
Characterisations of polynomial-time and

-space complexity classes over the reals:

algebraic characterisations of classes

Manon Blanc

1



Introduction



Introduction

• Why algebraic characterisations?

• We already do it for computability classes

• Computation over the reals : Framework of computable

analysis

2



Introduction

• Why algebraic characterisations?

• We already do it for computability classes

• Computation over the reals : Framework of computable

analysis

2



Introduction

• Framework of implicit complexity (Cobham, Bellantoni, Cook,

Levant, Marion, de Naurois...)

• Time = Length:

• Continuous ODEs : Bournez, Graça, Pouly (ICALP 2017)

• Discrete ODEs : Bournez, Durand (MFCS 2019)

3



The begining of algebraic

characterisation: a class you know

well



Discrete derivation

δf (x, y)

δx
= f (x+ 1, y)− f (x, y)

4



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE” definable (from u, g and h) if it is a

solution of

f (0, y) = g(y) and
δf(x , y)

δℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)

5



“Length ODE”?

Derivation with respect to the length = change of variable.

Variation when:

ℓ(x + 1)− ℓ(x) ̸= 0

Inspired by:
δf (x , y)

δx
=

δℓ(x)

δx
· δf (x , y)

δℓ(x)
.

6



Motivation behind Length-ODEs

θ solution of:

y ′ = f (y)

f : R → R

ϕ solution of:

z = z ′

y ′ = f (y)z

7



Motivation behind Length-ODEs

Re-scaling: ϕ1(t) = θ(et)

8



Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution

curve of the ODE.

Invariance by rescaling

9



Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)

10



Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)

10



Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

11



Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

11



Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

11



Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

11



Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

11



Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))

11



Characterisation of PTIME (the one you are used to)

We consider

LDL = [0, 1, πk
i , ℓ(x),+,−,×, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, ’19)

LDL ∩ NN = PTIME∩NN

12



Some basic definitions of

computable analysis



Definitions (from computable analysis)

• What is a computable real number x?

→ we can compute any digit of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f over the reals?

→ on an input x ∈ R, we produce any digit of f (x).

• How do we define complexity over the reals?

13



Definitions (from computable analysis)

• What is a computable real number x?

→ we can compute any digit of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f over the reals?

→ on an input x ∈ R, we produce any digit of f (x).

• How do we define complexity over the reals?

13



Definitions (from computable analysis)

• What is a computable real number x?

→ we can compute any digit of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f over the reals?

→ on an input x ∈ R, we produce any digit of f (x).

• How do we define complexity over the reals?

13



Definitions (from computable analysis)

• What is a computable real number x?

→ we can compute any digit of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f over the reals?

→ on an input x ∈ R, we produce any digit of f (x).

• How do we define complexity over the reals?

13



PTIME with Discrete ODEs



First step: real sequences



Effective Limit

Definition
f : R → R is an effective limit of f̄ : R× N → R if∣∣f (x)− f̄ (x , 2n)

∣∣ ≤ 2−n

Key observation : f̄ computable in polynomial time ⇒ f

computable in polynomial time.

14



Algebraic characterisation of PTIME

We consider:

LDL• = [0, 1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
;

composition, linear length ODE , effective limit]

Theorem (B., Bournez, MCU22)
FPTIME∩RN = LDL• ∩ RN

15



“Proof”

N

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

16



Second step: functions over the

reals with discrete ODEs



What we cannot do

R

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

XX

17



FPTIME for computable functions over the reals

We consider:

LDL◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, linear length ODE , effective limit]

Theorem (B., Bournez, MFCS23)

LDL◦ ∩ RR = FPTIME∩RR

18



PSPACE with Discrete ODEs



Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g and

u (with u essentially linear in f(x , y): u= A(...)f(x) + B(...) ) if:

1. it is a solution of

f(0, y) = g(y) and
δf(x , y)

δx
= u(f(x , y),h(x , y), x , y),

2. the ODE is (polynomially) numerically stable.

19



FPSPACE for computable functions over the reals

We consider:

RLD◦ = [0, 1, πk
i , ℓ(n),+,−, tanh,

x

2
,
x

3
;

composition, robust linear ODE ,ELim]

Theorem (B., Bournez, MFCS23)
RLD◦ ∩ RR = FPSPACE∩RR

20



Functions over the reals with

continuous ODEs



Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• PSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

21



Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• PSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

21



Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• PSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)

21



Robust Continuous ODEs (1/2)

A function f : R → R is robustly ODE definable (from initial

condition g, and dynamic u) if

• it corresponds to the solution of the following continuous

ODE:

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x), (2)

• And polynomially numerically stable (to be defined : next

slides)

→ we allow computation by dichotomy.

22



An unusual way of solving an ODE

∆

IC , t = 0

23



An unusual way of solving an ODE

∆

IC , t = 0

24



An unusual way of solving an ODE

∆

IC , t = 0

25



An unusual way of solving an ODE

at 2−n

∆

at 2−η(n)
at 2−γ(n)

IC , t = 0

26



Robust Continuous ODEs (2/2)

More “formally” :

• ∃∆ ∈ Q∗
+, such that the previous ODE is (polynomially

spaced) solvable on [0,∆].

• For t ≥ ∆, we can compute f(t, x) at 2−n by computing some

approximation ˜f(t/2, x) of f(t/2, x) at precision 2−η(n).

27



Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1, πk
i ,+,−,×, tanh, cos, π,

x

2
,
x

3
;

composition, robust ODE,ELim]

Theorem (B., Bournez, ICALP24)
RCD ∩ RR = FPSPACE∩RR

28



Conclusion



Conclusion

• We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

• The last algebra might not be minimal

• Further work :

• talking about NP (non-determinism)?

• having completeness results

29


	Introduction
	The begining of algebraic characterisation: a class you know well
	Some basic definitions of computable analysis
	PTIME with Discrete ODEs
	First step: real sequences
	Second step: functions over the reals with discrete ODEs
	PSPACE with Discrete ODEs
	Functions over the reals with continuous ODEs
	Conclusion

