The decidability of the domino problem

Nathalie Aubrun, Manon Blanc, Olivier Bournez

Introduction

• A set of tiles with compatibility rules

• A set of tiles with compatibility rules

Theorem (Easy inclusion, compacity argument) Given a set of tiles, the problem of knowing whether it paves the plan is co-computably enumerable.

False Conjecture (Wang '61) : all the paving of the plan are periodic.

Theorem (Easy inclusion, compacity argument) Given a set of tiles, the problem of knowing whether it paves the plan is co-computably enumerable.

False Conjecture (Wang '61) : all the paving of the plan are periodic.

FALSE!!

Example : Robinson tileset '78

Theorem (Berger '64) Given a set of tiles, the problem of knowing whether it paves the plan is undecidable.

The formalism of transducers

(Meta-)Transducers

Example

(Meta-)Transducers

The notion of robustness

Definition (Robustness)

Let τ a tileset. It is *provably robust* if there *provably* exists some sequence of tranducers $(\mathcal{T}_n)_{n\in\mathbb{N}}$ such that, for all $n\in\mathbb{N}$, \mathcal{T}_n contains a loop

Theorem Let τ a tileset. τ is provably robust $\Leftrightarrow \tau$ admits a tiling.

 \rightarrow the domino problem for provably robust tileset is computable

Conclusion

- We have a criterion to prove if a tileset can tile a plan.
- We applied it to some well-known tilesets, including Jeandel-Rao 2015 tileset and Robinson 1978 tileset.
- Current work : a criterion to prove if a tilset can *aperiodically* tiles.