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e Why algebraic characterisations?



Introduction

e Why algebraic characterisations?
e We already do it for computability classes

e Computation over the reals : Framework of computable
analysis



Introduction

e Framework of implicit complexity (Cobham, Bellantoni, Cook,
Levant, Marion, de Naurois...)

e Time = Length:
e Continuous ODEs : Bournez, Graga, Pouly (ICALP 2017)
e Discrete ODEs : Bournez, Durand (MFCS 2019)



The begining of algebraic
characterisation: a class you know

well



Discrete derivation

df(x,y)
Ox

=f(x+1,y) — f(x,y)



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE" definable (from u, g and h) if it is a
solution of

of(x,y)
50

f(0,y) =g(y) and =u(f(x,y),h(x,y), x,y). (1)

Formal synonym for right-hand side of (1):
F(x + 1,y) = f(x,) + (€(x + 1) — £(x)) - u(F(x,y), h(x,y), x,y)



“Length ODE”?

Derivation with respect to the length = change of variable.
Variation when:

U(x+1)—£(x)#0

Inspired by:

of(x,y) _ 6l(x) 6f(x,y)
dx dx 50(x)



Motivation behind Length-ODEs
H H /\ NGO WMJ $i(0)
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Fig. 5. A continuous system before and after an exponential speed-up.

0 solution of: ¢ solution of:
y'=1y) z=27
f:R—R y' =f(y)z



Motivation behind Length-ODEs

Fig. 5. A continuous system before and after an exponential speed-up.

Re-scaling: ¢1(t) = 6(e")



Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution
curve of the ODE.

Invariance by rescaling



Example of length-ODE
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Example of length-ODE

Unique solution : f(x) = 22
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
flx+1) — f(x) = (U(x + 1) — £(x))(F(x)F(x) — F(x))
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Example of length-ODE

f(0)=2; &(x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x
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e We have f(x) = F(2)
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Example of length-ODE
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e We have f(x) = F(2)
o F(z+1) =2 = F(2)F(2)
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Example of length-ODE

f(0) =2; %(X) = f(x) - f(x) — f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x

~—
|
-
—~~
x
~—
~—

e We have f(x) = F(2)
o F(z+1) =271 = F(2)F(2)
e Then, F(z+1)=F(z)+(z+1—-2z)(F(2)F(z) — F(2))
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Characterisation of PTIME (the one you are used to)

We consider
LDL = [0,1,7X, (x), +, —, X, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, '19)
LDL N NY = PTIME NN"
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Some basic definitions of
computable analysis




Definitions (from computable analysis)

e What is a computable real number x?
— we can compute any digit of x.
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Definitions (from computable analysis)
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Example ]
e, ™ are computable. 2,21 2-BB()) where BB is the Busy Beavers

function is not.
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e What is a computable real number x?
— we can compute any digit of x.

Example ]
e, ™ are computable. 2,21 2-BB()) where BB is the Busy Beavers

function is not.

e What is a computable function f over the reals?
— on an input x € R, we produce any digit of f(x).
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Definitions (from computable analysis)

e What is a computable real number x?
— we can compute any digit of x.

Example ]
e, ™ are computable. 2,21 2-BB()) where BB is the Busy Beavers

function is not.

e What is a computable function f over the reals?
— on an input x € R, we produce any digit of f(x).

e How do we define complexity over the reals?

13



PTIME with Discrete ODEs




First step: real sequences




Effective Limit

Definition ~
f:R — R is an effective limit of f : R x N — R if

|F(x) — F(x,27)] < 27"

Key observation : f computable in polynomial time = f

computable in polynomial time.
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Algebraic characterisation of PTIME

We consider:
LDL® = [0,1, 75, £(x), +, —, x, cond(x), %;
composition, linear length ODE, effective limit]

Theorem (B., Bournez, MCU22)
FPTIMENRN = LDL® N RN

ii5)



Encode (1,3)*

Z,

1,3*
Decode e
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Second step: functions over the
reals with discrete ODEs




What we cannot do

R —ERgede (1,3}
f ™
{1,3}"

Decode
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FPTIME for computable functions over the reals

We consider:

LDL® = [0,1, 7K, £(x), +, —, tanh,

00\><

X
2’
composition, linear length ODE, effective limit|

Theorem (B., Bournez, MFCS23)

LDL° NRR = FPTIME NRR
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PSPACE with Discrete ODEs




Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g and
u (with u essentially linear in f(x,y): u= A(..)f(x) + B(...) ) if:

1. it is a solution of

of(x,y)
OX

f(Oy) - g(y) and - u(f(Xv Y)‘/ h(Xv y),X,Y),

2. the ODE is (polynomially) numerically stable.

19



FPSPACE for computable functions over the reals

We consider:

RLD° = [0, l,wf,ﬂ(n), -+, —, tanh, %, %;

composition, robust linear ODE, ELim|

Theorem (B., Bournez, MFCS23)
RLD° N R® = FPSPACE NR¥
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Functions over the reals with
continuous ODEs




Why it is not easy to solve ODEs

B of(t,x)
f(0,x) =g(x) and T u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)
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Why it is not easy to solve ODEs

B of(t,x)
f(0,x) =g(x) and T u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)

e Computable for u computable and unique solution (Collins,

Graga, Ruohonen)

e PSPACE-completeness on a bounded domain for u
computable in polynomial-time (Kawamura, Ko)
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Robust Continuous ODEs (1/2)

A function f : R — R is robustly ODE definable (from initial
condition g, and dynamic u) if

e it corresponds to the solution of the following continuous
ODE:
of(t,x)

f(0,x) = g(x) and 8t’ =u(f(t,x),t,x), (2)

e And polynomially numerically stable (to be defined : next
slides)
— we allow computation by dichotomy.

22
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Robust Continuous ODEs (2/2)

More “formally” :

e JA € Qf, such that the previous ODE is (polynomially
spaced) solvable on [0, A].

e For t > A, we can compute f(t,x) at 27" by computing some
approximation f(t/2,x) of f(¢/2,x) at precision 2~(")
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Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1,7rf<, +, —, X, tanh, cos, 7, —, %;

N[ X

composition, robust ODE, ELim|

Theorem (B., Bournez, ICALP24)
RCD NRR = FPSPACE NRR

28



Conclusion




Conclusion

e We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

e The last algebra might not be minimal

e Further work :

e talking about NP (non-determinism)?
e having completeness results

29
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