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e We are interested in having algebraic characterisations of
FPTIME and FPSPACE.

— Why algebraic characterisations?
e We already do it for computability classes

e Model : Framework of computable analysis
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Introduction

e Framework of implicit complexity (Bellantoni, Cook, Levant,
Marion, de Naurois...)

e Time = Length:
e Continuous ODEs : Bournez, Graga, Pouly (ICALP 2017)
e Discrete ODEs : Bournez, Durand (MFCS 2019)



Warm-up: algebraic
characterisations of PTIME



Discrete derivation

of (x,y)
Ox

=f(x+1,y)—f(x,y)

— It is a derivation with a step of one



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE" definable (from u, g and h) if it is a
solution of:

of(x,y)
Y

f(0,y) =g(y) and =u(f(x,y),h(x,y), x,y). (1)



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE" definable (from u, g and h) if it is a
solution of:

of(x,y)
Y

f(0,y) =g(y) and =u(f(x,y),h(x,y), x,y). (1)

Formal synonym for right-hand side of (1

):
fx +1,y) = f(x,y) + ((x + 1) = £(x)) - u(f(x,y), h(x,y), x,¥)



“Length ODE”?

f(x +1,y) = f(x,y) + (Ux +1) = £(x)) - u(f(x,y), h(x, y), x,y)

e Derivation with respect to the length = change of variable.

e Variation when:
Ux+1)—4(x)#0
e Inspired by:
of(x,y) _ 6l(x) of(x,y)
ox  Ox 5(x)




Motivation behind Length-ODEs
H H /\ NGO WMJ $i(0)
] | \

Fig. 5. A continuous system before and after an exponential speed-up.

0 solution of: ¢ solution of:
y'=1y) z=27
f:R—R y' =f(y)z



Motivation behind Length-ODEs

Fig. 5. A continuous system before and after an exponential speed-up.

Re-scaling: ¢1(t) = 6(e")
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Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution
curve of the ODE:

length(4) = /, 1 (8)]| ot

Invariance by rescaling
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Example of length-ODE

12



Example of length-ODE

Unique solution : f(x) = 22
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Example of length-ODE
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Example of length-ODE

f(0)=2; (x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(l(x+1)—L(x))(F(x)f(x

~—

— f(x))
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Example of length-ODE

f(0)=2; (x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(l(x+1)—L(x))(F(x)f(x

~—

— f(x))

z ={(x) F(z) =2%

e We have f(x) = F(2)
o F(z+1)=212 = F(z)F(2)
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Example of length-ODE

f(0)=2; (x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(l(x+1)—L(x))(F(x)f(x

~—

— f(x))

z ={(x) F(z) =2%
e We have f(x) = F(2)
o F(z+1)=212 = F(z)F(2)

e Then, F(z+1)=F(z)+ (z+1—2z)(F(2)F(z) — F(2))

13



Essential Linearity

u is essentially linear in f iff:

u=A(.,0(f)) - f(x) + B(..., a(f)))

with A and B that may depends on a sigmoid over f.
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Characterisation of PTIME (the one you are used to)

We consider
LDL = [0,1,7X, (x), +, —, X, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, '19)
LDL N NY = PTIME NN"

ii5)



Some basic definitions of
computable analysis




Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.
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Example '
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Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.

e What is a computable function f : R — R?
— on a representation of x € R, we produce a
representation of f(x).

e How do we define complexity over the reals?

16



Definitions (from computable analysis): formally

e What is a computable real number x?
There exists a Cauchy sequence ¢ : N — D such that
forall n e N, |p(n) — x| < 27"
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Definitions (from computable analysis): formally

e What is a computable real number x?
There exists a Cauchy sequence ¢ : N — D such that
forall n e N, |p(n) — x| < 27"

e What is a computable function f : R — R?
There exists an oracle Turing machine M such that, on
a Cauchy sequence ¢ converging to x, M queries the oracle to
have m such that |¢(m) — x| < 27 and computes d € D
such that |d — f(x)| < 27"
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FPTIME over the reals with Discrete
ODEs




First step: real sequences




Effective Limit

Definition ~
f:R — R is an effective limit of f : R x N — R if

|F(x) — F(x,27)] < 27"

Key observation : f computable in polynomial time = f

computable in polynomial time.
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Algebraic characterisation of PTIME for sequences

We consider:

LDL® = [0,1, 75, ¢(x), +, —, X, cond(x), g;

composition, linear length ODE, ELim|

Theorem (B., Bournez, MCU22 Best Student Paper Award)

FPTIME NRY = LDL® N RN
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Encode (1,3)*

Z,

1,3*
Decode e
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Second step: functions over the
reals with discrete ODEs




What we cannot do

R —ERgede (1,3}
f ™
{1,3}"

Decode
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FPTIME for computable functions over the reals

We consider:

LDL® = 1 / —,t h :
[0, ,7T,, (x), + an 1 3,

composition, linear length ODE, ELim|

Theorem (B., Bournez, MFCS23 Best Paper Award)

LDL° NRR = FPTIME NRR
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Proof ideas (D)

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);
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(integer/fractional part, modulo 2, ...);

e We encode each step of the transition of the Turing machine
into the algebra, using the previous functions : Next;
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Proof ideas (D)

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);

e We encode each step of the transition of the Turing machine
into the algebra, using the previous functions : Next;

e We obtain a linear length ODE encoding the execution of the
Turing machine: State(t + 1) = Next(State(t)) so

§State(2t1,y)

 Naor(Crogai(nt
- = Next(State(2',y))

23



FPSPACE with Discrete ODEs




Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g
and u (with u essentially linear in f(x,y)) if:

1. it is a solution of

2. the ODE is (polynomially) numerically stable.

24



FPSPACE for computable functions over the reals

We consider:

RLD° =[O0, l,ﬁf,é(n), +, —, tanh, g, %;

composition, robust linear ODE, ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

RLD° N RR = FPSPACE NRR
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Functions over the reals with
continuous ODEs




Why it is not easy to solve ODEs

Lorenz Attractor

Z Axis
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Why it is not easy to solve ODEs

B of(t,x)
f(0,x) =g(x) and oy u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)
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Why it is not easy to solve ODEs

B of(t,x)
f(0,x) =g(x) and oy u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)

e Computable for u computable and unique solution (Collins,

Graga, Ruohonen)

e FPSPACE-completeness on a bounded domain for u
computable in polynomial-time (Kawamura, Ko)

27



Robust Continuous ODEs

Definition
f: R — R is robustly ODE definable (from initial condition g, and

dynamic u) if

e it corresponds to the solution of the following continuous
ODE:
of(t,x)

f(0,x) = g(x) and oy u(f(t,x), t,x), (2)

e And polynomially numerically stable (to be defined : next

slides)
— this allows computation by dichotomy.

28
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An unusual way of solving an ODE

e Computation at t = x at precision 27", with initial condition
t=20

e Computation at t = to + 5 at precision 271" with initial

condition tg =0 and to = 3

e Computation at t = to + 7 at precision 277" with initial

condition to =0 and to = 7 and to = 3 and tg = %TX

33



Robust Continuous ODEs (2/2)

More “formally” :

e JA € Qf, such that the previous ODE is (polynomially
spaced) solvable on [0, A].

e For t > A, we can compute f(t,x) at 27" by computing some
approximation f(t/2,x) of f(¢/2,x) at precision 2~(")

34



Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, l,wf‘, +, —, X, tanh, cos, , g, %;
composition, robust continuous ODE, ELim)|

Theorem (B., Bournez, ICALP24)

RCD N RR = FPSPACE NRR

85



RLD° NRR = RCD N RR

36



RLD° NRR = RCD N RR

e Discrete = Continuous settings:
Adaptation of the a trick due to Branicky ('95)
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RLD° NRR = RCD N RR

e Discrete = Continuous settings:
Adaptation of the a trick due to Branicky ('95)

e Continuous = Discrete settings:
From our definitions of robustness of ODEs

36



Further work: PSPACE-completeness
of Reach




PSPACE-completeness: a bit on robust dynamical systems
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PSPACE-completeness: a bit on robust dynamical systems

e Reachability in dynamical systems is undecidable

e Reachability in robust dynamical systems is decidable (Asarin
& Bouajjani)

38



PSPACE-completeness: a bit on robust dynamical systems

Theorem (B., Bournez, CSL24)

Take a locally Lipschitz system, with f : X — X polynomial-time
computable, with X a closed rational box. Then, forp: N — N a
polynomial, RZ,) C Q7 x Q9 x N € PSPACE.

— works also for dynamical systems over the reals

39



PSPACE-completeness: Type-2 reduction

We take the reduction function function as defined by Cook and
Kawamura (the drawing comes from their paper):

>
Y| e
B
1
/
A
u lsome v e Alu] A
xuwm
. (for some i € A[y])
A S[n B A <2 B

—m

40



PSPACE-completeness: the aim

Prove that reachability is PSPACE-hard for robust dynamical
systems:

e We use the algebra LDIL° and RLD®;

e We use the Type-2 reduction.

41



Conclusion




Conclusion

e We have an algebraic characterisations of PTIME and
PSPACE over the reals using discrete and continuous ODEs.

e Time = Length and Space = Precision;
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Conclusion

e We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

e Time = Length and Space = Precision;

e Further work :

e talking about NP (non-determinism)?
e talking about probabilistic classes
e talking about distributions

42
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