Computability and complexity over the reals
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Introduction



We want to algebraically characterise PTIME and PSPACE...

Working on real numbers



Example: The set of computable functions

constant function 0,

the projection functions 7%,

the function successor s,

and that is closed under composition, minimisation and

primitive recursion.

[O, Wf , §; composition, primitive recursion, minimisation|



Computability and complexity over
the reals : how?



Computable real numbers

e What is a computable real number?
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Computable real numbers

e What is a computable real number?

Example '
e, m are computable. 2,21 2-BB()) where BB is the Busy Beavers

function is not.

e What is a computable function over the reals?

e How do we define complexity over the reals?



The begining of algebraic
characterisation: a class you know

well



Discrete derivation

df(x,y)
Ox

=f(x+1,y) — f(x,y)



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE" definable (from u, g and h) if it is a
solution of

of(x,y)
50

f(0,y) =g(y) and =u(f(x,y),h(x,y), x,y). (1)

Formal synonym for right-hand side of (1):
F(x + 1,y) = f(x,) + (€(x + 1) — £(x)) - u(F(x,y), h(x,y), x,y)



“Length ODE”?

Derivation with respect to the length = change of variable.
Variation when:

U(x+1)—£(x)#0

Inspired by:

of(x,y) _ 6l(x) 6f(x,y)
dx dx 50(x)



Motivation behind Length-ODEs
H H /\ NGO WMJ $i(0)
] | \

Fig. 5. A continuous system before and after an exponential speed-up.

0 solution of: ¢ solution of:
y'=1y) z=27
f:R—R y' =f(y)z



Motivation behind Length-ODEs

Fig. 5. A continuous system before and after an exponential speed-up.

Re-scaling: ¢1(t) = 6(e")



Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution
curve of the ODE.

Invariance by rescaling
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Example of length-ODE
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Example of length-ODE

Unique solution : f(x) = 22
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
flx+1) — f(x) = (U(x + 1) — £(x))(F(x)F(x) — F(x))
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x
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e We have f(x) = F(2)
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x
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e We have f(x) = F(2)
o F(z+1) =2 = F(2)F(2)
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Example of length-ODE

f(0) =2; %(X) = f(x) - f(x) — f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x

~—
|
-
—~~
x
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~—

e We have f(x) = F(2)
o F(z+1) =271 = F(2)F(2)
e Then, F(z+1)=F(z)+(z+1—-2z)(F(2)F(z) — F(2))
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Characterisation of PTIME (the one you are used to)

We consider
LDL = [0,1,7X, (x), +, —, X, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, '19)
LDL N NY = PTIME NN"
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First step: real sequences




Effective Limit

Definition ~
f:R — R is an effective limit of f : R x N — R if

|F(x) — F(x,27)] < 27"

Key observation : f computable in polynomial time = f

computable in polynomial time.
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Algebraic characterisation of PTIME

We consider:
LDL® = [0,1, 75, £(x), +, —, x, cond(x), %;
composition, linear length ODE, effective limit]

Theorem (B., Bournez, MCU22)
FPTIMENRN = LDL® N RN

ii5)



Encode (1,3)*

Z,

1,3*
Decode e
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Second step: functions over the
reals with discrete ODEs




What we cannot do

R —ERgede (1,3}
f ™
{1,3}"

Decode
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FPTIME for computable functions over the reals

We consider:

LDL® = [0,1, 7K, £(x), +, —, tanh,

00\><

X
2’
composition, linear length ODE, effective limit|

Theorem (B., Bournez, MFCS23)

LDL° NRR = FPTIME NRR
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Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable (with u
essentially linear in f(x,y), g and h) if:

1. it is a solution of

of(x,y)
OX

f(Oy) - g(y) and - u(f(Xv Y)‘/ h(Xv y),X,Y),

2. the ODE is (polynomially) numerically stable.
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FPSPACE for computable functions over the reals

We consider:

RLD® = [0,1, 7%, £(x), +, —, tanh, %

N[ X

composition, robust linear ODE, effective limit]

Theorem (B., Bournez, MFCS23)
RLD° N R® = FPSPACE NR¥
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Third step: Functions over the reals
with continuous ODEs




Robust Continuous ODEs

A function f : R — R is robustly ODE definable (from initial
condition g, and dynamic u) if

e it corresponds to the solution of the following continuous
ODE:
of(t,x)

f(0,x) =g(x) and o = u(f(t,x),h(t,x),t,x), (2)
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Robust Continuous ODEs

e JA € Q% and some polynomial p such that the previous
ODE is (polynomially) numerically stable on [0, A].

e For t > A, we can compute f(t,x) by computing some

approximation f(t/2,x) of f(t/2,x) at precision €(n).
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Characterisation of PSPACE with continuous ODEs

We consider :
RCD = [0, 1,7r;‘, +, —, X, tanh, cos, , %, g;

composition, robust ODE, ELim|

Theorem (B., Bournez, submitted)
RCD N RF = FPSPACE NR®

23



Conclusion




Conclusion

e We now have “natural” algebraic characterisations for
functions over the reals computable in FPTIME and
FPSPACE.

e Further works:

e Cover other complexity classes

e See what we can say for more general functions
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