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Introduction

• Continuous-Time Systems: can be described by a

(continuous) ODE

∂f(t, x)

∂t
= u(f(t, x), t, x)

• Discrete-Time Systems: can be described by a discrete ODE

δf(n, y)

δn
= f(n + 1, y)− f(n, y) = u(f(n, y), n, y)
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Introduction

• Continuous-Time Systems: can be described by a

(continuous) ODE

∂2x

∂2t
(t) +

k

m
x(t) = 0

• Discrete-Time Systems: can be described by a discrete ODE

f : n → 2n
δf (n, y)

δn
= f 2(n)− f (n)
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Content

• Characterisations of polynomial-time and polynomial-space;

• Complexity of robust dynamical systems;

• Robustness of tilings.
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Motivations



Motivations

• Verification: can a system reach an unsafe state from an

initial state (reachability)

• Models of computation: what is the computational power of a

given model

• Ressources: how to measure time, memory (space) used by a

computation
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Discrete models of computation: Turing machines

The model:

$ 1 0 B B ...

↑

Physical World Mathematical Model

Computer Turing machines, boolean circuits...
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Example: the addition
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Example: the addition
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Computationnal Power: model equivalence

Turing Machines

Programs in C

Boolean Circuits

Algebraic Models

λ-calculus
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Why algebraic characterisation?

[f1, f2, · · · , fk ; o1, o2, · · · , on]

• Allows a more denotational point of view on complexity

classes

• This is already done in computability:

[0, s, π; composition,minimisation, primitive recursion]
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On our example

Effective Church-Turing thesis: Every effectively and reasonable

models of computation yields to the same complexity classes

→ Notions of time and space do not depend on the model, up to

some polynomial

→ Verification is hard

What about continuous-time models?
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The General Purpose Analog Computer (GPAC)

• Introduced by Shannon (1941);

• Mathematical model of the Differential Analizer;

• Model based on circuits, with several interconnected units

doing basic operations

• Corresponds to polynomial ODEs: y ′ = p(y)
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GPAC
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GPAC: how does it work?


x ′(t) = y(t)

y ′(t) = −x(t)

x(0) = −1

y(0) = 0

⇒

{
x(t) = cos(t)

y(t) = − sin(t)
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Computability: GPAC

Turing Machines

Programs in C

Boolean Circuits

Algebraic Models

λ-calculus

GPAC
?

Polynomial ODEs
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Is verification simpler for continuous-time systems?

• Difficulty: simulating Turing machines with continuous
settings (e.g. Graça, Rojas) with

• generalised shifts (Moore)

• recurrent neural networks (Siegelmann, Sontag)

• analytic functions (Graca, Buescu, Campagnolo)

• hydrostatic equations in Beltrami fields (Cardona, Miranda,

Peralta-Salas)

• 2d continuous PAMs (Koiran, Cosnard, Garzon)

• ...
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Solving continuous ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)
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Complexity

But now, how do we define the complexity?

• Measuring the complexity so it corresponds to the digital world
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Complexity

• Time?:
→ Time = Length

• Continuous ODEs : Bournez, Graça, Pouly

• Discrete ODEs : Bournez, Durand, Kontinen, Antonelli, ...

• Space?:

• Effective Church thesis for probabilistic systems: Rojas

• A characterisation of PSPACE: Gozzi, Graça

→ Our approach: Space = Precision
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Our frameworks

• Mathematical framework: Computable Analysis

• Complexity framework: Algebraic Models
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Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?
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Algebraic Models: for complexity classes

• Characterisation of polynomial time with explicit bounds: e.g.

Cobham

Here: describing complexity without explicit bounds (e.g.

Bellantoni, Cook, Levant, Marion, Jacobé de Naurois, ...):

• With BSS model (Jacobé de Naurois, Marion, ...)

• Characterisation of FPTIME with linear length ODEs

(Bournez, Durand, Kontinen, ...)
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Time and Space as algebras



Algebraic characterisations: Chapters 3 and 5 in one slide

With Discrete ODEs With ODEs

FPTIME for NN (Bournez, Durand)

FPTIME for RN LDL• (thm. 3.1.6)

FPTIME for RR LDL◦ (thm. 3.2.3) (Bournez, Graça, Pouly)

FPSPACE for RR RLD◦ (thm. 5.1.6) RCD (thm. 5.2.2)

• LDL•, LDL◦ based on Linear Length ODEs;

• RLD◦ based on Robust Linear Discrete ODEs;

• RCD based on Robust Continuous ODEs.
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Robust Continuous ODEs

Definition (5.2.3)
f : R → R is robustly ODE definable (from initial condition g, and

dynamic u) if

• it is the solution of the following continuous ODE:

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x);

• And polynomially numerically stable (to be defined : next

slides)

→ this allows computation by dichotomy.
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An unusual way of solving an ODE

∆

IC , t = 0
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An unusual way of solving an ODE

at 2−n

∆

at 2−η(n)
at 2−γ(n)

IC , t = 0
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Robust Continuous ODEs (2/2)

More formally:

• ∃∆ ∈ Q∗
+, such that the previous ODE is (polynomially space)

solvable on [0,∆].

• For t ≥ ∆, we can compute f(t, x) at 2−n by computing some

approximation ˜f(t/2, x) of f(t/2, x) at precision 2−η(n).
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Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1, πk
i ,+,−,×, tanh, cos, π,

x

2
,
x

3
;

composition, robust continuous ODE,ELim]

Theorem (5.2.2)

RCD ∩ RR = FPSPACE∩RR

31



Proof ideas (⊆)

RLD◦ ∩ RR = RCD ∩ RR

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs
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Proof ideas (⊆)

All the functions and operators in RCD are computable in

polynomial-space.

33



Proof ideas (⊇): with discrete ODEs

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...):
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Proof ideas (⊇): with discrete ODEs

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a robust linear discrete ODE encoding the

execution of the Turing machine:

State(t + 1) = Next(State(t)) so

δState(t, y)

δt
= Next(State(t, y))

.
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Proof ideas (⊇): going to continuous world

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

δf
δt (t) = u(y(t), t)

{
z1(0) = x0

z2(0) = x0{
∂z2
∂t (t) = c2 (r(z1(t))− z2(t))

3 θ (− cos 2πt)
∂z1
∂t (t) = c1 (ū (r(z2(t)))− z1(t))

3 θ (cos 2πt)
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Robustness in Dynamical Systems



Dynamical Systems

x

f (x)

f 2(x)

f

f
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Computability Properties

• Reachability is undecidable...

• ... more precisely, it is not co-computably enumerable;

• It becomes decidable for a sub-class of systems: Robust

Dynamical Systems.

38



Computability Properties

• Reachability is undecidable...

• ... more precisely, it is not co-computably enumerable;

• It becomes decidable for a sub-class of systems: Robust

Dynamical Systems.

38



Computability Properties

• Reachability is undecidable...

• ... more precisely, it is not co-computably enumerable;

• It becomes decidable for a sub-class of systems: Robust

Dynamical Systems.

38



Computability

• Informal conjecture: undecidability in verification does not

happen for robust systems.

• Undecidabilty is related to non-robustness of the systems

(Asarin, Bouajjani)

→ with proper notion of robusteness: no sensitivity to an

arbitrarly small perturbation.

39



Robustness in Dynamical Systems

x

f (x)

εx ′ = fε(x)

f 2(x)ε

fε(x
′)

fε

fε
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Complexity for Reach

• go from computability to complexity,

• quantifying the robustness to characterise PSPACE,

• having a notion of robustness to characterise PTIME.
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Robustness

Consider RH
ω =

⋂
ϵ>0 R

H
ϵ (x , y)

• Say RH is robust when RH
ω = RH :

RH robust ⇒ RH computable.

• Reachability in robust dynamical systems is decidable (Asarin

& Bouajjani)
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PSPACE on robust dynamical systems

Theorem (4.2.33)

Take a locally Lipschitz system, with f : X → X polynomial-time

computable, with X a closed rational box. Then, for p : N → N a

polynomial, RH
p ⊆ Qd ×Qd × N ∈ PSPACE.

→ works also for dynamical systems over the reals

Example
Simulation of Turing machines with continuous PAMs.
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And With Reachability Properties

Theorem (4.3.2)

Consider a dynamical system, with f locally Lipschitz, computable,

whose domain is a computable compact, then, for all x,

cls(RH
ω (x)) ⊆ Rd is a co-computably enumerable closed subset.
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Plot twist

From CA, Computable ⇔ can be plotted.

Theorem (4.3.5)
RH closed and can be plotted in a name of f ⇔ the system is

robust, i.e. RH
ω = RH. 45



Toward Complexity for tilings



Wang tilesets

46



Robinson

1 2 3

4 5 6

Figure 1: To the left is Robinson’s tileset, where tiles can be rotated and

reflected. To the right a pattern that appears in every tiling by

Robinson’s tileset.
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Computability Properties

• The domino problem is undecidable...

• ... more precisely, it is not computably enumerable;

• It becomes decidable for a sub-class of tilesets: robust tilesets.

→ Chapter 5
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Conclusion



Conclusion

• We extended the motto time = length to discrete ODEs

(chapter 3);

• We proved that space = precision (chapter 5);

→ proper notions of costs for analogue models of

computation;

• We studied what makes reachability decidable for robust

dynamical systems and prove that space complexity is linked

to the precision (chapter 4);

• We apply this principle to tilings (chapter 6).
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Conclusion: Perspectives

• Minimising the algebras?

• Would it work for GPAC and polynomial ODEs?

• Can we relate this approch to second-order complexity?

• Can we relate more thinly our notions of robustness?
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Conclusion: Perspective

• Studying non-determinism, and polynomial hierarchy;

• Algebraically characterising probabilistic classes;

• Studying the complexity for more general differential

equations, e.g. distributions.
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Appendix: Algebraic characterisation of PTIME for sequences

We consider:

LDL• = [0, 1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
;

composition, linear length ODE,ELim]

Theorem (B., Bournez, MCU22 Best Student Paper Award)

FPTIME∩RN = LDL• ∩ RN
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Appendix: FPTIME for computable functions over the reals

We consider:

LDL◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, linear length ODE,ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

LDL◦ ∩ RR = FPTIME∩RR
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Appendix: FPSPACE for computable functions over the reals

We consider:

RLD◦ = [0, 1, πk
i , ℓ(n),+,−, tanh,

x

2
,
x

3
;

composition, robust linear ODE,ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

RLD◦ ∩ RR = FPSPACE∩RR
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Appendix: An unusual way of solving an ODE

• Computation at t = x at precision 2−n, with initial condition

t = 0

• Computation at t = t0 +
x
2 at precision 2−η(n), with initial

condition t0 = 0 and t0 =
x
2

• Computation at t = t0 +
x
4 at precision 2−γ(n), with initial

condition t0 = 0 and t0 =
x
4 and t0 =

x
2 and t0 =

3x
4
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