Computing with real numbers: Robustness in

computability and complexity over the reals

Manon Blanc

YT,
QO TG,
1,

o

" og e*

\TUT
3 °

&

[ ]
universite
ECOLE PARIS-SACLAY INSTITUT
POLYTECHNIQUE POLYTECHNIQUE

DE PARIS



Introduction



Introduction

e Why algebraic characterisations?



Introduction

e Why algebraic characterisations?
e We already do it for computability classes

e Computation over the reals : Framework of computable
analysis
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Introduction

e Framework of implicit complexity (Cobham, Bellantoni, Cook,
Levant, Marion, de Naurois...)

e Time = Length:
e Continuous ODEs : Bournez, Graga, Pouly (ICALP 2017)
e Discrete ODEs : Bournez, Durand (MFCS 2019)



A type of ODE for algebraic
characterisations: PTIME



Discrete derivation

of (x,y)
Ox

=f(x+1,y)—f(x,y)

— It is a derivation with a step of one



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE" definable (from u, g and h) if it is a
solution of:

of(x,y)
Y

f(0,y) =g(y) and =u(f(x,y),h(x,y), x,y). (1)



“Length ODE”?

Definition (Length ODE)

A function f is “length-ODE" definable (from u, g and h) if it is a
solution of:

of(x,y)
Y

f(0,y) =g(y) and =u(f(x,y),h(x,y), x,y). (1)

Formal synonym for right-hand side of (1

):
fx +1,y) = f(x,y) + ((x + 1) = £(x)) - u(f(x,y), h(x,y), x,¥)



“Length ODE”?

f(x+1y) =f(x,y) + (l(x + 1) = £(x)) - u(f(x,y),h(x,y), x,y)
Derivation with respect to the length = change of variable.

Variation when:

l(x+1)—4(x)#0

Inspired by:
of(x,y) _ 0l(x) of(x,y)
ox  6x 8l(x)




Motivation behind Length-ODEs
H H /\ NGO WMJ $i(0)
] | \

Fig. 5. A continuous system before and after an exponential speed-up.

0 solution of: ¢ solution of:
y'=1y) z=27
f:R—R y' =f(y)z



Motivation behind Length-ODEs

Fig. 5. A continuous system before and after an exponential speed-up.

Re-scaling: ¢1(t) = 6(e")



Motivation behind Length-ODEs

Now “time-complexity” is measured by the length of the solution
curve of the ODE.

Invariance by rescaling

10



Example of length-ODE
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Example of length-ODE

Unique solution : f(x) = 22
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Example of length-ODE
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Example of length-ODE

f(0)=2; %(x)=f(x)f(x)—f(x)
f(x+1)—f(x)=(lx+1)—L(x))(F(x)f(x

~—

— f(x))
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Example of length-ODE
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Example of length-ODE

f(0)=2; %(x)=f(x)f(x)—f(x)
f(x+1) — f(x) = (U(x 4+ 1) — £(x))(F(x)f(x) = f(x))
z ={(x) F(z) = 22

e We have f(x) = F(2)
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Example of length-ODE

f(0)=2; %(x)=f(x)f(x)—f(x)
f(x+1) — f(x) = (U(x 4+ 1) — £(x))(F(x)f(x) = f(x))
z ={(x) F(z) = 22

e We have f(x) = F(2)
o F(z+1) =2 = F(2)F(2)
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Example of length-ODE

f(0)=2; %(x)=f(x)f(x)—f(x)
f(x+1) — f(x) = (U(x 4+ 1) — £(x))(F(x)f(x) = f(x))
z ={(x) F(z) = 22

e We have f(x) = F(2)
o F(z+1) =271 = F(2)F(2)
e Then, F(z+1)=F(z)+(z+1—-2z)(F(2)F(z) — F(2))

12



Essential Linearity

u is essentially linear in f iff:

u=A(.., o (F))F(x) + B(..., o(F)))

with A and B that may depends on a sigmoid over f.
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Characterisation of PTIME (the one you are used to)

We consider
LDL = [0,1,7X, (x), +, —, X, cond(x);

composition, linear length ODE]

Theorem (Bournez & Durand, '19)
LDL N NY = PTIME NN"

14



Some basic definitions of
computable analysis




Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

ii5)
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Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.

ii5)



Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.
e What is a computable function f : R — R?

— on a representation of x € R, we produce a
representation of f(x).

ii5)



Definitions (from computable analysis): intuition

e What is a computable real number x?
— we can compute a representation of x.

Example '
e, m are computable. Zi>1 2_35(’), where BB is the Busy Beavers

function is not.

e What is a computable function f : R — R?
— on a representation of x € R, we produce a
representation of f(x).

e How do we define complexity over the reals?

ii5)



More formally

e What is a computable real number x?
There exists a Cauchy sequence ¢ : N — D such that
forall n e N, |p(n) — x| < 27"

16



More formally

e What is a computable real number x?
There exists a Cauchy sequence ¢ : N — D such that
forall n e N, |p(n) — x| < 27"

e What is a computable function f : R — R?
There exists an oracle Turing machine M such that, on
a Cauchy sequence ¢ converging to x, M queries the oracle to
have m such that |¢(m) — x| < 27 and computes d € D
such that |d — f(x)| < 27"

16



PTIME over the reals with Discrete
ODEs



First step: real sequences



Effective Limit

Definition ~
f:R — R is an effective limit of f : R x N — R if

|F(x) — F(x,27)] < 27"

Key observation : f computable in polynomial time = f

computable in polynomial time.

17



Algebraic characterisation of PTIME for sequences

We consider:
LDL® = [0,1, 75, £(x), +, —, x, cond(x), %;
composition, linear length ODE, effective limit]

Theorem (B., Bournez, MCU22)
FPTIMENRN = LDL® N RN

18



Encode (1,3)*

Z,

1,3*
Decode e

19



Second step: functions over the
reals with discrete ODEs



What we cannot do

R —ERgede (1,3}
f ™
{1,3}"

Decode

20



FPTIME for computable functions over the reals

We consider:

LDL® = [0,1, 7K, £(x), +, —, tanh,

00\><

X
2’
composition, linear length ODE, effective limit]

Theorem (B., Bournez, MFCS23)

LDL° NRR = FPTIME NRR
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Proof ideas (D)

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);
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Proof ideas (D)

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);

e We encode each step of the transition of the Turing machine
into the algebra, using the previous functions : Next;
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Proof ideas (D)

e We give continuous approximations of some basic functions
(integer/fractional part, modulo 2, ...);

e We encode each step of the transition of the Turing machine
into the algebra, using the previous functions : Next;

e We obtain a linear length ODE encoding the execution of the
Turing machine: State(t + 1) = Next(State(t)) so

§State(2t11)

— t
50 = Next(State(2"))
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PSPACE with Discrete ODEs



Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function f is a robustly linear ODE definable from g
and u (with u essentially linear in f(x,y)) if:

1. it is a solution of

2. the ODE is (polynomially) numerically stable.

23



FPSPACE for computable functions over the reals

We consider:

RLD° = [0, l,ﬂf,ﬂ(n), -+, —, tanh, %, %;

composition, robust linear ODE, ELim]

Theorem (B., Bournez, MFCS23)
RLD° N R® = FPSPACE NR¥

24



Functions over the reals with
continuous ODEs



Why it is not easy to solve ODEs

Lorenz Attractor

Z Axis

25



Why it is not easy to solve ODEs

B of(t,x)
f(0,x) =g(x) and oy u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)
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e Computable for u computable and unique solution (Collins,
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Why it is not easy to solve ODEs

B of(t,x)
f(0,x) =g(x) and oy u(f(t,x), t,x),

e Non-computable in the general case, for u computable
(Pour-El, Richards)

e Computable for u computable and unique solution (Collins,

Graga, Ruohonen)

e PSPACE-completeness on a bounded domain for u
computable in polynomial-time (Kawamura, Ko)
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Robust Continuous ODEs (1/2)

A function f : R — R is robustly ODE definable (from initial
condition g, and dynamic u) if

e it corresponds to the solution of the following continuous
ODE:

of(t,x)
ot

f(0,x) = g(x) and =u(f(t,x),t,x), (2)

e And polynomially numerically stable (to be defined : next
slides)
— this allows computation by dichotomy.

27
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An unusual way of solving an ODE

e Computation at t = x at precision 27", with initial condition
t=20

e Computation at t = to + 5 at precision 271" with initial

condition tg =0 and to = 3

e Computation at t = to + 7 at precision 277" with initial

condition to =0 and to = 7 and to = 3 and tg = %TX

32



Robust Continuous ODEs (2/2)

More “formally” :

e JA € Qf, such that the previous ODE is (polynomially
spaced) solvable on [0, A].

e For t > A, we can compute f(t,x) at 27" by computing some
approximation f(t/2,x) of f(¢/2,x) at precision 2~(")

33



Characterisation of PSPACE with continuous ODEs

We consider :

RCD = [0, 1,7rf<, +, —, X, tanh, cos, 7, —, %;

N[ X

composition, robust continuous ODE, ELim)|

Theorem (B., Bournez, ICALP24)
RCD NRR = FPSPACE NRR

34



RLD° NRR = RCD N RR

85



RLD° NRR = RCD N RR

e Discrete = Continuous settings:
Adaptation of the a trick due to Branicky ('95)

85



RLD° NRR = RCD N RR

e Discrete = Continuous settings:
Adaptation of the a trick due to Branicky ('95)

e Continuous = Discrete settings:
From our definitions of robustness of ODEs

85



Partial Conclusion




Parital Conclusion

e We have an algebraic characterisations of PTIME and

PSPACE over the reals using discrete and continuous ODEs.

e The last algebra might not be minimal

e Further work :

e talking about NP (non-determinism)?
e talking about probabilistic classes
e talking about distributions

36



More results on robustness: study of
dynamical systems




Introduction: robustness in Dynamical Systems

e Motivated by the field of verification.

e Informal conjecture: undecidability in verification does not
happen for robust systems.

37



Introduction: robustness in Dynamical Systems

e Approach: Asarin and Bouajjani (LICS ‘01).

e Our goal:

e go from computability to complexity,
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Introduction: robustness in Dynamical Systems

e Approach: Asarin and Bouajjani (LICS ‘01).

e Our goal:
e go from computability to complexity,
e quantifying the robustness to characterise PSPACE,
e having a notion of robustness to characterise PTIME,
e ‘“applying” those notions to tillings.

38



Introduction: robustness in Dynamical Systems

39



It is not necessarily the same notion

of robustness as before

40



Introduction: robustness in Dynamical Systems

Frame : We want to talk about discrete- and continuous-time
dynamical systems. We first use the framework of Turing machines

(seen as a particular dynamical system).

41



Space-perturbation of a Dynamical
System




n-perturbation of a TM

Let M, the n-space-perturbed version of TM M: the idea is that
the n-perturbed version of the machine M is unable to remain
correct at a distance more than n from the head of the machine.

H l—n+1 ‘ ‘ /_1 ‘ /0 ‘ (s} ‘ rn ‘ ‘ rn—1 H

7

42



Some Properties (from Asarin and Bouajjani '01)

Let L,(M) be the n-perturbed language of M.

e By definition:
e a word accepted by M is also recognised by all the M,’s.
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o L, ,(M)=(),Ly,(M): this is the set of words accepted by M
when subject to arbitrarily “small” perturbations.
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Some Properties (from Asarin and Bouajjani '01)

Let L,(M) be the n-perturbed language of M.

e By definition:
e a word accepted by M is also recognised by all the M,’s.
O Ln+1(M) - Ln(M)'
o [,(M)is coc.e.

e So we have

o L, ,(M)=(),Ly,(M): this is the set of words accepted by M
when subject to arbitrarily “small” perturbations.
o [(M)C Ly(M)C---C Ly(M)C Li(M).

43



Perturbated reachability co-ce

Theorem (Perturbed reachability is co-c.e., from Asarin-
Bouajjani 01)

L,(M)enl.

Say L is robust if L = L,;:

L robust = L decidable.

44



e Definition of the notion of perturbation of a TM

e Some properties

45



A Characterisation of PSPACE




A Characterisation of PSPACE

Definition
For f: N — N, we write L{}(M) the set of words accepted by M

with a "space-perturbation” f:

Lipy (M) = {w| w € Legqwy)(M)}.

46



Polynomial precision robust < PSPACE,

Theorem ( CSL24, B., Bournez)

L € PSPACE iff for some M and some polynomial p,
L=L(M)=Lip(M).

47



e Characterisation of PSPACE with space-perturbated TMs

48



Reachability Relations




Reachability Relation for Dynamical Systems

To each rational discrete-time dynamical system P is associated its
reachability relation R”(-,-) on Q9 x Q7.

— two rational points x and y, R”(x,y) holds iff there exists a
trajectory of P from x to y.

49



Reachability Relation With Small Perturbations

e Consider now a discrete-time dynamical system P with
function f Lipschitz on a compact domain:
For € > 0 we consider the e-perturbed system P-..

e |ts trajectories are defined as sequences x; satisfying
d(x¢+1,f (x¢)) < € for all t.

50



Reachability Relation With Small Perturbations

e We denote reachability in the system P. by R”(-,-).
e R =N.RC(,")is coc.e..

e Say R” is robust when R = R”:
R? robust = R” computable.

Bl



Link with J-reachability

Proposition (Robust < reachability true or c-far from being
true)

We have RT = R iff for all x,y € QY, either R”(x,y) is true or
RP(x,y) is false and there exists ¢ > O such that it is e-far from
being true.

= relation with d-reachability (Gao, Kong, Chen, Clarke '06).

52



Towards real numbers : Ball decision problem

Input:
e Apointxe@Q
o Aset B

e A dynamic given by the function f € R¥

e The promise that the dynamics starting from x never ends up
on the border of B.

53



Towards real numbers : Ball decision problem

Input:

e Apointxe@Q
o Aset B
e A dynamic given by the function f € R¥

e The promise that the dynamics starting from x never ends up
on the border of B.

Output: Does the dynamics starting from x reach B ?

53



Complexity of reachability relations

Polynomially robust to precision = PSPACE:

Theorem (CSL24, B., Bournez)

Take a Lipschitz system on a compact, with f poly. time
computable, whose domain X is a closed rational box, and that for
all rational x, R”(x) is closed and R”(x) = R” (,,(x) for a
polynomial p. Then the ball decision problem is in PSPACE.

54



Complexity of reachability relations

Polynomially robust to precision <= PSPACE-completeness

Theorem (CSL24, B., Bournez)

Any PSPACE language is reducible to PAM’s reachability relation:
RP = Rp{p}, for some polynomial p.

55



e Perturbated reachability relation for rational dynamical
systems

e Characterisation of PSPACE in that framework (with
additionnal properties)

56



Alternative view: Drawability and
extension to the reals




Drawability: geometric properties

But we could also see it as a relation over the reals and use the
framework of CA, regarding subsets of RY x RH,

Definition
A closed subset of R is said c.e. closed if we can effectively
enumerate the rational open balls intersecting it.

57



Drawability: geometric properties

From the statements of CA, the following holds:

Theorem

Consider a computable discrete time system PP whose domain is a
computable compact. For all x, cls(R7(x)) C RY is a c.e. closed
subset.

58



And With Reachability Properties

Theorem (Perturbed reachability is co-c.e.)

Consider a dynamical system, with f locally Lipschitz, computable,
whose domain is a computable compact, then, for all x,
cls(R7(x)) C RY is a co-c.e. closed subset.

Say R” is robust when R? = R”: R” robust = R” computable.

59



Plot twist

From CA, Computable < can be plotted.

o black pixels

. black or white
pixels

Theorem
R¥ closed and can be plotted in a name of f < the system is

robust, i.e. RY = R”.

60



e We have a nice extension to geometric properties : what can
be drawn is robust

61



Time-perturbation




Another type of perturbation

Definition
Given f : N — N, we write LIf}(M) for the set of words accepted
by M with time perturbation f:

LI (M) = {w| w e LFEI (M)}

62



Another Characterisation of PTIME with length

Theorem (Polynomially robust to time < PTIME)

e A language L € PTIME iff for some M and some polynomial
p, L= L(M) = LIP}(M).

e Any PTIME language is reducible to PAM'’s reachability:
RP = RP:P) for some polynomial p.

63



A Characterisation of PTIME

Theorem (Polynomially length robust = PTIME)

Assume distance d is time metric and R = R7(P) for some
polynomial p. Then R € PTIME.

64



e Definition of another type of perturbation

e Characterisation of PTIME

65



Partial Conclusion




Partial Conclusion

e Characterisation of FPSPACE with the suitable notion of
perturbation.

e Characterisation ot PTIME with the suitable notion of
perturbation.

e Extension to drawability.

66



Extending robustness: Towards
tilings




Still not necessarily the same notion

of robustness as before

67



e Applying our notion of robustness to tilings :

what makes the problem of tiling undecidable?

e What can make the problem of some tiling decidable?

68



Wang Tileset

e A set of tiles with compatibility rules

69



Wang Tileset

e A set of tiles with compatibility rules
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Computability result

Theorem (Easy inclusion, compacity argument)
Given a set of tiles, the problem of knowing whether it tiles the

plan is co-computably enumerable.

Conjecture (Wang ’'61) : all the tiling of the plan are periodic.
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Computability result

Theorem (Easy inclusion, compacity argument)
Given a set of tiles, the problem of knowing whether it tiles the

plan is co-computably enumerable.

Conjecture (Wang ’'61) : all the tiling of the plan are periodic.
FALSE!
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Theorem (Berger '64)
Given a set of tiles, the problem of knowing whether it tiles the

plan is undecidable.
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The formalism of transducers




Transducers

ok
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The notion of robustness




Some notations

Definition (Notation 7 >=7")
Given two transducers 7 and 7', we write 7 >7" iff every edge of

the transducer 77 is an edge of 7.
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Some notations

Definition (Notation 7 >=7")
Given two transducers 7 and 7', we write 7 >7" iff every edge of

the transducer 77 is an edge of 7.

Definition (Composition pattern)
Consider a finite set S of transducers. Consider the signature made

of the symbols of S (with arity 0) and the symbol o (of arity 2). A
composition pattern F over S is a term over this signature.
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Definition (Robustness)
A tileset 7 is provability robust if there exists a family of

transducers (7,)n, of respective heights (g(n)),, with g : N* — N*
injective with g(1) =1 and some (fixed) composition pattern
F=F(T1,To—k,---,Tn) over T1, Tn—k,..., Tn for some integer k,
such that:

1. Initialisation: 7 >77, ..., 78k+1) a7 4
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Definition (Robustness)
A tileset 7 is provability robust if there exists a family of
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injective with g(1) =1 and some (fixed) composition pattern
F=F(T1,To—k,---,Tn) over T1, Tn—k,..., Tn for some integer k,
such that:

1. Initialisation: 7 >77, ..., 78k+1) a7 4

2. F provides an invariant:

vn; F(7_]/.77777k7"'7777)>{ n+1 (3)

79



Definition (Robustness)
A tileset 7 is provability robust if there exists a family of

transducers (7,)n, of respective heights (g(n)),, with g : N* — N*
injective with g(1) =1 and some (fixed) composition pattern
F=F(T1,To—k,---,Tn) over T1, Tn—k,..., Tn for some integer k,
such that:

1. Initialisation: 7 >77, ..., 78k+1) a7 4

2. F provides an invariant:

vn; F(ﬁaﬁfka"'aﬂ)x n+1 (3)

3. For all n, 7, contains a loop.

79



Theorem (Aubrun, B., Bournez)
Let T a tileset. T is provably robust < T admits a tiling.

— the domino problem for provably robust tileset is computable

80



Partial Conclusion




Partial Conclusion

e We have a criterion to prove if a tileset can tile a plan.

o We applied it to some well-known tilesets, including
Jeandel-Rao 2015 tileset and Robinson 1978 tileset.

e Current work : a criterion to prove if a tilset can aperiodically
tiles.
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Conclusion




Conclusion

e We have algebraic characterisations of PTIME and PSPACE
using robust ODEs;
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Conclusion

e We have algebraic characterisations of PTIME and PSPACE
using robust ODEs;

o We have studied robustness in dynamical systems, to have
Reach in PSPACE and PTIME;
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Conclusion

e We have algebraic characterisations of PTIME and PSPACE
using robust ODEs;

o We have studied robustness in dynamical systems, to have
Reach in PSPACE and PTIME;

e We extend robusteness in tilings, to have a computability
result.
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Conclusion: further work

e Having PSPACE-completeness for the reachability relation
(submitted);

e Adding complexity results in tiling theory.
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