The complexity of computing in continuous time: space complexity is precision

Manon Blanc, Olivier Bournez

Introduction

• Why algebraic characterisations?

- Why algebraic characterisations?
- We already do it for computability classes
- Computation over the reals : Framework of computable analysis

- Framework of implicit complexity (Cobham, Bellantoni, Cook, Levant, Marion, ...)
- Time = Length:
 - Continuous ODEs : Bournez, Graça, Pouly (ICALP 2017)
 - Discrete ODEs : Bournez, Durand (MFCS 2019)

Some basic definitions of computable analysis

Definitions (from computable analysis)

- What is a computable real number x?
 - \rightarrow we can compute any digit of *x*.

• What is a computable real number x?

 \rightarrow we can compute any digit of *x*.

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

• What is a computable real number x?

 \rightarrow we can compute any digit of *x*.

Example

e, π are computable. $\sum_{i\geq 1}2^{-BB(i)}$, where BB is the Busy Beavers function is not.

What is a computable function f over the reals?
→ on an input x ∈ ℝ, we produce any digit of f(x).

• What is a computable real number x?

 \rightarrow we can compute any digit of *x*.

Example

e, π are computable. $\sum_{i\geq 1}2^{-BB(i)}$, where BB is the Busy Beavers function is not.

- What is a computable function f over the reals? \rightarrow on an input $x \in \mathbb{R}$, we produce any digit of f(x).
- How do we define complexity over the reals?

PSPACE with Discrete ODEs

$$\frac{\delta f(\mathbf{x}, \mathbf{y})}{\delta \mathbf{x}} = f(\mathbf{x} + 1, \mathbf{y}) - f(\mathbf{x}, \mathbf{y})$$

Definition (Robust linear ODE)

A bounded function **f** is a robustly linear ODE definable from g and u (with **u** essentially linear in $\mathbf{f}(x, \mathbf{y})$: $\mathbf{u} = A(...)\mathbf{f}(x) + B(...)$) if:

1. it is a solution of

$$\mathbf{f}(0,\mathbf{y}) = \mathbf{g}(\mathbf{y})$$
 and $\frac{\delta \mathbf{f}(x,\mathbf{y})}{\delta x} = \mathbf{u}(\mathbf{f}(x,\mathbf{y}),\mathbf{h}(x,\mathbf{y}),x,\mathbf{y}),$

2. the ODE is (polynomially) numerically stable.

We consider:

$$\overline{\mathbb{RLD}^{\circ}} = [\mathbf{0}, \mathbf{1}, \pi_i^k, \ell(n), +, -, \tanh, \frac{x}{2}, \frac{x}{3}]$$

composition, robust linear ODE, ELim]

Theorem (B., Bournez, MFCS23) $\overline{\mathbb{RLD}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = FPSPACE \cap \mathbb{R}^{\mathbb{R}}$

Functions over the reals with continuous ODEs

Why it is not easy to solve ODEs

$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),t,\mathbf{x}),$

- Non-computable in the general case, for **u** computable (Pour-El, Richards)
- Computable for **u** computable and unique solution (Collins, Graça, Ruohonen)
- PSPACE-completeness on a bounded domain for **u** computable in polynomial-time (Kawamura)

A function $f:\mathbb{R}\to\mathbb{R}$ is robustly ODE definable (from initial condition g, and dynamic u) if

• it corresponds to the solution of the following continuous ODE:

$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),t,\mathbf{x}),$ (1)

• And polynomially numerically stable (to be defined : next slides)

 \rightarrow we allow computation by dichotomy.

More formally :

- $\exists \Delta \in \mathbb{Q}_+^*$, such that the previous ODE is (polynomially spaced) solvable on $[0, \Delta]$.
- For t ≥ Δ, we can compute f(t, x) at 2⁻ⁿ by computing some approximation f(t/2, x) of f(t/2, x) at precision 2^{-η(n)}.

We consider :

$$\overline{\mathbb{RCD}} = [\mathbf{0}, \mathbf{1}, \pi_i^k, +, -, \times, \tanh, \cos, \pi, \frac{x}{2}, \frac{x}{3};$$

composition, robust ODE, ELim]

Theorem (Main theorem) $\overline{\mathbb{RCD}} \cap \mathbb{R}^{\mathbb{R}} = FPSPACE \cap \mathbb{R}^{\mathbb{R}}$

Conclusion

- We have an algebraic characterisation of PSPACE over the reals using *continuous ODE*.
- The algebra is not minimal
- Further work : talking about NP (non-determinism)?