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We need to talk about a discrete

model



An example of non-analogue model
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A mathematical representation: the Turing machine

The model:

$ 1 0 0 B ...

↑

Physical World Mathematical Model

Laptop Turing machines
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Example: the addition +1
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A bit more formally

(we assume the tape is non-empty)

$ 0 1 B

qinit qinit , $,→ qinit , 0,→ qinit , 1,→ q1,B,←
q1 accept, 1 q2, 0,←
q2 q3, $,→ accept, 1 q2, 1,←
q3 q04 , 1,→
q04 q04 , 0,→ accept, 0
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A notion of cost for TM

• Time = number of steps

• Space = number of needed cells

5



A notion of cost for TM

• Time = number of steps

• Space = number of needed cells

5



On our example

Time : 6 steps → O(n), n the size of the input

Space : 2 cells → O(n), n the size of the input

Both are linear (in the size of the input), so polynomial in time and

space.
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Robust correspondance

• Time of a TM ∼ Time on the laptop...

→ Notions of time and space does not depend on the model
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Computational Power

Church-Turing thesis: All discrete sufficiently powerful and

reasonable models of computation have the same computational

power as a Turing machine.
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Power: boxes

Quantum Models

Circuits

Turing Machines

Program in C

λ-calculus

Equivalent
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Putting boxes into boxes (but they are very nice boxes)
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What an analogue world



First

Historicaly, they are the first computational machines and

certainely the most accurate

→ Nothing is lost in translation
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Well, actually... An example of analogue model
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We live in an analogue world
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We live in an analogue world: planimeter

14



We live in an analogue world:
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How does it work?

• Making: convert the sound into a

print on a support in a spiraling

groove;

• Playing:

• A head is placed on the groove;

• It transmit the deviations of the

groove to an electromagnetic

transductor;

• An audio power amplifier allows

un to actually hear the sound
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Better or worse?

Advantages:

• We capture the real sound

• Less mixing needed

Drawbacks:

• Worn out faster

• More fragile

• It is big
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Too specific use

One device for one use: can we construct an “equivalent” of the

physical computer, but for analogue model?

→ is there a general purpose device?

18



The GPAC



Where are we now?

Physical World Mathematical Model

Laptop Turing machines

Differential Analyzer ?
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The General Purpose Analog Computer (GPAC)

• Introduced by Claude Shannon in 1941;

• Mathematical model of the Differential Analizer;

• Model based on circuits, with several interconnected units

doing basic operations
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GPAC
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GPAC: how does it work?


x ′(t) = y(t)

y ′(t) = −x(t)
x(0) = −1
y(0) = 0

⇒

{
x(t) = cos(t)

y(t) = − sin(t)
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Computational Power

Church-Turing thesis: All discrete sufficiently powerful and

reasonable models of computation have the same computational

power as a Turing machine.

Is GPAC a sufficiently powerful?

Is GPAC reasonable?
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Powerful: Other boxes

Quantum Models

Circuits

Turing Machines

Program in C

λ-calculus

GPAC

Equivalent

?
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Computational power: is GPAC weaker?

• Shannon: GPAC ≤ Turing Machines: A GPAC corresponds to

(a projection of) a polynomial differential equation, which can

be computed by a TM.

• Shannon: GPAC < Turing Machines: There exist computable

functions, which are not projections of differential equations:

e.g. Γ, ζ.
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Well, he was wrong

We can actually program with polynomial ODE (Bournez, Graça,

Pouly, Campagnolo, Hainry)
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Little exercise

Transform this system of ODEs:{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1+t

{
y1(0) = 0

y2(0) = 0

into a polynomial ODE:



y ′1 = y3
2

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)

y ′4 = −y3(y1y4 − y5)

y ′5 = y5(y6y
2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0

y2(0) = 0

y3(0) = 0

y4(0) = 1

y5(0) = e

y6(0) = 1

considering y3 = sin y2

,y4 = cos y2 ,y5 = ee
y1+t ,y6 = ey1
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The big theorem: GPAC is sufficiently powerful

Theorem
Every computable functions can be computed by polynomial ODE,

and conversely

Thus :
((((((((((((((((((

Shannon: GPAC < Turing Machines

Turing Machines ≤ GPAC

Is GPAC more powerful? 1

1Fun fact: that’s a part of my PhD subject �

28



How much does it cost?



How to redefine the cost: Time

θ solution of:

y ′ = f (y)

with f : R→ R

ϕ solution of:

z = z ′

y ′ = f (y)z

Re-scaling: ϕ1(t) = θ(et)
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How to redefine the cost: Time

θ solution of:

y ′ = f (y)

with f : R→ R

ϕ solution of:

z = z ′

y ′ = f (y)z

With this definition of time, all computation can cost 1 time unit...
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How to redefine the cost: Time

Robust notion of time → a quantity invariant by rescaling

The length remains the same

Time = Length of the curve

31



Now space: Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• PSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)
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An unusual way of solving an ODE

∆

IC , t = 0
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∆
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An unusual way of solving an ODE

at 2−n

∆

at 2−η(n)
at 2−γ(n)

IC , t = 0

36



Space=Precision

• Computation at t = x at precision 2−n, with initial condition

t = 0

• Computation at t = t0 +
x
2 at precision 2−η(n), with initial

condition t0 = 0 and t0 =
x
2

• Computation at t = t0 +
x
4 at precision 2−γ(n), with initial

condition t0 = 0 and t0 =
x
4 and t0 =

x
2 and t0 =

3x
4

Space = Precision of the computation

37



Why computing with ODEs is

interesting



Representations

• Differential analizers might use less energy

• Better representation of ”real” systems: ODEs in mechanic,

biology, chemistry...

38



Biochemistry: context

Your own cells do computation: treating signal, regulation of the

metabolism

• Division

• Differentiation

• Migration

A major part of those are analogue computations with proteins

Once again, we live in an analogue world

39



Biochemistry: Kohn’s map of the mammalian cell cycle

40



Biochemistry: into a GPAC

Assuming at most binary reactions with mass action law kinetics:

Theorem (Fages, Le Guludec, Bournez, Pouly)

• Any polynomial ODE can be encoded in a chemically feasible

positive system of double dimension.

• I.e. The systems of elementary biochemical reactions on finite

universes of molecules are Turing-complete in differential

semantics.

Furthermore: If the initial GPAC has a polynomial computational

complexity, then the new system will also have a polynomial

complexity.
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So?

• Can you compute faster with GPACs than with TMs?

YES

• Can you compute faster with Differential Analizer than with

computers? MAYBE

• Are all ODEs representable by a GPAC? YES IF

POLYNOMIAL

• Are all (poly) ODEs corresponding to a Differential Analizer?

DON’T KNOW
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Conclusion



Conclusion

• We saw and define analogue models of computation

• We saw a mathematical description of those models

• We linked the notion of time and memory costs for TMs with

that framework
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