Analogue models of computation: computing with real numbers

Manon BLANC

Practices around Computation

We need to talk about a discrete model

An example of non-analogue model

The model:

(we assume the tape is non-empty)				
	\$	0	1	В
<i>q</i> _{init}	$q_{\textit{init}}, \$, ightarrow$	$q_{\textit{init}}, 0, \rightarrow$	$q_{\textit{init}}, 1, ightarrow$	q_1, B, \leftarrow
q_1		accept, 1	$q_2, 0, \leftarrow$	
<i>q</i> ₂	$q_3, \$, ightarrow$	accept, 1	$q_2, 1, \leftarrow$	
<i>q</i> ₃		$q_4^0, 1, ightarrow$		
q_{4}^{0}		$q_4^0, 0, ightarrow$		accept, 0

• Time = number of steps

- Time = number of steps
- Space = number of needed cells

<u>Time</u>: 6 steps $\rightarrow O(n)$, *n* the size of the input

Space : 2 cells $\rightarrow O(n)$, *n* the size of the input

Both are linear (in the size of the input), so *polynomial* in time and space.

 $\bullet\,$ Time of a TM \sim Time on the laptop...

 \rightarrow Notions of time and space does not depend on the model

Church-Turing thesis: All discrete sufficiently powerful and reasonable models of computation have the same computational power as a Turing machine.

Putting boxes into boxes (but they are very nice boxes)

What an analogue world

Historicaly, they are the first computational machines and certainely the most accurate

 \rightarrow Nothing is lost in translation

Well, actually... An example of analogue model

We live in an analogue world

13

We live in an analogue world: planimeter

We live in an analogue world:

 <u>Making</u>: convert the sound into a print on a support in a spiraling groove;

- <u>Making</u>: convert the sound into a print on a support in a spiraling groove;
- Playing:
 - A head is placed on the groove;

- <u>Making</u>: convert the sound into a print on a support in a spiraling groove;
- Playing:
 - A head is placed on the groove;
 - It transmit the deviations of the groove to an electromagnetic transductor;

- <u>Making</u>: convert the sound into a print on a support in a spiraling groove;
- Playing:
 - A head is placed on the groove;
 - It transmit the deviations of the groove to an electromagnetic transductor;
 - An audio power amplifier allows un to actually hear the sound

Advantages:

- We capture the real sound
- Less mixing needed

Drawbacks:

- Worn out faster
- More fragile
- It is big

One device for one use: can we construct an "equivalent" of the physical computer, but for analogue model? \rightarrow is there a *general purpose* device?

The GPAC

Physical World	Mathematical Model	
Laptop	Turing machines	
Differential Analyzer	?	

- Introduced by Claude Shannon in 1941;
- Mathematical model of the Differential Analizer;
- Model based on circuits, with several interconnected units doing basic operations

produit: $e_0 = e_1 e_2$

additionneur: $e_0 = -(e_1 + e_2)$

intégrateur: $e_0 = e(0) - \int_0^t e_1(u) du$
GPAC: how does it work?

$$\begin{cases} x'(t) = y(t) \\ y'(t) = -x(t) \\ x(0) = -1 \\ y(0) = 0 \end{cases} \Rightarrow \begin{cases} x(t) = \cos(t) \\ y(t) = -\sin(t) \\ y(t) = -\sin(t) \end{cases}$$

22

Church-Turing thesis: All discrete sufficiently powerful and reasonable models of computation have the same computational power as a Turing machine.

Church-Turing thesis: All discrete sufficiently powerful and reasonable models of computation have the same computational power as a Turing machine.

Is GPAC a sufficiently powerful?

Is GPAC reasonable?

Powerful: Other boxes

- Shannon: GPAC ≤ Turing Machines: A GPAC corresponds to (a projection of) a *polynomial* differential equation, which can be computed by a TM.
- Shannon: GPAC < Turing Machines: There exist computable functions, which are not projections of differential equations: e.g. Γ, ζ.

We can actually program with polynomial ODE (Bournez, Graça, Pouly, Campagnolo, Hainry)

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

$$\left\{\begin{array}{rcl} y_1' &=& y_3^2 \\ & & \end{array}\right.$$

$$y_1(0) = 0$$

considering $y_3 = \sin y_2$

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

$$\left\{\begin{array}{rcl}
y_1' &=& y_3^2 \\
y_2' &=& y_1 y_4 - y_5 \\
\end{array}\right.$$

$$y_1(0) = 0$$

 $y_2(0) = 0$

considering $y_3 = \sin y_2, y_4 = \cos y_2, y_5 = e^{e^{y_1} + t}$

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

$$\begin{cases} y_1' = y_3^2 \\ y_2' = y_1 y_4 - y_5 \\ y_3' = y_4 (y_1 y_4 - y_5) \end{cases}$$

$$y_1(0) = 0$$

 $y_2(0) = 0$
 $y_3(0) = 0$

considering $y_3 = \sin y_2, y_4 = \cos y_2, y_5 = e^{e^{y_1} + t}$

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

$$\begin{cases} y_1' = y_3^2 \\ y_2' = y_1y_4 - y_5 \\ y_3' = y_4(y_1y_4 - y_5) \\ y_4' = -y_3(y_1y_4 - y_5) \end{cases}$$

$$\begin{pmatrix}
y_1(0) &= 0 \\
y_2(0) &= 0 \\
y_3(0) &= 0 \\
y_4(0) &= 1
\end{pmatrix}$$

considering $y_3 = \sin y_2, y_4 = \cos y_2$, $y_5 = e^{e^{y_1} + t}$

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

$$\begin{cases} y_1' = y_3^2 \\ y_2' = y_1 y_4 - y_5 \\ y_3' = y_4 (y_1 y_4 - y_5) \\ y_4' = -y_3 (y_1 y_4 - y_5) \\ y_5' = y_5 (y_6 y_3^2 + 1) \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \\ y_3(0) = 0 \\ y_4(0) = 1 \\ y_5(0) = e \end{cases}$$

considering $y_3 = \sin y_2, y_4 = \cos y_2, y_5 = e^{e^{y_1} + t}, y_6 = e^{y_1}$

Transform this system of ODEs:

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases}$$

$$\begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a *polynomial* ODE:

$$\begin{cases} y_1' = y_3^2 \\ y_2' = y_1 y_4 - y_5 \\ y_3' = y_4 (y_1 y_4 - y_5) \\ y_4' = -y_3 (y_1 y_4 - y_5) \\ y_5' = y_5 (y_6 y_3^2 + 1) \\ y_6' = y_6 y_3^2 \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \\ y_3(0) = 0 \\ y_4(0) = 1 \\ y_5(0) = e \\ y_6(0) = 1 \end{cases}$$

considering $y_3 = \sin y_2, y_4 = \cos y_2, y_5 = e^{e^{y_1} + t}, y_6 = e^{y_1}$

Theorem Every computable functions can be computed by polynomial ODE, and conversely

Turing Machines \leq GPAC

Is GPAC more powerful? 1

¹Fun fact: that's a part of my PhD subject 😂

How much does it cost?

Fig. 5. A continuous system before and after an exponential speed-up.

Fig. 5. A continuous system before and after an exponential speed-up.

θ solution of:	ϕ solution of
y'=f(y)	z = z'
with $f:\mathbb{R} \to \mathbb{R}$	y' = f(y)z

Fig. 5. A continuous system before and after an exponential speed-up.

 $\begin{array}{ll} \theta \text{ solution of:} & \phi \text{ solution of:} \\ y' = f(y) & z = z' \\ \text{with } f : \mathbb{R} \to \mathbb{R} & y' = f(y)z \end{array}$

Re-scaling: $\phi_1(t) = \theta(e^t)$

Fig. 5. A continuous system before and after an exponential speed-up.

With this definition of time, all computation can cost 1 time unit...

Fig. 5. A continuous system before and after an exponential speed-up.

Robust notion of time \rightarrow a quantity invariant by rescaling

The length remains the same

Time = Length of the curve

Now space: Why it is not easy to solve ODEs

$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),t,\mathbf{x}),$

• Non-computable in the general case, for **u** computable (Pour-El, Richards)

Now space: Why it is not easy to solve ODEs

$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),t,\mathbf{x}),$

- Non-computable in the general case, for **u** computable (Pour-El, Richards)
- Computable for **u** computable and unique solution (Collins, Graça, Ruohonen)

Now space: Why it is not easy to solve ODEs

$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),t,\mathbf{x}),$

- Non-computable in the general case, for **u** computable (Pour-El, Richards)
- Computable for **u** computable and unique solution (Collins, Graça, Ruohonen)
- PSPACE-completeness on a bounded domain for **u** computable in polynomial-time (Kawamura, Ko)

- Computation at t = x at precision 2^{-n} , with initial condition t = 0
- Computation at t = t₀ + ^x/₂ at precision 2^{-η(n)}, with initial condition t₀ = 0 and t₀ = ^x/₂
- Computation at $t = t_0 + \frac{x}{4}$ at precision $2^{-\gamma(n)}$, with initial condition $t_0 = 0$ and $t_0 = \frac{x}{4}$ and $t_0 = \frac{x}{2}$ and $t_0 = \frac{3x}{4}$

Space = Precision of the computation

Why computing with ODEs is interesting

- Differential analizers might use less energy
- Better representation of "real" systems: ODEs in mechanic, biology, chemistry...

Your own cells do computation: treating signal, regulation of the metabolism

- Division
- Differentiation
- Migration

A major part of those are analogue computations with proteins

Once again, we live in an analogue world

Biochemistry: Kohn's map of the mammalian cell cycle

Assuming at most binary reactions with mass action law kinetics:

Theorem (Fages, Le Guludec, Bournez, Pouly)

- Any polynomial ODE can be encoded in a chemically feasible positive system of double dimension.
- I.e. The systems of elementary biochemical reactions on finite universes of molecules are Turing-complete in differential semantics.

Assuming at most binary reactions with mass action law kinetics:

Theorem (Fages, Le Guludec, Bournez, Pouly)

- Any polynomial ODE can be encoded in a chemically feasible positive system of double dimension.
- I.e. The systems of elementary biochemical reactions on finite universes of molecules are Turing-complete in differential semantics.

Furthermore: If the initial GPAC has a polynomial computational *complexity*, then the new system will also have a polynomial *complexity*.

• Can you compute faster with GPACs than with TMs?
$\bullet\,$ Can you compute faster with GPACs than with TMs? YES

- $\bullet\,$ Can you compute faster with GPACs than with TMs? YES
- Can you compute faster with Differential Analizer than with computers?

- $\bullet\,$ Can you compute faster with GPACs than with TMs? YES
- Can you compute faster with Differential Analizer than with computers? MAYBE

- $\bullet\,$ Can you compute faster with GPACs than with TMs? YES
- Can you compute faster with Differential Analizer than with computers? MAYBE
- Are all ODEs representable by a GPAC?

- $\bullet\,$ Can you compute faster with GPACs than with TMs? YES
- Can you compute faster with Differential Analizer than with computers? MAYBE
- Are all ODEs representable by a GPAC? YES IF POLYNOMIAL

- $\bullet\,$ Can you compute faster with GPACs than with TMs? YES
- Can you compute faster with Differential Analizer than with computers? MAYBE
- Are all ODEs representable by a GPAC? YES IF POLYNOMIAL
- Are all (poly) ODEs corresponding to a Differential Analizer?

- $\bullet\,$ Can you compute faster with GPACs than with TMs? YES
- Can you compute faster with Differential Analizer than with computers? MAYBE
- Are all ODEs representable by a GPAC? YES IF POLYNOMIAL
- Are all (poly) ODEs corresponding to a Differential Analizer? DON'T KNOW

Conclusion

- We saw and define analogue models of computation
- We saw a mathematical description of those models
- We linked the notion of time and memory costs for TMs with that framework