
Robustness in complexity over the reals:

describing complexity classes

Manon Blanc BARC Seminar

1

Introduction

Introduction

I focus on complexity over the reals and notions of robustness.

• Having algebraic characterisations of FPTIME and

FPSPACE with ODEs;

• Having computability and complexity results for the

reachability problem in dynamical systems;

• Having computability and complexity results for tiling

problems.

2

Introduction

I focus on complexity over the reals and notions of robustness.

• Having algebraic characterisations of FPTIME and

FPSPACE with ODEs;

• Having computability and complexity results for the

reachability problem in dynamical systems;

• Having computability and complexity results for tiling

problems.

2

Introduction

I focus on complexity over the reals and notions of robustness.

• Having algebraic characterisations of FPTIME and

FPSPACE with ODEs;

• Having computability and complexity results for the

reachability problem in dynamical systems;

• Having computability and complexity results for tiling

problems.

2

Introduction

• We are interested in having algebraic characterisations of

FPTIME and FPSPACE.

→ Why algebraic characterisations?

• We already do it for computability classes

• Model : Framework of computable analysis

3

Introduction

• We are interested in having algebraic characterisations of

FPTIME and FPSPACE.

→ Why algebraic characterisations?

• We already do it for computability classes

• Model : Framework of computable analysis

3

Introduction

• We are interested in having algebraic characterisations of

FPTIME and FPSPACE.

→ Why algebraic characterisations?

• We already do it for computability classes

• Model : Framework of computable analysis

3

Introduction

4

Introduction

4

Introduction

• Framework of implicit complexity (Bellantoni, Cook, Levant,

Marion, de Naurois...)

• Time = Length:

• Continuous ODEs : Bournez, Graça, Pouly (ICALP 2017)

• Discrete ODEs : Bournez, Durand (MFCS 2019)

5

Warm-up: algebraic

characterisations of PTIME

Discrete derivation

δf (x, y)

δx
= f (x+ 1, y)− f (x, y)

→ It is a derivation with a step of one

6

“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE” definable (from u, g and h) if it is a

solution of:

f (0, y) = g(y) and
δf(x , y)

δℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

7

“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE” definable (from u, g and h) if it is a

solution of:

f (0, y) = g(y) and
δf(x , y)

δℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

7

“Length ODE”?

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

• Derivation with respect to the length = change of variable.

• Variation when:

ℓ(x + 1)− ℓ(x) ̸= 0

• Inspired by:
δf (x , y)

δx
=

δℓ(x)

δx
· δf (x , y)

δℓ(x)
.

8

Motivation behind Length-ODEs

θ solution of:

y ′ = f (y)

f : R → R

ϕ solution of:

z = z ′

y ′ = f (y)z

9

Motivation behind Length-ODEs

Re-scaling: ϕ1(t) = θ(et)

10

Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution

curve of the ODE:

lengthI (ϕ) =

∫
I
∥ϕ′(t)∥dt

Invariance by rescaling

11

Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)

12

Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)

12

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

13

Essential Linearity

u is essentially linear in f iff:

u = A(..., σ(f)) · f (x) + B(..., σ(f)))

with A and B that may depends on a sigmoid over f .

14

Characterisation of PTIME (the one you are used to)

We consider

LDL = [0, 1, πk
i , ℓ(x),+,−,×, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, ’19)

LDL ∩ NN = PTIME∩NN

15

Some basic definitions of

computable analysis

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?

16

Definitions (from computable analysis): formally

• What is a computable real number x?

There exists a Cauchy sequence ϕ : N → D such that

for all n ∈ N, |ϕ(n)− x | ≤ 2−n.

• What is a computable function f : R → R?
There exists an oracle Turing machine M such that, on

a Cauchy sequence ϕ converging to x , M queries the oracle to

have m such that |ϕ(m)− x | ≤ 2−m and computes d ∈ D
such that |d − f (x)| ≤ 2−n.

17

Definitions (from computable analysis): formally

• What is a computable real number x?

There exists a Cauchy sequence ϕ : N → D such that

for all n ∈ N, |ϕ(n)− x | ≤ 2−n.

• What is a computable function f : R → R?
There exists an oracle Turing machine M such that, on

a Cauchy sequence ϕ converging to x , M queries the oracle to

have m such that |ϕ(m)− x | ≤ 2−m and computes d ∈ D
such that |d − f (x)| ≤ 2−n.

17

FPTIME over the reals with Discrete

ODEs

First step: real sequences

Effective Limit

Definition
f : R → R is an effective limit of f̄ : R× N → R if∣∣f (x)− f̄ (x , 2n)

∣∣ ≤ 2−n

Key observation : f̄ computable in polynomial time ⇒ f

computable in polynomial time.

18

Algebraic characterisation of PTIME for sequences

We consider:

LDL• = [0, 1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
;

composition, linear length ODE,ELim]

Theorem (B., Bournez, MCU22 Best Student Paper Award)

FPTIME∩RN = LDL• ∩ RN

19

“Proof”

N

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

20

Second step: functions over the

reals with discrete ODEs

What we cannot do

R

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

XX

21

FPTIME for computable functions over the reals

We consider:

LDL◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, linear length ODE,ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

LDL◦ ∩ RR = FPTIME∩RR

22

Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1, y)

δℓ
= Next(State(2t , y))

.

23

Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1, y)

δℓ
= Next(State(2t , y))

.

23

Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1, y)

δℓ
= Next(State(2t , y))

.

23

FPSPACE with Discrete ODEs

Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g

and u (with u essentially linear in f(x , y)) if:

1. it is a solution of

f(0, y) = g(y) and
δf(x , y)

δx
= u(f(x , y),h(x , y), x , y),

2. the ODE is (polynomially) numerically stable.

24

FPSPACE for computable functions over the reals

We consider:

RLD◦ = [0, 1, πk
i , ℓ(n),+,−, tanh,

x

2
,
x

3
;

composition, robust linear ODE,ELim]

Theorem (B., Bournez, MFCS23 Best Paper Award)

RLD◦ ∩ RR = FPSPACE∩RR

25

Functions over the reals with

continuous ODEs

Why it is not easy to solve ODEs

26

Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

27

Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

27

Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• FPSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

27

Robust Continuous ODEs

Definition
f : R → R is robustly ODE definable (from initial condition g, and

dynamic u) if

• it corresponds to the solution of the following continuous

ODE:

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x), (2)

• And polynomially numerically stable (to be defined : next

slides)

→ this allows computation by dichotomy.

28

An unusual way of solving an ODE

∆

IC , t = 0

29

An unusual way of solving an ODE

∆

IC , t = 0

30

An unusual way of solving an ODE

∆

IC , t = 0

31

An unusual way of solving an ODE

at 2−n

∆

at 2−η(n)
at 2−γ(n)

IC , t = 0

32

An unusual way of solving an ODE

• Computation at t = x at precision 2−n, with initial condition

t = 0

• Computation at t = t0 +
x
2 at precision 2−η(n), with initial

condition t0 = 0 and t0 =
x
2

• Computation at t = t0 +
x
4 at precision 2−γ(n), with initial

condition t0 = 0 and t0 =
x
4 and t0 =

x
2 and t0 =

3x
4

33

Robust Continuous ODEs (2/2)

More “formally” :

• ∃∆ ∈ Q∗
+, such that the previous ODE is (polynomially

spaced) solvable on [0,∆].

• For t ≥ ∆, we can compute f(t, x) at 2−n by computing some

approximation ˜f(t/2, x) of f(t/2, x) at precision 2−η(n).

34

Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1, πk
i ,+,−,×, tanh, cos, π,

x

2
,
x

3
;

composition, robust continuous ODE,ELim]

Theorem (B., Bournez, ICALP24)

RCD ∩ RR = FPSPACE∩RR

35

Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs

36

Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs

36

Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs

36

Further work: PSPACE-completeness

of Reach

PSPACE-completeness: a bit on robust dynamical systems

x

f (x)

εx ′ = fε(x)

f 2(x)ε

fε(x
′)

fε

fε

37

PSPACE-completeness: a bit on robust dynamical systems

• Reachability in dynamical systems is undecidable

• Reachability in robust dynamical systems is decidable (Asarin

& Bouajjani)

38

PSPACE-completeness: a bit on robust dynamical systems

Theorem (B., Bournez, CSL24)

Take a locally Lipschitz system, with f : X → X polynomial-time

computable, with X a closed rational box. Then, for p : N → N a

polynomial, RP
p ⊆ Qd ×Qd × N ∈ PSPACE.

→ works also for dynamical systems over the reals

39

PSPACE-completeness: Type-2 reduction

We take the reduction function function as defined by Cook and

Kawamura (the drawing comes from their paper):

40

PSPACE-completeness: the aim

Prove that reachability is PSPACE-hard for robust dynamical

systems:

• We use the algebra LDL◦ and RLD◦;

• We use the Type-2 reduction.

41

Conclusion

Conclusion

• We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

• Time = Length and Space = Precision;

• Further work :

• talking about NP (non-determinism)?

• talking about probabilistic classes

• talking about distributions

42

Conclusion

• We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

• Time = Length and Space = Precision;

• Further work :

• talking about NP (non-determinism)?

• talking about probabilistic classes

• talking about distributions

42

	Introduction
	Warm-up: algebraic characterisations of PTIME
	Some basic definitions of computable analysis
	FPTIME over the reals with Discrete ODEs
	First step: real sequences
	Second step: functions over the reals with discrete ODEs
	FPSPACE with Discrete ODEs
	Functions over the reals with continuous ODEs
	Further work: PSPACE-completeness of Reach
	Conclusion

