Computability and complexity over the reals

Manon Blanc

Introduction

We want to algebraically characterise PTIME and PSPACE...

Working on real numbers

Example: The set of computable functions

- constant function 0,
- the projection functions π_i^p ,
- the function successor s,
- and that is closed under composition, minimisation and primitive recursion.

 $[O, \pi_i^p, \mathbf{s}; composition, primitive recursion, minimisation]$

Computability and complexity over the reals : how?

• What is a computable real number?

What is a computable real number?

Example

e, π are computable. $\sum_{i\geq 1}2^{-BB(i)}$, where BB is the Busy Beavers function is not.

• What is a computable real number?

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

What is a computable function over the reals?

• What is a computable real number?

Example

e, π are computable. $\sum_{i\geq 1} 2^{-BB(i)}$, where BB is the Busy Beavers function is not.

- What is a computable function over the reals?
- How do we define complexity over the reals?

well

characterisation: a class you know

The begining of algebraic

Discrete derivation

$$\frac{\delta f(\mathbf{x}, \mathbf{y})}{\delta \mathbf{x}} = f(\mathbf{x} + 1, \mathbf{y}) - f(\mathbf{x}, \mathbf{y})$$

"Length ODE"?

Definition (Length ODE)

A function f is "length-ODE" definable (from u, g and h) if it is a solution of

$$f(0, \mathbf{y}) = \mathbf{g}(\mathbf{y})$$
 and $\frac{\delta \mathbf{f}(x, \mathbf{y})}{\delta \ell} = \mathbf{u}(\mathbf{f}(x, \mathbf{y}), \mathbf{h}(x, \mathbf{y}), x, \mathbf{y}).$ (1)

Formal synonym for right-hand side of (1):

$$\mathbf{f}(\mathbf{x}+1,\mathbf{y}) = \mathbf{f}(\mathbf{x},\mathbf{y}) + (\ell(\mathbf{x}+1) - \ell(\mathbf{x})) \cdot \mathbf{u}(\mathbf{f}(\mathbf{x},\mathbf{y}),\mathbf{h}(\mathbf{x},\mathbf{y}),\mathbf{x},\mathbf{y})$$

6

"Length ODE"?

Derivation with respect to the length = change of variable.

Variation when:

$$\ell(x+1) - \ell(x) \neq 0$$

Inspired by:

$$\frac{\delta f(x, \mathbf{y})}{\delta x} = \frac{\delta \ell(x)}{\delta x} \cdot \frac{\delta f(x, \mathbf{y})}{\delta \ell(x)}.$$

Motivation behind Length-ODEs

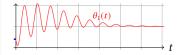


Fig. 5. A continuous system before and after an exponential speed-up.

 θ solution of:

 ϕ solution of:

$$y' = f(y)$$

$$z = z'$$

$$f: \mathbb{R} \to \mathbb{R}$$

$$y' = f(y)z$$

Motivation behind Length-ODEs

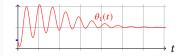


Fig. 5. A continuous system before and after an exponential speed-up.

Re-scaling:
$$\phi_1(t) = \theta(e^t)$$

Motivation behind Length-ODEs

Now "time-complexity" is measured by the length of the solution curve of the ODE.

Invariance by rescaling

$$f(0) = 2$$

$$\frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(0) = 2$$

$$\frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

Unique solution : $f(x) = 2^{2^{\ell(x)}}$

$$f(0) = 2;$$
 $\frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

• We have f(x) = F(z)

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

- We have f(x) = F(z)
- $F(z+1) = 2^{2^z+2^z} = F(z)F(z)$

$$f(0) = 2; \quad \frac{\delta f}{\delta \ell}(x) = f(x) \cdot f(x) - f(x)$$

$$f(x+1) - f(x) = (\ell(x+1) - \ell(x))(f(x)f(x) - f(x))$$

$$z = \ell(x) \qquad \qquad F(z) = 2^{2^z}$$

- We have f(x) = F(z)
- $F(z+1) = 2^{2^z+2^z} = F(z)F(z)$
- Then, F(z+1) = F(z) + (z+1-z)(F(z)F(z) F(z))

Characterisation of PTIME (the one you know)

We consider

$$\mathbb{LDL} = [0, 1, \pi_i^k, \ell(x), +, -, \times, cond(x);$$

$$composition, linear length \ ODE]$$

Theorem (Bournez & Durand, '19)

$$\mathbb{LDL}\cap\mathbb{N}^{\mathbb{N}}=\mathsf{PTIME}\cap\mathbb{N}^{\mathbb{N}}$$

First step: real sequences

Effective Limit

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is an effective limit of $\bar{f}: \mathbb{R} \times \mathbb{N} \to \mathbb{R}$ if

$$\left|f(x)-\bar{f}(x,2^n)\right|\leq 2^{-n}$$

 $\underline{ \text{Key observation}}: \bar{f} \text{ computable in polynomial time} \Rightarrow f \\ \overline{\text{computable in polynomial time}}.$

Algebraic characterisation of PTIME

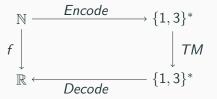
We consider:

$$\overline{\mathbb{LDL}^{\bullet}} = [\mathbf{0}, \mathbf{1}, \pi_i^k, \ell(x), +, -, \times, \overline{\mathrm{cond}}(x), \frac{x}{2};$$

composition, linear length ODE, effective limit]

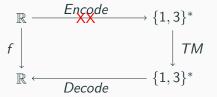
Theorem (B., Bournez, MCU22)
$$\mathsf{FPTIME} \cap \mathbb{R}^{\mathbb{N}} = \overline{\mathbb{LDL}^{\bullet}} \cap \mathbb{R}^{\mathbb{N}}$$

"Proof"



Second step: functions over the reals with discrete ODEs

What we cannot do



FPTIME for computable functions over the reals

We consider:

$$\overline{\mathbb{LDL}^{\circ}} = [\mathbf{0}, \mathbf{1}, \pi_{i}^{k}, \ell(x), +, -, \tanh, \frac{x}{2}, \frac{x}{3};$$

composition, linear length ODE, effective limit]

Theorem (B., Bournez, MFCS23)

$$\overline{\mathbb{LDL}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = \mathsf{FPTIME} \cap \mathbb{R}^{\mathbb{R}}$$

Toward FPSPACE: Robust linear ODE

Definition (Robust linear ODE)

A bounded function \mathbf{f} is a robustly linear ODE definable (with \mathbf{u} essentially linear in $\mathbf{f}(x, \mathbf{y})$, \mathbf{g} and \mathbf{h}) if:

1. it is a solution of

$$\mathbf{f}(0, \mathbf{y}) = \mathbf{g}(\mathbf{y})$$
 and $\frac{\delta \mathbf{f}(x, \mathbf{y})}{\delta x} = \mathbf{u}(\mathbf{f}(x, \mathbf{y}), \mathbf{h}(x, \mathbf{y}), x, \mathbf{y}),$

2. the ODE is (polynomially) numerically stable.

FPSPACE for computable functions over the reals

We consider:

$$\overline{\mathbb{RLD}^{\circ}} = [\mathbf{0}, \mathbf{1}, \pi_{i}^{k}, \ell(x), +, -, \tanh, \frac{x}{2}, \frac{x}{3};$$

composition, robust linear ODE, effective limit]

Theorem (B., Bournez, MFCS23)
$$\mathbb{RLD}^{\circ} \cap \mathbb{R}^{\mathbb{R}} = \mathsf{FPSPACE} \cap \mathbb{R}^{\mathbb{R}}$$

Third step: Functions over the reals

with continuous ODEs

Robust Continuous ODEs

A function $f:\mathbb{R}\to\mathbb{R}$ is robustly ODE definable (from initial condition g, and dynamic u) if

 it corresponds to the solution of the following continuous ODE:

$$\mathbf{f}(0,\mathbf{x}) = \mathbf{g}(\mathbf{x})$$
 and $\frac{\partial \mathbf{f}(t,\mathbf{x})}{\partial t} = \mathbf{u}(\mathbf{f}(t,\mathbf{x}),\mathbf{h}(t,\mathbf{x}),t,\mathbf{x}),$ (2)

Robust Continuous ODEs

- $\exists \Delta \in \mathbb{Q}_+^*$, and some polynomial p such that the previous ODE is (polynomially) numerically stable on $[0, \Delta]$.
- For $t \ge \Delta$, we can compute $\mathbf{f}(t, \mathbf{x})$ by computing some approximation $\widehat{\mathbf{f}(t/2, \mathbf{x})}$ of $\widehat{\mathbf{f}(t/2, \mathbf{x})}$ at precision $\epsilon(n)$.

Characterisation of PSPACE with continuous ODEs

We consider:

$$\overline{\mathbb{RCD}} = [0, 1, \pi_i^k, +, -, \times, \tanh, \cos, \pi, \frac{x}{2}, \frac{x}{3};$$

composition, robust ODE, ELim]

Theorem (B., Bournez, submitted)
$$\overline{\mathbb{RCD}} \cap \mathbb{R}^{\mathbb{R}} = \mathsf{FPSPACE} \cap \mathbb{R}^{\mathbb{R}}$$

Conclusion

- We have (nice) characterisations of polynomial complexity classes.
- We can have other points of view on them (another part of my PhD).