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Introduction



Introduction

• Why algebraic characterisations?

• We already do it for computability classes

• Computation over the reals : Framework of computable

analysis
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Introduction

• Framework of implicit complexity (Cobham, Bellantoni, Cook,

Levant, Marion, de Naurois...)

• Time = Length:

• Continuous ODEs : Bournez, Graça, Pouly (ICALP 2017)

• Discrete ODEs : Bournez, Durand (MFCS 2019)
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A type of ODE for algebraic

characterisations: PTIME



Discrete derivation

δf (x, y)

δx
= f (x+ 1, y)− f (x, y)

→ It is a derivation with a step of one
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“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE” definable (from u, g and h) if it is a

solution of:

f (0, y) = g(y) and
δf(x , y)

δℓ
= u(f(x , y),h(x , y), x , y). (1)

Formal synonym for right-hand side of (1):

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)
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“Length ODE”?

f(x + 1, y) = f(x , y) + (ℓ(x + 1)− ℓ(x)) · u(f(x , y),h(x , y), x , y)
Derivation with respect to the length = change of variable.

Variation when:

ℓ(x + 1)− ℓ(x) ̸= 0

Inspired by:
δf (x , y)

δx
=

δℓ(x)

δx
· δf (x , y)

δℓ(x)
.
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Motivation behind Length-ODEs

θ solution of:

y ′ = f (y)

f : R → R

ϕ solution of:

z = z ′

y ′ = f (y)z
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Motivation behind Length-ODEs

Re-scaling: ϕ1(t) = θ(et)
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Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution

curve of the ODE.

Invariance by rescaling
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Example of length-ODE

f (0) = 2

δf

δℓ
(x) = f (x) · f (x)− f (x)

Unique solution : f (x) = 22
ℓ(x)
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Example of length-ODE

f (0) = 2; δf
δℓ (x) = f (x) · f (x)− f (x)

f (x + 1)− f (x) = (ℓ(x + 1)− ℓ(x))(f (x)f (x)− f (x))

z = ℓ(x) F (z) = 22
z

• We have f (x) = F (z)

• F (z + 1) = 22
z+2z = F (z)F (z)

• Then, F (z + 1) = F (z) + (z + 1− z)(F (z)F (z)− F (z))
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Essential Linearity

u is essentially linear in f iff:

u = A(..., σ(f ))f (x) + B(..., σ(f )))

with A and B that may depends on a sigmoid over f .
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Characterisation of PTIME (the one you are used to)

We consider

LDL = [0, 1, πk
i , ℓ(x),+,−,×, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, ’19)

LDL ∩ NN = PTIME∩NN
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Some basic definitions of

computable analysis



Definitions (from computable analysis): intuition

• What is a computable real number x?

→ we can compute a representation of x .

Example
e, π are computable.

∑
i≥1 2

−BB(i), where BB is the Busy Beavers

function is not.

• What is a computable function f : R → R?
→ on a representation of x ∈ R, we produce a

representation of f (x).

• How do we define complexity over the reals?
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More formally

• What is a computable real number x?

There exists a Cauchy sequence ϕ : N → D such that

for all n ∈ N, |ϕ(n)− x | ≤ 2−n.

• What is a computable function f : R → R?
There exists an oracle Turing machine M such that, on

a Cauchy sequence ϕ converging to x , M queries the oracle to

have m such that |ϕ(m)− x | ≤ 2−m and computes d ∈ D
such that |d − f (x)| ≤ 2−n.
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PTIME over the reals with Discrete

ODEs



First step: real sequences



Effective Limit

Definition
f : R → R is an effective limit of f̄ : R× N → R if∣∣f (x)− f̄ (x , 2n)

∣∣ ≤ 2−n

Key observation : f̄ computable in polynomial time ⇒ f

computable in polynomial time.
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Algebraic characterisation of PTIME for sequences

We consider:

LDL• = [0, 1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
;

composition, linear length ODE, effective limit]

Theorem (B., Bournez, MCU22)
FPTIME∩RN = LDL• ∩ RN

18



“Proof”

N

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

19



Second step: functions over the

reals with discrete ODEs



What we cannot do

R

R {1, 3}∗

{1, 3}∗Encode

TM

Decode

f

XX
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FPTIME for computable functions over the reals

We consider:

LDL◦ = [0, 1, πk
i , ℓ(x),+,−, tanh,

x

2
,
x

3
;

composition, linear length ODE, effective limit]

Theorem (B., Bournez, MFCS23)

LDL◦ ∩ RR = FPTIME∩RR
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Proof ideas (⊇)

• We give continuous approximations of some basic functions

(integer/fractional part, modulo 2, ...);

• We encode each step of the transition of the Turing machine

into the algebra, using the previous functions : Next;

• We obtain a linear length ODE encoding the execution of the

Turing machine: State(t + 1) = Next(State(t)) so

δState(2t+1)

δℓ
= Next(State(2t))

.
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PSPACE with Discrete ODEs



Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g

and u (with u essentially linear in f(x , y)) if:

1. it is a solution of

f(0, y) = g(y) and
δf(x , y)

δx
= u(f(x , y),h(x , y), x , y),

2. the ODE is (polynomially) numerically stable.
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FPSPACE for computable functions over the reals

We consider:

RLD◦ = [0, 1, πk
i , ℓ(n),+,−, tanh,

x

2
,
x

3
;

composition, robust linear ODE,ELim]

Theorem (B., Bournez, MFCS23)
RLD◦ ∩ RR = FPSPACE∩RR
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Functions over the reals with

continuous ODEs



Why it is not easy to solve ODEs
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Why it is not easy to solve ODEs

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x),

• Non-computable in the general case, for u computable

(Pour-El, Richards)

• Computable for u computable and unique solution (Collins,

Graça, Ruohonen)

• PSPACE-completeness on a bounded domain for u

computable in polynomial-time (Kawamura, Ko)
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Robust Continuous ODEs (1/2)

A function f : R → R is robustly ODE definable (from initial

condition g, and dynamic u) if

• it corresponds to the solution of the following continuous

ODE:

f(0, x) = g(x) and
∂f(t, x)

∂t
= u(f(t, x), t, x), (2)

• And polynomially numerically stable (to be defined : next

slides)

→ this allows computation by dichotomy.
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An unusual way of solving an ODE

∆

IC , t = 0
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An unusual way of solving an ODE

∆

IC , t = 0
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An unusual way of solving an ODE

∆

IC , t = 0
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An unusual way of solving an ODE

at 2−n

∆

at 2−η(n)
at 2−γ(n)

IC , t = 0
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An unusual way of solving an ODE

• Computation at t = x at precision 2−n, with initial condition

t = 0

• Computation at t = t0 +
x
2 at precision 2−η(n), with initial

condition t0 = 0 and t0 =
x
2

• Computation at t = t0 +
x
4 at precision 2−γ(n), with initial

condition t0 = 0 and t0 =
x
4 and t0 =

x
2 and t0 =

3x
4
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Robust Continuous ODEs (2/2)

More “formally” :

• ∃∆ ∈ Q∗
+, such that the previous ODE is (polynomially

spaced) solvable on [0,∆].

• For t ≥ ∆, we can compute f(t, x) at 2−n by computing some

approximation ˜f(t/2, x) of f(t/2, x) at precision 2−η(n).
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Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1, πk
i ,+,−,×, tanh, cos, π,

x

2
,
x

3
;

composition, robust continuous ODE,ELim]

Theorem (B., Bournez, ICALP24)
RCD ∩ RR = FPSPACE∩RR
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Proof ideas

RLD◦ ∩ RR = RCD ∩ RR

• Discrete ⇒ Continuous settings:

Adaptation of the a trick due to Branicky (’95)

• Continuous ⇒ Discrete settings:

From our definitions of robustness of ODEs
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Partial Conclusion



Parital Conclusion

• We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

• The last algebra might not be minimal

• Further work :

• talking about NP (non-determinism)?

• talking about probabilistic classes

• talking about distributions

36



More results on robustness: study of

dynamical systems



Introduction: robustness in Dynamical Systems

• Motivated by the field of verification.

• Informal conjecture: undecidability in verification does not

happen for robust systems.
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Introduction: robustness in Dynamical Systems

• Approach: Asarin and Bouajjani (LICS ‘01).

• Our goal:

• go from computability to complexity,

• quantifying the robustness to characterise PSPACE,

• having a notion of robustness to characterise PTIME,

• “applying” those notions to tillings.
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Introduction: robustness in Dynamical Systems

x

f (x)

εx ′ = fε(x)

f 2(x)ε

fε(x
′)

fε

fε
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Warning

It is not necessarily the same notion

of robustness as before
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Introduction: robustness in Dynamical Systems

Frame : We want to talk about discrete- and continuous-time

dynamical systems. We first use the framework of Turing machines

(seen as a particular dynamical system).
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Space-perturbation of a Dynamical

System



n-perturbation of a TM

Let Mn, the n-space-perturbed version of TM M: the idea is that

the n-perturbed version of the machine M is unable to remain

correct at a distance more than n from the head of the machine.

... l−n+1 ... l−1 l0 r0 r1 ... rn−1 ...︸ ︷︷ ︸
n

↑︸ ︷︷ ︸
n

42



Some Properties (from Asarin and Bouajjani ’01)

Let Ln(M) be the n-perturbed language of M.

• By definition:

• a word accepted by M is also recognised by all the Mn’s.

• Ln+1(M) ⊆ Ln(M).

• Ln(M) is co-c.e.

• So we have

• Lω(M) =
⋂

n Ln(M): this is the set of words accepted by M
when subject to arbitrarily “small” perturbations.

• L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).
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Perturbated reachability co-ce

Theorem (Perturbed reachability is co-c.e., from Asarin-

Bouajjani 01)

Lω(M) ∈ Π0
1.

Say L is robust if L = Lω:

L robust ⇒ L decidable.
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• Definition of the notion of perturbation of a TM

• Some properties
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A Characterisation of PSPACE



A Characterisation of PSPACE

Definition
For f : N → N, we write L{f }(M) the set of words accepted by M

with a ”space-perturbation” f :

L{f }(M) = {w | w ∈ Lf (ℓ(w))(M)}.

46



Polynomial precision robust ⇔ PSPACE,

Theorem ( CSL24, B., Bournez)

L ∈ PSPACE iff for some M and some polynomial p,

L = L(M) = L{p}(M).

47



• Characterisation of PSPACE with space-perturbated TMs
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Reachability Relations



Reachability Relation for Dynamical Systems

To each rational discrete-time dynamical system P is associated its

reachability relation RP(·, ·) on Qd ×Qd .

→ two rational points x and y, RP(x, y) holds iff there exists a

trajectory of P from x to y.
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Reachability Relation With Small Perturbations

• Consider now a discrete-time dynamical system P with

function f Lipschitz on a compact domain:

For ε > 0 we consider the ε-perturbed system Pε.

• Its trajectories are defined as sequences xt satisfying

d(xt+1, f (xt)) < ε for all t.

50



Reachability Relation With Small Perturbations

• We denote reachability in the system Pε by RP
ε (·, ·).

• RP
ω =

⋂
ϵ R

P
ε (·, ·) is co-c.e..

• Say RP is robust when RP
ω = RP :

RP robust ⇒ RP computable.
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Link with δ-reachability

Proposition (Robust ⇔ reachability true or ϵ-far from being

true)

We have RP
ω = RP iff for all x, y ∈ Qd , either RP(x, y) is true or

RP(x, y) is false and there exists ϵ > 0 such that it is ϵ-far from

being true.

⇒ relation with δ-reachability (Gao, Kong, Chen, Clarke ’06).
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Towards real numbers : Ball decision problem

Input:

• A point x ∈ Q

• A set B

• A dynamic given by the function f ∈ RR

• The promise that the dynamics starting from x never ends up

on the border of B.

Output: Does the dynamics starting from x reach B ?
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Complexity of reachability relations

Polynomially robust to precision ⇒ PSPACE:

Theorem (CSL24, B., Bournez)

Take a Lipschitz system on a compact, with f poly. time

computable, whose domain X is a closed rational box, and that for

all rational x, RP(x) is closed and RP(x) = RP
{p}(x) for a

polynomial p. Then the ball decision problem is in PSPACE.
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Complexity of reachability relations

Polynomially robust to precision ⇐ PSPACE-completeness

Theorem (CSL24, B., Bournez)

Any PSPACE language is reducible to PAM’s reachability relation:

RP = RP
{p}, for some polynomial p.
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• Perturbated reachability relation for rational dynamical

systems

• Characterisation of PSPACE in that framework (with

additionnal properties)
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Alternative view: Drawability and

extension to the reals



Drawability: geometric properties

But we could also see it as a relation over the reals and use the

framework of CA, regarding subsets of Rd × Rd .

Definition
A closed subset of Rd is said c.e. closed if we can effectively

enumerate the rational open balls intersecting it.
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Drawability: geometric properties

From the statements of CA, the following holds:

Theorem

Consider a computable discrete time system P whose domain is a

computable compact. For all x, cls(RP(x)) ⊆ Rd is a c.e. closed

subset.
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And With Reachability Properties

Theorem (Perturbed reachability is co-c.e.)

Consider a dynamical system, with f locally Lipschitz, computable,

whose domain is a computable compact, then, for all x,

cls(RP
ω (x)) ⊆ Rd is a co-c.e. closed subset.

Say RP is robust when RP
ω = RP : RP robust ⇒ RP computable.
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Plot twist

From CA, Computable ⇔ can be plotted.

Theorem
RP closed and can be plotted in a name of f ⇔ the system is

robust, i.e. RP
ω = RP .
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• We have a nice extension to geometric properties : what can

be drawn is robust
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Time-perturbation



Another type of perturbation

Definition
Given f : N → N, we write L{f }(M) for the set of words accepted

by M with time perturbation f :

L{f }(M) = {w | w ∈ Lf (ℓ(w))(M)}.
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Another Characterisation of PTIME with length

Theorem (Polynomially robust to time ⇔ PTIME)

• A language L ∈ PTIME iff for some M and some polynomial

p, L = L(M) = L{p}(M).

• Any PTIME language is reducible to PAM’s reachability:

RP = RP,(p) for some polynomial p.
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A Characterisation of PTIME

Theorem (Polynomially length robust ⇒ PTIME)

Assume distance d is time metric and RP = RP,(p) for some

polynomial p. Then RP ∈ PTIME.
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• Definition of another type of perturbation

• Characterisation of PTIME
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Partial Conclusion



Partial Conclusion

• Characterisation of FPSPACE with the suitable notion of

perturbation.

• Characterisation ot PTIME with the suitable notion of

perturbation.

• Extension to drawability.
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Extending robustness: Towards

tilings



Warning

Still not necessarily the same notion

of robustness as before
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Motivation

• Applying our notion of robustness to tilings :

what makes the problem of tiling undecidable?

• What can make the problem of some tiling decidable?
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Wang Tileset

• A set of tiles with compatibility rules
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Wang Tileset

• A set of tiles with compatibility rules
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Computability result

Theorem (Easy inclusion, compacity argument)
Given a set of tiles, the problem of knowing whether it tiles the

plan is co-computably enumerable.

Conjecture (Wang ’61) : all the tiling of the plan are periodic.

FALSE!!
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Counter-example : Robinson tileset ’78
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Theorem (Berger ’64)
Given a set of tiles, the problem of knowing whether it tiles the

plan is undecidable.
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The formalism of transducers



Transducers
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Example
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(Meta-)Transducers
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Example
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(Meta-)Transducers
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The notion of robustness



Some notations

Definition (Notation T ST ′)
Given two transducers T and T ′, we write T ST ′ iff every edge of

the transducer T ′ is an edge of T .

Definition (Composition pattern)
Consider a finite set S of transducers. Consider the signature made

of the symbols of S (with arity 0) and the symbol ◦ (of arity 2). A

composition pattern F over S is a term over this signature.
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Robustness

Definition (Robustness)
A tileset τ is provability robust if there exists a family of

transducers (Tn)n, of respective heights (g(n))n, with g : N∗ → N∗

injective with g(1) = 1 and some (fixed) composition pattern

F = F (T1, Tn−k , . . . , Tn) over T1, Tn−k , . . . , Tn for some integer k ,

such that:

1. Initialisation: τ ST1, . . . , τg(k+1) STk+1

2. F provides an invariant:

∀n, F (T1, Tn−k , . . . , Tn) STn+1 (3)

3. For all n, Tn contains a loop.
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Theorem (Aubrun, B., Bournez)
Let τ a tileset. τ is provably robust ⇔ τ admits a tiling.

→ the domino problem for provably robust tileset is computable
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Partial Conclusion



Partial Conclusion

• We have a criterion to prove if a tileset can tile a plan.

• We applied it to some well-known tilesets, including

Jeandel-Rao 2015 tileset and Robinson 1978 tileset.

• Current work : a criterion to prove if a tilset can aperiodically

tiles.
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Conclusion



Conclusion

• We have algebraic characterisations of PTIME and PSPACE

using robust ODEs;

• We have studied robustness in dynamical systems, to have

Reach in PSPACE and PTIME;

• We extend robusteness in tilings, to have a computability

result.
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Conclusion: further work

• Having PSPACE-completeness for the reachability relation

(submitted);

• Adding complexity results in tiling theory.
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