective Church thesis for probabilistic systems: Rojas

e A characterisation of PSPACE: Gozzi, Graca

— Our approach: Space = Precision

20

Our frameworks

e Mathematical framework: Computable Analysis

o Complexity framework: Algebraic Models

21

Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

22

Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.

22

Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.
e What is a computable function f : R — R?

— on a representation of x € R, we produce a
representation of f(x).

22

Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.

e What is a computable function f : R — R?
— on a representation of x € R, we produce a
representation of f(x).

e How do we define complexity over the reals?

22

Algebraic Models: for complexity classes

e Characterisation of polynomial time with explicit bounds: e.g.
Cobham

23

Algebraic Models: for complexity classes

e Characterisation of polynomial time with explicit bounds: e.g.
Cobham

Here: describing complexity without explicit bounds (e.g.
Bellantoni, Cook, Levant, Marion, Jacobé de Naurois, ...):

23

Algebraic Models: for complexity classes

e Characterisation of polynomial time with explicit bounds: e.g.
Cobham

Here: describing complexity without explicit bounds (e.g.
Bellantoni, Cook, Levant, Marion, Jacobé de Naurois, ...):

e With BSS model (Jacobé de Naurois, Marion, ...)

e Characterisation of FPTIME with linear length ODEs
(Bournez, Durand, Kontinen, ...)

23

Time and Space as algebras

Algebraic characterisations: Chapters 3 and 5 in one slide

With Discrete ODEs

With ODEs

FPTIME for NN

(Bournez, Durand)

FPTIME for RN

LDL® (thm. 3.1.6

FPTIME for RF

(Bournez, Graga, Pouly)

FPSPACE for RR

)
LDL® (thm. 3.2.3)
RLD® (thm. 5.1.6)

RCD (thm. 5.2.2)

24

Algebraic characterisations: Chapters 3 and 5 in one slide

With Discrete ODEs

With ODEs

FPTIME for NN

(Bournez, Durand)

FPTIME for RN

LDL® (thm. 3.1.6

FPTIME for RF

(Bournez, Graga, Pouly)

FPSPACE for RR

)
LDL® (thm. 3.2.3)
RLD® (thm. 5.1.6)

RCD (thm. 5.2.2)

e LDIL®, LDL® based on Linear Length ODEs;

e RILID° based on Robust Linear Discrete ODEs;

o RCD based on Robust Continuous ODEs.

24

Robust Continuous ODEs

Definition (5.2.3)
f: R — R is robustly ODE definable (from initial condition g, and

dynamic u) if
e it is the solution of the following continuous ODE:

B of(t,x) .
f(0,x) = g(x) and 5y = u(f(¢,x), t,x);

e And polynomially numerically stable (to be defined : next
slides)
— this allows computation by dichotomy.

25

26

/A_

+

[Val
1Cyt=14u

w
a
o
s
]
o0
=
2
o
(1]
5=
5]
>
]
3
©
S
()]
S
£
S
e
<

27

/A_

+

IVai
(AW

w
a
o
s
]
o0
=
2
o
(1]
5=
5]
>
]
3
©
S
()]
S
£
S
e
<

28

/A_

+

IVai
(AW

w
a
o
s
]
o0
=
2
o
(1]
5=
5]
>
]
3
©
S
()]
S
£
S
e
<

29

t2="

' a
(p) !
ALV AT

1

1

1

1

./ <

e m ... —-—-—-——-—-- e LI T
=

s

w
a
o
s
]
o0
=
2
o
(1]
5=
5]
>
]
3
©
S
()]
S
£
S
e
<

Robust Continuous ODEs (2/2)

More formally:

e JA € Q% such that the previous ODE is (polynomially space)
solvable on [0, A].

e For t > A, we can compute f(t,x) at 27" by computing some
approximation f(t/2,x) of f(¢/2,x) at precision 2~(")

30

Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, l,wf‘, +, —, X, tanh, cos, , g, %;
composition, robust continuous ODE, ELim)|

Theorem (5.2.2)

RCD N RR = FPSPACE NRR

31

Proof ideas (C)

RLD° NRR = RCD N RR

e Continuous = Discrete settings:
From our definitions of robustness of ODEs

32

Proof ideas (C)

All the functions and operators in RCID are computable in
polynomial-space.

33

Proof ideas (2): with discrete ODEs

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...):

34

Proof ideas (2): with discrete ODEs

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...):

34

Proof ideas (2): with discrete ODEs

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);

e We encode each step of the transition of the Turing machine
into the algebra, using the previous functions : Next;

85

Proof ideas (2): with discrete ODEs

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);

e We encode each step of the transition of the Turing machine
into the algebra, using the previous functions : Next;

e We obtain a robust linear discrete ODE encoding the
execution of the Turing machine:
State(t + 1) = Next(State(t)) so

dState(t,y)

¢ = Next(State(t, y))
ot

85

Proof ideas (2): going to continuous world

RLD° N RR = RCD N RR

36

Proof ideas (2): going to continuous world

RLD° N RR = RCD N RR

e Discrete = Continuous settings:
Adaptation of the a trick due to Branicky ('95)

36

Proof ideas (2): going to continuous world

RLD° N RR = RCD N RR

e Discrete = Continuous settings:

Adaptation of the a trick due to Branicky ('95)

36

Robustness in Dynamical Systems

Dynamical Systems

37

Computability Properties

e Reachability is undecidable...

38

Computability Properties

e Reachability is undecidable...

e ... more precisely, it is not co-computably enumerable;

38

Computability Properties

e Reachability is undecidable...
e ... more precisely, it is not co-computably enumerable;

e It becomes decidable for a sub-class of systems: Robust
Dynamical Systems.

38

Computability

e Informal conjecture: undecidability in verification does not
happen for robust systems.

e Undecidabilty is related to non-robustness of the systems
(Asarin, Bouajjani)

— with proper notion of robusteness: no sensitivity to an

arbitrarly small perturbation.

39

Robustness in Dynamical Systems

40

Complexity for Reach

e go from computability to complexity,
e quantifying the robustness to characterise PSPACE,

e having a notion of robustness to characterise PTIME.

41

Consider Rt = (N .~o R¥(x,y)

e Say R™ is robust when Rt = R* :

R™ robust = R™ computable.

e Reachability in robust dynamical systems is decidable (Asarin
& Bouajjani)

42

PSPACE on robust dynamical systems

Theorem (4.2.33)

Take a locally Lipschitz system, with f : X — X polynomial-time
computable, with X a closed rational box. Then, forp:N — N a
polynomial, R;" C Q7 x Q9 x N € PSPACE.

— works also for dynamical systems over the reals

Example
Simulation of Turing machines with continuous PAMs.

43

And With Reachability Properties

Theorem (4.3.2)

Consider a dynamical system, with f locally Lipschitz, computable,
whose domain is a computable compact, then, for all x,
cls(R¥(x)) € RY is a co-computably enumerable closed subset.

44

Plot twist

From CA, Computable < can be plotted.

1] I

o black pixels
- black or white
HoE R AREE pixels

aooononon

seee

Theorem (4.3.5)
R™ closed and can be plotted in a name of f < the system is

robust, i.e. Rt = R™. 45

Toward Complexity for tilings

Wang tilesets

46

R

=4

{

j;;f;w

ik i
Ry
B30 e
§ 5 O Gl

=

Figure 1: To the left is Robinson'’s tileset, where tiles can be rotated and

s

I Y

reflected. To the right a pattern that appears in every tiling by

Robinson'’s tileset.
47

Computability Properties

e The domino problem is undecidable...
e ... more precisely, it is not computably enumerable;

e |t becomes decidable for a sub-class of tilesets: robust tilesets.

— Chapter 5

48

Conclusion

Conclusion

e We extended the motto time = length to discrete ODEs
(chapter 3);

49

Conclusion

e We extended the motto time = length to discrete ODEs
(chapter 3);

e We proved that space = precision (chapter 5);
— proper notions of costs for analogue models of
computation;

49

Conclusion

e We extended the motto time = length to discrete ODEs
(chapter 3);

e We proved that space = precision (chapter 5);
— proper notions of costs for analogue models of
computation;

e We studied what makes reachability decidable for robust
dynamical systems and prove that space complexity is linked
to the precision (chapter 4);

49

Conclusion

e We extended the motto time = length to discrete ODEs
(chapter 3);

e We proved that space = precision (chapter 5);
— proper notions of costs for analogue models of
computation;

e We studied what makes reachability decidable for robust
dynamical systems and prove that space complexity is linked
to the precision (chapter 4);

e We apply this principle to tilings (chapter 6).

49

Conclusion: Perspectives

e Minimising the algebras?

Would it work for GPAC and polynomial ODEs?

Can we relate this approch to second-order complexity?

Can we relate more thinly our notions of robustness?

50

Conclusion: Perspective

e Studying non-determinism, and polynomial hierarchy;
o Algebraically characterising probabilistic classes;

e Studying the complexity for more general differential
equations, e.g. distributions.

Bl

52

Appendix: Algebraic characterisation of PTIME for sequences

We consider:

LDL® = [0,1, 75, ¢(x), +, —, X, cond(x), g;

composition, linear length ODE, ELim|

Theorem (B., Bournez, MCU22 Best Student Paper Award)

FPTIME NRY = LDL® N RN

53

Appendix: FPTIME for computable functions over the reals

We consider:

LDL® = 1 / —,t h :
[0, ,7T,, (x), + an 1 3,

composition, linear length ODE, ELim|

Theorem (B., Bournez, MFCS23 Best Paper Award)

LDL° NRR = FPTIME NRR

54

Appendix: FPSPACE for computable functions over the reals

We consider:

RLD° =[O0, l,ﬁf,é(n), +, —, tanh, g, %;

composition, robust linear ODE, ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

RLD° N RR = FPSPACE NRR

55

Appendix: An unusual way of solving an ODE

e Computation at t = x at precision 27", with initial condition
t=20

e Computation at t = to + 5 at precision 271(") with initial

condition tg = 0 and tp = %

e Computation at t = to + 7 at precision 2-7(") with initial

condition to = 0 and to = 7 and to = 3 and to = %X

56

	Introduction
	Motivations
	Time and Space as algebras
	Robustness in Dynamical Systems
	Toward Complexity for tilings
	Conclusion

